
RESEARCH ARTICLE

Does salt stress affect the interspecific

interaction between regionally dominant

Suaeda salsa and Scirpus planiculumis?

Jian Zhou1,2,3, Lijuan Cui1,2,3*, Xu Pan1,2,3, Wei Li1,2,3, Manyin Zhang1,2, Xiaoming Kang1,2

1 Institute of Wetland Research, Chinese Academic of Forestry, Beijing, China, 2 Beijing Key Laboratory of

Wetland Ecological Function and Restoration, Beijing, China, 3 Beijing Hanshiqiao National Wetland

Ecosystem Research Station, Beijing, China

* lkyclj@126.com

Abstract

Plant-plant interactions that change along environmental gradients can be affected by differ-

ent combinations of environmental characteristics, such as the species and planting density

ratios. Suaeda salsa and Scirpus planiculumis are regionally dominant species in the

Shuangtai estuarine wetland. Compared with non-clonal S. salsa, clonal S. planiculumis

has competitive advantages because of its morphological plasticity. However, salt-tolerant

S. salsa may grow faster than S. planiculumis in saline-alkali estuary soil. Whether the inter-

actions between these two species along salinity gradients are affected by the level of salt

stress and mixed planting density ratio remains unclear. Thus, to test the effects of salt

stress and planting density ratios on the interactions between S. planiculumis and S. salsa

in the late growing season, we conducted a greenhouse experiment consisting of 3 salinity

levels (0, 8 and 15ppt) and 5 planting density ratios. Our results showed that the promotion

of S. salsa growth and inhibition of S. planiculumis growth at low salinity levels (8 ppt) did

not alter the interactions between the two species. Facilitation of S. salsa occurred at high

salinity levels, and the magnitude of this net outcome decreased with increases in the pro-

portion of S. salsa. These results suggest that competition and facilitation processes not

only depend on the combinations of different life-history characteristics of species but also

on the planting density ratio. These findings may contribute to the understanding of the

responses of estuarine wetland plant-plant interactions to human modifications of estuarine

salinity.

Introduction

Plant-plant interactions play an important role in determining population dynamics and

structuring ecological communities [1–2]. In recent decades, numerous studies have focused

on plant-plant interactions along environmental gradients [3–5], and researchers have postu-

lated the stress-gradient hypothesis (SGH). This hypothesis predicts that facilitation and com-

petition have simultaneous effects on neighbouring individual plants, and the net outcome of
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this interaction will shift from negative to positive with increasing environmental stress [6–7].

Although this is a well-supported hypothesis, it is still debated with respect to specific issues,

such as species traits and stress types [7–11].

Certain scientists oppose the SGH because of the inconsistent results observed between dif-

ferent studies [5, 12]. Maestre et al. [13] extended the SGH and proposed that the interactions

between a single competitive pair will frequently transition from facilitation to competition

along abiotic stress gradients (i.e., gradients of water, nutrient and environmental stress). In

addition, effects are not only influenced by the physiological characteristics, functional traits

and stress tolerance of the species but also by the combinations of different life-history charac-

teristics of the species being tested. Previous studies found that the trade-offs between compet-

itive ability and stress tolerance are key factors driving zonation patterns along environmental

gradients [14–15]. Clonal plants with strong spatial expansion capabilities can fully exploit

heterogeneous resources and avoid abiotic stress via their morphological plasticity in natural

habitats [16–18]. To our knowledge, however, there is little experimental evidence on the

interactions between clonal plants and stress-tolerant species transitioning from facilitation to

competition along non-resource stress gradients.

Most tests of the SGH have focused on interactions between a single pair or a few pairs of

species at a planting density ratio of 1:1 [19–22]. However, the individual plants were grown

with different numbers of neighbouring species in natural habitats, and a species growing in a

stressful environment may have a neighbour that exhibits different interaction strengths that

may partly depend on the planting ratio. Interaction strength can be driven by the number of

competitive neighbours as well as the environmental stress. However, few studies have mea-

sured the extent to which the proportions of species within the same habitat affect their inter-

action strength along environmental gradients [23].

Estuarine wetland plant communities are characterized by striking zonation patterns across

salt stress gradients [14, 24–26]. Salinization is occurring at an unprecedented geographic scale

that far exceeds natural variation trends, and these changes have profound consequences for

wetland ecosystems [25, 27], especially estuaries. Thus, the mechanisms underlying variations

in the relationship between salinity stress tolerance and competitive ability must be deter-

mined [28–30].

In the Shuangtai estuarine wetland, clonal Scirpus planiculumis and non-clonal Suaeda salsa
are the dominant species in the saline-alkali field, and both species can coexist across broad

ranges, from the low marsh to the terrestrial border of the marsh. Using such a combination of

species to examine different responses to salt stress can reduce the confounding effects of other

traits and reveal the importance of strategic traits on species interactions. To better understand

the impact of salt stress and planting density ratio on the interactions between these two spe-

cies, we addressed the following questions: (1) Do salt stress and the planting density ratio

affect the growth of S. planiculumis and S. salsa? (2) Does the interspecific interaction between

the two species along salinity gradients change depending on the planting density ratio? To

answer these questions, we conducted a greenhouse experiment consisting of three levels of

salt stress (low and high stress treatments and a no-stress control) and five planting density

ratios (4:0, 3:1, 2:2, 1:3 and 0:4). Determining the competitive relationships between regionally

dominant species will provide valuable insights for restoration practices for estuarine wetlands.

Materials and methods

Sampling sites

Plant samples were collected from the Shuangtai estuarine wetland, which is located at the

north latitudes 40˚450 − 41˚100 and east longitudes 121˚300 − 122˚000 in Panjin, Liaoning
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Province of China. This wetland covers an area of 1579 km2 and experiences a semi-humid

temperate monsoon climate, with a mean annual temperature of 8.4˚C and mean annual pre-

cipitation ranging from 611.6 mm to 640.0 mm. In this ecosystem, the salinity values range

from 0 to 34.7 ppt (parts per thousand, soil pore water salinity measured as micrograms NaCl

per gram of water) in different areas, which affect the distribution and performance of halo-

phytic plants [31–32].

Species and propagation

The investigated plants were S. salsa (L.) and S. planiculumis Fr. Schmidt, which are dominant

species in the Shuangtai estuarine wetland. S. salsa is an annual non-clonal halophyte in the

family Chenopodiaceae, which is widely distributed along northern coasts consisting of saline

alkali land. NaCl can accumulate in the vacuoles of this species to ensure plant survival under

high salt stress [33]. S. planiculumis is a perennial, herbaceous clonal plant in the family Cyper-

aceae. In nature, the tubers of S. planiculumis can vegetatively produce new ramets to increase

the plant’s ability to reproduce [34]. Both species commonly co-occur in the Shuangtai estua-

rine wetland.

The plants were collected from a single location in the wetland in the summer of 2015.

Interactions between species are often affected by life-history stage, for instance, adult plants

often compete as a consequence of facilitation of juvenile plants [11, 35]. To exclude temporal

effects, we collected over 200 single adult plants, instead of juveniles, per species and grew

them in a greenhouse for 10 days. This greenhouse located in the Wildlife Rescue & Rehabilita-

tion Center, Beijing, China (the center is a protected area and specific permission should be

issued by Beijing Municipal Bureau of Landscape and Forestry ahead of time). The plants were

watered with tap water (no salt) to allow for acclimation to the indoor conditions before expos-

ing them to the experimental salinity treatments. We discarded plants that exhibited any trans-

planting stress during these 10 days and then collected 150 single plants of S. salsa and 150

single ramets of S. planiculumis. We measured the average total dry mass and the average

height of both species, and the initial respective measurements were 5.71 ± 0.93 g and

25.22 ± 5.22 cm for S. salsa and 3.24 ± 0.72 g and 38.99 ± 7.04 cm for S. planiculumis.

Experimental design

Standard replacement series experiments have been widely used to evaluate interspecific inter-

actions of mixed species, especially when studying interactions that involve only two species

[36–37]. We grew S. salsa and S. planiculumis under three salt stress treatments: low salt stress

(8 ppt), high salt stress (15 ppt) and a control treatment (no salt added). The salinity gradient

was based on field measurements from related research [30, 38]. S. salsa and S. planiculumis
were set up in mixtures and monocultures with five different planting density ratios: 0:4, 1:3,

2:2, 3:1 and 4:0. We set up 6 replicates for each treatment, and a total of 90 containers were

used.

On 6 August 2015, according to the previously described cultivation density ratios, four

plants of each species were transplanted in a vertical position into each experimental container.

The containers were dark plastic barrels that measured 23 cm in diameter and 25.5 cm in

depth, and they were filled with 12 cm of substrate, which was a 1:1 (v/v) mixture of sand and

soil, which was obtained from the bank of an artificial lake in the Beijing Wildlife Rescue &

Rehabilitation Center. The mixed substrate contained 0.31 (0.01) mg total N g-1 dry mass of

soil (mean [SE]; N = 3), 0.55 (0.03) mg total P g-1, 1.33 (0.09) mg K g-1, and 8.66 (0.71) mg

organic matter g-1 based on analysis conducted at the Institute of Botany at the Chinese Acad-

emy of Sciences in Beijing.

Salt stress and interspecific interaction
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On 13 August 2015, which represented one week of establishment, we slowly added an

NaCl solution to the containers. According to the volume of the substrate in a container, we

added 40.57 g and 76.06 g sodium chloride (99.59% purity) into separate containers for the

low and high salt treatments, respectively, and we prepared 1 L of sodium chloride solution

and added this to each treatment container. We added 1 L of tap water to the control contain-

ers. The NaCl solution was only added at the beginning of the experiment. During the experi-

ment, the containers were arranged in blocks and were watered twice a week to minimize

growth limitations caused by water availability. During the experiment, the mean temperature

in the greenhouse was 21.2˚C and the relative humidity was 75.5%.

On 22 October 2015, we harvested the experiment. The 10-week experimental duration was

sufficient for these two species to reach maturity and exhibit peak biomass because both spe-

cies had blossomed before the end of the experiment, and all plants survived. We measured

the heights of the plants, and then each plant was divided into above- and belowground parts,

dried at 70˚C for over 72 hours and weighed because biomass is an important growth index to

measure interspecific competition.

Data analysis

We analysed the growth of S. salsa and S. planiculumis and performed two-way ANOVAs to

test the effects of the different levels of salt stress (no-salt control, 8 ppt low salt and 15 ppt

high salt) and planting density ratios of these species (4:0, 3:1, 2:2, 1:3 and 0:4) on the total bio-

mass, aboveground biomass, belowground biomass and average height. Differences were

tested using Tukey’s post hoc honest significant difference test. In the ANOVA models, salt

stress and the planting density ratio were treated as fixed effects. The mean values of all plants

in a container were used in these analyses.

Based on the total biomass data of S. salsa and S. planiculumis, we analysed the competi-

tive response using the relative interaction index (RII). The RII is suitable for calculating

the positive and negative interactions between plants because this index can compare the

performance of each species grown in a mixture to the performance of the species grown in

a monoculture. In addition, the competition intensity between two species can effectively

be measured because the RII often better meets the assumptions for statistical analysis

compared with alternative competitive models [39–40]. The calculation formulae are as

follows:

RIIa ¼ ðYab � YaÞ=ðYab þ YaÞ;

RIIb ¼ ðYba � YbÞ=ðYba þ YbÞ

where Y is the total biomass per plant in each experimental container; a and b represent the

two species; Ya is the total biomass of species a when grown alone; Yb is the total biomass of

species b when grown alone; Yab is the total biomass of species a when grown with species

b; and Yba is the total biomass of species b when grown with species a. If the RII value is 0,

there are no significant differences between the mixtures and the monoculture; if the RII

value is positive; then the interaction is facilitative; and if the RII value is negative, the

interaction is competitive. Significant deviations of RII values from zero at the P = 0.05

level were determined using a t-test. All analyses were conducted using SPSS 20.0 (Statisti-

cal Product and Services Solutions, version 20.0; SPSS Inc., Chicago, IL).
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Results

Effects of salt stress and planting density ratio on the growth of the two

species

As predicted, the biomass of S. salsa decreased significantly with increasing salt stress

(P< 0.001, Table 1 and Fig 1). The low salt treatment resulted in the highest biomass value of

S. salsa, which was approximately 15% higher than that in the control treatment and 40%

higher than that in the high salt stress treatment. The treatments with different mixed planting

density ratios did not affect the total biomass (F3, 60 = 1.06, P = 0.372) or height (F3, 60 = 2.08,

P = 0.112) of S. salsa (Table 1).

Similar to the results for S. salsa, the salt stress treatments also had an obviously negative

effect on the growth of S. planiculumis. The control treatment resulted in the highest biomass

value of S. planiculumis (Table 1 and Fig 2), which was approximately 60% lower in the low

salt treatment and 80% lower in the high salt treatment. Significant differences were not

observed in the total biomass (F3, 60 = 0.91, P = 0.440), aboveground mass (F3, 60 = 0.96,

P = 0.418) and belowground mass (F3, 60 = 0.34, P = 0.796) of S. planiculumis across the differ-

ent planting density ratios, although the presence of S. salsa significantly enhanced the height

of S. planiculumis (F3, 60 = 3.71, P = 0.031). No interactions were observed between the

treatments.

RII results

In the no salt and low salt treatments, the RII values were close to zero for both S. salsa and S.

planiculumis (P> 0.05, Table 2). In the high salt treatments, the RII values of S. salsa were sig-

nificantly greater than zero when the proportions of S. salsa and S. planiculumis were 2:2 and

1:3 (Table 2; Fig 3), which indicates that the salt-tolerant species S. salsa were benefactor and

clonal S. planiculumis were beneficiary in this case. The RII values of S. planiculumis were

strongly negative when the planting density ratio was 3:1, indicating that the effects of S. salsa
on S. planiculumis were competitive (Table 2; Fig 3).

Discussion

Salt stress is one of the main environmental factors that affect plant growth and morphology in

estuaries [24]. High salt concentrations (15 ppt) significantly decreased the growth of the two

Table 1. ANOVA results for the effects of salt stress and interspecific competition on the growth of S. salsa and S. planiculumis.

Response variables Salt stress (S) Competition (C) S * C

F2, 60 P F3, 60 P F6, 60 P

Suaeda salsa

Total mass 23.12 < 0.001 1.06 0.372 0.86 0.530

Aboveground mass 22.44 < 0.001 2.04 0.118 2.16 0.060

Belowground mass* 13.41 < 0.001 0.08 0.969 0.21 0.973

Height 94.58 < 0.001 2.08 0.112 1.34 0.252

Scirpus planiculumis

Total mass 163.46 < 0.001 0.91 0.440 0.28 0.945

Aboveground mass 149.20 < 0.001 0.96 0.418 0.37 0.895

Belowground mass* 97.19 < 0.001 0.34 0.796 0.18 0.962

Height 55.79 < 0.001 3.17 0.031 1.24 0.297

*These data were transformed to meet the requirements for homoscedasticity and normality. Bold type indicates a significant difference (P < 0.05).

https://doi.org/10.1371/journal.pone.0177497.t001
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studied species, and the osmotic effect of the salt damaged the roots of both species [41], which

subsequently inhibited the growth of the plants. Photosystem II in S. salsa showed high resis-

tance to low salinity [42], which makes the plant more suitable for growth under low salinity

environments (8 ppt) than S. planiculumis. Thus, S. salsa reached its maximum biomass in the

low salt treatment. These results are consistent with previous studies on the effects of salt stress

on plants.

Different planting density ratios of S. salsa and S. planiculumis did not significantly affect

the biomasses of the two species in any of the salinity treatments. However, the presence of S.

salsa greatly increased the average height of S. planiculumis (P = 0.031, Table 1), which may be

related to the morphological plasticity of clonal plants such as S. salsa, which can absorb more

light and take up more space under competition. Many studies have also shown that clonal

reproduction appears to select for escape strategies when plants experience competition [43–

44].

The RII results for S. salsa and S. planiculumis along the salinity stress gradient and under

the different planting density ratios were complex. Both competitive and facilitative processes

were asymmetrical for S. salsa and S. planiculumis across the salinity stress gradients. In fresh

water and low salinity water across all density ratios, plants interactions tended to be less facili-

tative relative to the high stress treatments (Fig 3), these results support the SGH. One possible

Fig 1. Effects of salt stress (no salt, low salt and high salt) and planting density ratio (proportions of S. salsa and S. planiculumis were 1:3,

2:2, 3:1 and 4:0) on the (A) total mass, (B) aboveground mass, (C) belowground mass and (D) height (mean + SE) of S. salsa.

https://doi.org/10.1371/journal.pone.0177497.g001

Salt stress and interspecific interaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0177497 May 26, 2017 6 / 11

https://doi.org/10.1371/journal.pone.0177497.g001
https://doi.org/10.1371/journal.pone.0177497


explanation for these results may be related to the intensity of interspecific interaction between

these two species, which was equal to their intraspecific interaction under low abiotic stress

conditions. Another explanation may be that the fresh water and low salinity stress gradients

were too weak to constitute a major proportion of the species’ niches. In other words, these

species were not sensitive to these two levels [7, 10]. Moreover, He et al. [15] found that the

stress-tolerant and competitively inferior S. salsa did not benefit from T. chinensis amelioration

of abiotic stress, which is partly consistent with our findings. The duration of the growing sea-

son may also be a reasonable explanation for the almost non-existent interaction under low

abiotic stress conditions.

Fig 2. Effects of salt stress (no salt, low salt and high salt) and density ratio (proportions of S. salsa and S. planiculumis were 0:4, 1:3, 2:2

and 3:1) on the (A) total mass, (B) aboveground mass, (C) belowground mass and (D) height (mean + SE) of S. planiculumis.

https://doi.org/10.1371/journal.pone.0177497.g002

Table 2. One sample t-test results for S. salsa and S. planiculumis under different density ratios and salt stress treatments. P values are shown.

Species df No salt Low salt High salt

3:1 2:2 1:3 3:1 2:2 1:3 3:1 2:2 1:3

S. salsa 5 0.83 0.86 0.63 0.88 0.42 0.77 0.01 0.67 0.66

S. planiculumis 5 0.88 0.72 0.87 0.62 0.42 0.96 0.60 0.02 <0.01

Bold type indicates a significant difference (P < 0.05).

https://doi.org/10.1371/journal.pone.0177497.t002
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The balance between competition and facilitation was disturbed when the salinity was

increased to 15 ppt according to the RII results (Fig 3C). S. salsa benefitted from the interac-

tion under increased salt stress because of its high salt tolerance, especially when this species

was present in the minority (S. salsa: S. planiculumis density ratio of 2:2 or 1:3). As predicted

by Maestre et al. [13], plant-plant interactions will shift from competition to facilitation with

increased abiotic stress for plant-plant combinations with dissimilar competitive abilities and

stress tolerances, and this shift has been observed in previous studies [6, 22, 45–46]. However,

the facilitative effects disappeared with increasing numbers of S. salsa because the intraspecific

interactions between S. salsa plants inhibited their growth. This result suggests that the plant-

ing density ratio affects the interactions between the two species as they shift from competition

to facilitation under high salinity.

Conclusions

Our study demonstrated that (1) the growth of S. planiculumis was inhibited under both low

and high salinity conditions, whereas the growth of S. salsa was only inhibited under high

salinity. The planting density ratios did not alter the growth of either S. planiculumis or

S. salsa. (2) The promotion of S. salsa growth and the inhibition of S. planiculumis growth at

low salinity (8 ppt) did not alter their interactions. (3) Facilitation occurred at high salinity,

and the magnitude of this net outcome decreased with increases in the proportion of S. salsa.

These results provide insights into the organization and assembly of estuarine wetland plant

communities and may have important implications for our understanding of the responses of

estuarine wetland plant communities to human modifications of estuarine salinity. However,

the results may depend on a variety of biotic and abiotic environmental stress factors and com-

plex combinations of these factors in natural habitats. Further studies should examine shifts

between competition and facilitation under multiple types of environmental stresses in estua-

rine wetland plant communities.
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23. Čuda J, Skálová H, Janovský Z, Pyšek P. Competition among native and invasive Impatiens species:

the roles of environmental factors, population density and life stage. AoB Plants. 2015; 7: plv033.

https://doi.org/10.1093/aobpla/plv033 PMID: 25832103

24. Crain CM, Silliman BR, Bertness SL, Bertness MD. Physical and biotic drivers of plant distribution

across estuarine salinity gradients. Ecology. 2004; 85: 2539–2549.

25. Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardon M, et al. A global perspective on wet-

land salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere.

2015; 6: 1–43.

26. Liu G, Gao Y, Huang FF, Yuan MY, Peng SL. The invasion of coastal areas in south China by Ipomoea

cairica may be accelerated by the ecotype being more locally adapted to salt stress. PloS One. 2016;

11: e0149262. https://doi.org/10.1371/journal.pone.0149262 PMID: 26867222
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