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Abstract

Crested wheatgrass [Agropyron cristatum L. (Gaertn.)] is widely used for early spring graz-

ing in western Canada and the development of late maturing cultivars which maintain forage

quality for a longer period is desired. However, it is difficult to manipulate the timing of floral

transition, as little is known about molecular mechanism of plant maturity in this species. In

this study, RNA-Seq and differential gene expression analysis were performed to investi-

gate gene expression for floral initiation and development in crested wheatgrass. Three

cDNA libraries were generated and sequenced to represent three successive growth stages

by sampling leaves at the stem elongation stage, spikes at boot and anthesis stages. The

sequencing generated 25,568,846; 25,144,688 and 25,714,194 qualified Illumina reads for

the three successive stages, respectively. De novo assembly of all the reads generated

311,671 transcripts with a mean length of 487 bp, and 152,849 genes with an average

sequence length of 669 bp. A total of 48,574 (31.8%) and 105,222 (68.8%) genes were

annotated in the Swiss-Prot and NCBI non-redundant (nr) protein databases, respectively.

Based on the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway database, 9,723

annotated sequences were mapped onto 298 pathways, including plant circadian clock

pathway. Specifically, 113 flowering time-associated genes, 123 MADS-box genes and 22

CONSTANS-LIKE (COL) genes were identified. A COL homolog DN52048-c0-g4 which

was clustered with the flowering time genes AtCO and OsHd1 in Arabidopsis (Arabidopsis

thaliana L.) and rice (Oryza sativa L.), respectively, showed specific expression in leaves

and could be a CONSTANS (CO) candidate gene. Taken together, this study has generated

a new set of genomic resources for identifying and characterizing genes and pathways

involved in floral transition and development in crested wheatgrass. These findings are

significant for further understanding of the molecular basis for late maturity in this grass

species.
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Introduction

The crested wheatgrass complex (Agropyron) plays an important role in the provision of forage

for ruminant animals in temperate semi-arid regions of North America. This complex has

approximately 15 species and is an important perennial genus of the tribe Triticeae [1]. There

are three ploidy types in the genus: diploid (2n = 2x = 14), tetraploid (2n = 4x = 28), and hexa-

ploid (2n = 6x = 42). In Canada, Agropyron cristatum L. is the most common species of crested

wheatgrass, with both diploid and tetraploid cultivars grown. The tetraploid type is more pop-

ular than diploid type. It is recognized as a valuable grass for spring grazing and hay produc-

tion. However, once crested wheatgrass reaches the stage of flowering, nutritive value declines

rapidly and plants become less palatable to grazing animals. Thus, the development of late

maturing cultivars is a goal for crested wheatgrass breeding programs. However, it is a chal-

lenge to manipulate the timing of its floral transition, as there is little understanding of flower-

ing genes and their expression in this species.

Flowering is a complex trait controlled by multiple genes and has considerable impacts on

the adaptability, biomass and economic value in agricultural crops. Many genes involved in

various flowering pathways, e.g. photoperiod, vernalization and autonomous pathways, have

been identified in the model plant A. thaliana [2,3]. The photoperiod pathway controls flower-

ing time in response to seasonal changes in day length. Two photoperiod responsive genes,

namely, CONSTANS (CO) and FLOWERING LOCUST (FT), are vital in regulating photoperi-

odic flowering [3,4]. In Arabidopsis, GIGANTEA (GI) protein, which is the output from the

circadian clock, activates the expression of CO gene. The role of CO protein in flowering is to

activate the FT gene which promotes flowering by acting upstream of the floral meristem iden-

tity genes APETALA 1 (AP1), LEAFY (LFY) and CAULIFLOWER (CAL) [4]. The CO/FT mod-

ule appears to be conservative and genes with similarity to GI, CO and FT have been identified

and characterized in several grass species [5–11]. Vernalization is the process by which pro-

longed exposure to cold renders plants competent to flower [12]. It prevents seeds sown in late

summer or early fall from developing into flowering plants. In Arabidopsis, vernalization re-

duces the activity of central flowering repressor which is encoded by the FLOWERING LOCUS
C (FLC) gene [13]. In cereals, three genes (VERNALIZATION1 [VRN1],VRN2 and VRN3)

have been identified and are thought to form a regulatory loop to control the timing of flower-

ing [14].

In contrast with those genes identified in important annual grass species like rice (Oryza
sativa L.) and wheat (Triticum aestivum L.), almost no research has been done on genes regu-

lating the vegetative-to-reproductive transition in crested wheatgrass. Crested wheatgrass is an

obligate outcrossing species, and thus the high level of individual heterozygosity and popula-

tion heterogeneity makes its genetic and molecular studies more difficult. Recently, next-gen-

eration deep-sequencing technologies such as Solexa/Illumina RNA-sequencing (RNA-Seq)

have provided new approaches to study global transcriptome profiles for species without re-

ference genomes. RNA-Seq can study transcripts of a certain trait in a given developmental

stage and has been used to investigate the transcriptomic profiles in some grass species [15,16].

Zhang et al. [17] performed de novo transcriptome sequencing of tetraploid crested wheatgrass

to develop genomic resources for wheat genetic improvement. However, little attention has

been paid to identify and characterize genes for flowering in crested wheatgrass.

To enhance our understanding of the genetic control of flowering in crested wheatgrass,

an RNA-Seq analysis was conducted of the flowering transcriptome over three developmental

stages: stem elongation stage (VS), boot stage (BS) and anthesis stage (AS) in tetraploid crested

wheatgrass. The specific objectives of this study were: (1) to perform de novo assembly of three

different RNA-Seq libraries to develop genomic resources for flowering traits and (2) to
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conduct a differential gene expression analysis among the three stages to identify genes

involved in specific pathways for floral transition. It was hoped that this analysis would not

only provide some baseline information and genomic resources for identifying and character-

izing genes associated with floral initiation and development in this species, but also allow for

better understanding of the molecular mechanisms controlling plant flowering.

Materials and methods

Plant materials and growth conditions

Four tetraploid crested wheatgrass plants, one from each line (Plant Introduction No. PI598641,

PI439914, W625134 or PI439914), with the same flowering date in 2015 and 2016 growing sea-

sons (S1 File) were selected for RNA-Seq analysis. These plants were grown in the field plots at

Agriculture and Agri-Food Canada Saskatoon Research Farm, Saskatoon, SK, Canada. The field

plots were established in July of 2014 on 1 m centers. The samples of the four selected plants

were collected at the same time as follows: leaf tissues at stem elongation stage (approximately

E0), spikes at boot stage 7-d after the first sampling (approximately R0) and spikes at the anthe-

sis (flowering) stage (R4), 30-d from the second sampling, respectively according to Moore

et al., (1991) [18]. The collected tissues were immediately frozen and stored in liquid nitrogen

for RNA extraction.

RNA extraction, cDNA library construction and Illumina sequencing

For each plant, total RNA was extracted from approximately 100 mg raw material at the three

developmental stages, respectively, using the Qiagen RNeasy Plant mini kit (Qiagen) according

to the manufacturer’s protocol. RNA quantification was performed using Nanodrop 8000

(Thermo Fisher) and RNA integrity was assessed via the RNA 6000 Nano labchip on 2100 Agi-

lent Bioanalyzer (Agilent Technologies). For each growth stage, 1.25 ug RNA from each plant

was pooled and used for subsequent analysis. The pooled RNA samples were subsequently

used in cDNA library construction. Three cDNA libraries were prepared using a TruSeq1

RNA sample preparation Kit from Illumina (San Diego, CA, USA). Paired-end libraries were

sequenced using the Illumina HiSeq1 2500 system at National Research Council, Saskatoon,

SK, Canada. All raw sequences were deposited in the National Center for Biotechnology Infor-

mation Short Read Archive under accession number SRP096782.

Transcriptome de novo assembly

The raw sequence reads for three floral development stages from the image data output

from the sequencing facility were quality checked by FASTQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Based on the FASTQC results, a filtering was performed to

remove ribosomal RNA (rRNA) contamination and trimming to remove low quality bases

and adapters. SortMeRNA was used to identify rRNA in the raw reads [19]. Trimmomatic

[20] was used to clean the raw reads by removing low-quality reads (Q value = 20 as threshold),

partial adapter sequences and reads with ambiguous bases ‘N’, based on the setting of paired-

end mode, phred33 and threads 6. De novo assembly of the crested wheatgrass transcriptome

was accomplished following the online instructions of Trinity [21,22]. The quality of de novo
transcriptome assembly, including the number, total bases, mean length, and N50 of tran-

scripts and genes, was checked using perl script “TrinityStats.pl” of the Trinity pipeline. Corset

[23] was used to cluster relevant transcripts into genes. The bam files used for Corset analysis

were produced by multi-mapping the reads to the transcriptome using Bowtie2 [24]. Each

sample had one bam file. The assembled transcripts and genes were analyzed with the perl
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script “fasta_seq_length.pl” of the Trinity pipeline to get the sequence length for each tran-

script and gene.

Sequence annotation and classification

Blast2go (http://www.blast2go.com/b2ghome) was used to align genes against the National

Centre of Biotechnology Information (NCBI) nr protein database for function annotation.

Local blastx was performed to search gene sequences against the Swiss-Prot protein database.

The e-value cutoff was set at 1e-5. Gene name was assigned to each gene based on top Blastx hit

with the highest score. The genes related to flowering time and floral development were

explored based on the gene names. Similarity distribution and species distribution analysis

was based on annotation from Blast2go. For each annotated transcript, the top blastx hit was

used for analysis. The annotated sequences were searched in the KEGG Automatic Annotation

Server (KAAS) [25,26] using the bi-directional best hit method. Specific metabolic pathways

were identified from the output in KAAS.

Phylogenetic tree

Multiple protein alignments were performed using ClustalW (http://www.ebi.ac.uk/clustalw/)

based on the AtCO and OsHd from A. thaliana and rice, respectively, as well as CO homologs

TaHd1-1 and TaHd1-3 from wheat and HvCO1 and HvCO2 from barley (Hordeum vulgare
L.), along with the putative CO homologs in crested wheatgrass with CCT domain. The

following 22 protein sequences were obtained and aligned for phylogenetic analysis: AtCO

(NP_197088), OsHd1 (ABB17664), TaHd1-1 (BAC92735), TaHd1-3(BAC92736), HvCO1

(AF490467_1), HvCO2(AF490470_1), AtCOL1 (NP_197089), AtCOL2 (NP_186887), AtCOL3

(Q9SK53), AtCOL4 (Q940T9), AtCOL5 (Q9FHH8), AtCOL6(Q8LG76), AtCOL7 (Q9C9A9),

AtCOL8 (Q9M9B3), AtCOL9 (NP_001118599), AtCOL10 (Q9LUA9), AtCOL11 (O23379),

AtCOL12 (Q9LJ44), AtCOL13 (O82256), AtCOL14 (O22800), AtCOL15 (Q9C7E8) and

AtCOL16 (Q8RWD0). MEGA software (version 6.0) [27] was used to construct a phylogenetic

tree with the aligned protein sequences. The neighbor-joining method was used with pairwise

deletion option, Poisson correction model, and the 1000 bootstrap replicates.

Differential gene expression analysis

The alignment-based qualification method RSEM [28] was used to estimate gene abundance.

The de novo assembly of three RNA-Seq libraries was used as reference. Each RNA-Seq library

was separately aligned to the reference, using Bowtie [29]. The differentially expressed genes

(DEGs) were analyzed using R Bioconductor package, edgeR [30]. The edgeR dispersion value

was explored between 0.1 and 0.4, and 0.2 was adopted based on the number of DEGs. The

threshold of the P-value in multiple tests was determined by the value for the false discovery

rate (FDR) [31]. The threshold to judge the significance of gene expression differences was

‘‘FDR� 0.001 and the absolute value of Log2 fold change (Log2
FC)� 4”. Local blastx was per-

formed to search DEGs against the KEGG database. A tabular BLAST output from the local

blastx was analyzed by the KEGG Orthology Based Annotation System (KOBAS) program

[32] for pathway enrichment analysis. Significantly enriched pathways were defined by taking

a corrected P-value = 0.05 as the threshold.

To assess the accuracy of DEG detection, we also performed a quantitative real-time PCR

(qRT-PCR) validation of DEGs related to flowering time and floral development using two

plants randomly selected from the Plant Introduction No.W625134 and 439914, respectively.

Specifically, total RNA at the VS and BS stages of these two plants was extracted, respectively.

The RNA extraction method was the same as described for the RNA-Seq library preparation

RNA-Seq analysis of floral development in A. cristatum
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and sequencing. Extracted RNA was treated with DNAse I (Ambion), and cDNA was synthe-

sized using the SuperScript1 First-Strand Synthesis System for RT- PCR (invitrogen) accord-

ing to the manufacturer’s instruction. The sequences of the specific primer sets for each tested

gene were designed using the PrimerQuest Tool (https://www.idtdna.com/Primerquest/

Home/Index) and listed in S2 File. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

gene of crested wheatgrass (DN67262-c0-g1) was used as an internal control for normaliza-

tion. Three separate first-strand cDNA reactions were analyzed in duplicate for each sample.

The qPCR analysis was performed with SsoFast EvaGreen supermix (Bio-rad) according to the

manufacturer’s instructions using a Bio-rad CFX96TM system.

Results

Illumina sequencing and sequence assembly

Illumina HiSeq1 2500 paired-end sequencing generated 25,568,846; 25,144,688 and

25,714,194 qualified sequence reads for VS, BS and AS stages, respectively (Table 1). De novo
assembly of 69,484,618 clean reads with mean length of 122 bp generated 311,671 transcripts

with a total of 151,835,903 bases (Table 1, S3 File). The average length of the transcripts was

487 bp and N50 of the transcripts was 558 bp. The sequence length distributions of the tran-

scripts and genes were shown in Fig 1. Using paired-end reads, these transcripts were further

clustered into 152,849 genes by Corset, with a mean length of 669 bp. A summary of sequence

reads, assembled transcripts and genes for each library are presented in Table 1.

Sequence annotation

Assembled genes were annotated using Blastx program with an E-value threshold of 10−5

against Swiss-Prot and NCBI non-redundant (nr) protein databases. A total of 48,574 (31.8%)

and 105,222 (68.8%) genes showed significant similarity to known proteins in the Swiss-Prot

and NCBI nr protein databases, respectively. The sequences and annotation of the 105,222

genes were presented in S4 and S5 Files, respectively. The annotation information from nr

database was used for similarity distribution and species distribution analysis. The similarity

distribution showed that 55.0% of the matches were of high similarity ranging from 80% to

100% similarity as reported in the Blastx results whilst 38.1% of the matches were of similarity

ranging from 60% to 80% (Fig 2A). Further analysis of the matching sequences indicated that

Table 1. Summary of Illumina transcriptome sequencing from three floral development stages of crested wheatgrass: Stem elongation stage (VS),

boot stage (BS) and anthesis stage (AS).

Stage VS BS AS All stages

Raw reads 25,568,846 25,144,688 25,714,194 76,427,728

Clean reads 22,713,895 23,585,737 23,184,986 69,484,618

Total clean nucleotides (nt) 2,779,828,358 2,902,969,649 2,821,635,887 8,504,433,894

Average read length 122 123 122 122

Total Trinity transcripts 128,690 200,412 114,590 311,671

Mean length of contigs 491 508 470 487

N50 of contigs 580 604 534 558

Total assembled bases 63,237,556 101,928,935 53,813,990 151,835,903

Total genes 87,076 118,724 70,698 152,849

Mean length of genes 781 742 863 669

N50 of genes 1134 1006 1273 883

Total assembled bases 68,035,269 88,055,369 61,029,401 102,318,880

https://doi.org/10.1371/journal.pone.0177417.t001
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9.6% of the sequences showed the closest matches with sequences from Oryza sativa while

6.8% and 6.7% of the sequences showed closest matches with sequences from Zea mays and

Aegilops tauschii, respectively (Fig 2B).

Flowering time-associated genes and MADS-box genes

We obtained 113 genes associated with flowering time (S6 File) based on the annotations of

assembled genes. The number of flowering time homologous genes in the crested wheatgrass

transcriptome data is summarized in Table 2. These include photoreceptor genes crypto-

chromes (CRY1 and CRY2) and photochromes genes (PHYA and PHYC); photoperiod path-

way genes EARLY FLOWERING 3 (ELF3), PHYTOCHROME INTERACTING FACTOR 3
(PIF3), CIRCADIANCLOCK-ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL
(LHY), TIMINGOF CAB (TOC1),GI, CHALCONE SYNTHASE (CHS) and CO; vernalization

pathway genes such as VRN1,VERNALIZATION INDEPENDENCE 4 (VIN4) and VERNALI-
ZATION INSENSITIVE 3 (VIN3); floral integrator pathway genes FT, APETALA 2 (AP2) and

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and floral meristem identity

genes LFY. Also, MADS-box genes are important resources for the study of floral organ forma-

tion and 123 MADS-box genes were identified (S7 File). Moreover, three chromatin-related

flowering time genes EMBRYONIC FLOWER 2 (EMF2), FERTILIZATION-INDEPENDENT
ENDOSPERM (FIE) and SWITCH/SUCROSENONFERMENTING (SWI) were detected.

Metabolic pathway assignment by KEGG

Mapping 105,222 annotated genes to the reference canonical pathways in KEGG revealed a

total of 9,723 genes that were assigned to the 298 KEGG pathways (S8 File). The pathways with

the most represented genes were the metabolism pathway (830 genes) and the biosynthesis of

secondary metabolites (384 genes). Interestingly, a circadian rhythm pathway involving 21

Fig 1. Sequence length distributions of transcripts/genes assembled from Illumina sequence reads from

three floral development stages of crested wheatgrass.

https://doi.org/10.1371/journal.pone.0177417.g001
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genes was also found in KEGG, and the detailed metabolic pathway for the circadian rhythm is

shown in Fig 3. Circadian rhythm is an important part of the photoperiod pathway for plant

Fig 2. Statistics of sequence-homology search against NCBI nr protein database with respect to similarity (A) and species (B).

https://doi.org/10.1371/journal.pone.0177417.g002

Table 2. Identification of 113 flowering time-associated genes from crested wheatgrass transcriptome based on NCBI nr database annotation.

Category Homologous gene in the nr database The number of corresponding genes in our transcriptome data

Photoreceptor PHYA 4

PHYC 3

CRY1 3

CRY2 1

ELF3 4

PIF3 5

Circadian clock TOC1 1

CCA1/LHY 1

GI 2

CHS 29

CO 22

Vernalization pathway VRN 1 1

VIN 4 1

VIN 3 4

Floral integrator pathway FT 21

AP2 3

SOC1 1

Chromatin related EMF2 4

FIE 1

SWI 1

Floral meristem identity LFY 1

https://doi.org/10.1371/journal.pone.0177417.t002
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flowering. In A. thaliana, the circadian oscillator, which is at the core of photoperiod pathway,

is composed of the interlocked feedback loop formed by a pseudo response regulator (PRR)

and major transcriptional factors CCA1, LHY and TOC1. The morning-expressed CCA1/

LHY suppresses TOC1 expression by binding to its promoter. Moreover, CCA1/LHY activates

the expression of PRR7/9 in the morning and then PRR7/9 represses the transcription of

CCA1/LHY during the rest of the day. By contrast, the evening-expressed TOC1 activates the

expression of CCA1/LHY. In the flowering transcriptome of crested wheatgrass, not only the

homologs of these major factors CCA1, LHY, TOC1 and PRR7, but also photoperiod genes

ELF3, PIF3, GI, CO and FT were mapped to the circadian rhythm pathway. The pathway iden-

tified here not only confirms that the photoperiod pathway is involved in flowering in crested

wheatgrass, but also provides valuable resource for investigating the photoperiod pathway and

flowering-related processes in crested wheatgrass.

Fig 3. The plant circadian rhythm pathway revealed by KEGG annotation in three floral development stages of crested wheatgrass. The genes

highlighted in blue are found in our transcriptome data.

https://doi.org/10.1371/journal.pone.0177417.g003
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Identification of crested wheatgrass CONSTANS-like (COL) gene family

In A. thaliana, CO gene plays a central role in the photoperiodic control of flowering. One CO

and 16 CO-like proteins named AtCOL1-AtCOL16 formed a gene family of 17 members in A.

thaliana. All members of this gene family contain one or two B-box domains at the N-termi-

nus and a CCT domain at the C-terminus [33,34]. A total of 22 homologs of the COL genes

were identified in our assembled transcriptome database (Table 2 and S6 File). Amino acid

sequence alignments indicated that 11 putative proteins of these homologs in crested wheat-

grass have conserved CCT domains (Fig 4A). The phylogenetic analysis of these putative

COL homologs with COL proteins in A. thaliana, rice, wheat and barley revealed that all mem-

bers of homologs with conserved CCT domains in crested wheatgrass could be divided into

three divergent groups (Fig 4B). Seven COL homologs (DN59116-c0-g2, DN52048-c0-g1,

DN52048-c0-g2, DN54810-c0-g1, DN52048-c0-g4, DN50988-c0-g4 and DN51148-c0-g2)

were assigned in group I and were clustered with AtCOL3/AtCOL4/AtCOL5. They were

closely related to AtCO and OsHd1. DN49022-c0-g1, DN45923-c0-g1 and DN53380-c0-g2

were closely related to AtCOL9 and AtCOL10 and clustered in group II. DN46523-c0-g2 was

clustered with AtCOL6 and AtCOL16 in group III. These results suggested that the COL pro-

teins have evolved before the divergence of the monocots and dicots [7,35,36].

Differential gene expression during floral initiation and development

Putative homologs of COL and some other important genes involved in controlling flowering

time in crested wheatgrass have been identified. To better understand the molecular mecha-

nisms that regulate the genetic pathways of floral transition and floral development, a genome-

wide expression analysis was performed for the VS, BS and AS developmental stages. The

expression of each gene was calculated using the numbers of reads mapping onto the assem-

bled transcriptome. Comparisons of gene expression showed that a total of 1544 genes, includ-

ing 996 up-regulated and 548 down-regulated genes were identified in BS when compared to

VS (Fig 5A). An overview of the expression patterns for VS vs BS was shown in Fig 5B. The

expression changes of 1544 differentially expressed genes (DEGs) ranged from 17-fold to

-14-fold. There were 163 genes showing specific expression in VS while 686 genes showing

specific expression in BS (Fig 5C, S9 File). KOBAS was used to further identify biosynthetic

pathways and to explore the functions of the DEGs in detail. Some of DEGs, which were up-

regulated in the BS, were significantly enriched to the pathway of steroid biosynthesis by

KOBAS (S10 File).

Comparing gene expressions between BS and AS revealed that 1671 DEGs were identified

in AS when compared to BS, including 1256 up-regulated and 415 down-regulated genes (Fig

5A). A corresponding view of the expression patterns for BS vs AS was depicted in Fig 5B. The

changes of 1671 DEGs ranged from a 17-fold to an -18-fold. Among these genes, 322 genes

were specifically expressed in BS while 1101 genes showed specific expression in AS (Fig 5C,

S9 File). In KOBAS enrichment, 13 gene sets were significantly enriched and they are related

to ribosome, lysosome, starch and sucrose metabolism, fatty acid metabolism, cutin, suberine

and wax biosynthesis. Most of these DEGs were up-regulated in the AS stage (S10 File).

DEGs related to flowering time and floral development were also identified. The flowering

time-associated genes showed higher expression levels in VS than that in BS, and the func-

tional annotation for these genes was listed in Table 3. DN61589-c0-g2, the homologous gene

to the plant circadian clock gene LHY, was expressed 11 times higher in VS than that in BS.

DN59278-c0-g2, the homologous gene of plant circadian clock gene GI, was expressed 5 times

higher in VS. The CO/FT regulatory system was found to be associated with flowering initia-

tion in crested wheatgrass. DN52048-c0-g4, which is the homologous gene of CO expressed
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Fig 4. Characterization of the putative CONSTAN-like proteins in crested wheatgrass.

https://doi.org/10.1371/journal.pone.0177417.g004
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Fig 5. Differential expressed genes (DEGs) in two pairs of the floral developmental stages of crested

wheatgrass [stem elongation stage (VS) vs. boot stage (BS) and boot stage (BS) vs. anthesis stage

(AS)].

https://doi.org/10.1371/journal.pone.0177417.g005
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about 5 times higher in VS. DN56531-c3-g1 is the homologous gene for FT and its expression

elevated about 8 times in VS. DN53048-c0-g2, homologous gene of flowering-promoting factor
15 also had 7 times elevation in VS compared to that in BS. DN53956-c0-g1, the homologous

gene of ZCN26, a member of the maize FT-related gene family, showed about 10 times higher

expression level in VS. These results indicated that photoperiod pathway is involved in flower

initiation in crested wheatgrass. Genes involved in floral development were expressed signifi-

cantly higher in BS (Table 4). These up-regulated genes in BS were involved in flower organ

formation and floral development. DN56706-c0-g5, DN60175-c2-g2, DN56706-c0-g6 and

DN36907-c0-g1, the homologous genes of MADS-box transcription factors, were expressed

from 5 to 12 times higher in BS than VS and were correlated with floral development. DN55848-

c0-g1, a homologous gene of auxin response factor, showed 10 times higher expression in BS.

These identified genes and their sequences are useful for future functional studies on floral devel-

opment in crested wheatgrass.

Our qRT-PCR analysis of eight flowering time-associated genes randomly selected from

Table 3 showed up-regulation at the stem elongation stage (Fig 6A). Similarly, eight flowering

development genes randomly selected from Table 4 showed higher expression at the boot

stage (Fig 6B). These qRT-PCR results helped to confirm the reliability of our differential gene

expression analysis.

Discussion

This study represents the first attempt to use RNA-Seq to analyze the transcriptome of differ-

ent floral developmental stages in crested wheatgrass. The analysis revealed several interesting

findings. First, there were 311,671 transcripts identified with a mean length of 487 bp and

68.8% of 152,849 genes were annotated in the Swiss-Prot and NCBI nr protein databases,

including the identification of 113 flowering time-associated genes, 123 MADS-box genes and

22 COL genes. Second, 9,722 annotated genes were mapped onto 298 pathways using the

Table 3. List of 13 differentially expressed genes related to flowering time of crested wheatgrass between stem elongation stage (VS) and boot

stage (BS).

VS vs BS

Gene ID Putative function Nr IDa log2FCb FDRc

DN61589-c0-g2 LHY isoform X1 [Oryza sativa Japonica Group] AFO69281.1 10.8 4.46E-10

DN43771-c0-g1 heme oxygenase 1 ADG56719.1 10.7 6.76E-10

DN60312-c2-g3 MADS box VRT- partial CAM59070.1 10.4 4.94E-09

DN53956-c0-g1 ZCN26 [Zea mays] BAK02662.1 9.7 1.93E-07

DN60312-c2-g5 MADS box VRT- partial ADR51708.1 9.7 2.08E-07

DN54250-c0-g1 WD repeat-containing 70 EMS64159.1 9.6 2.43E-07

DN59116-c0-g2 zinc finger CONSTANS-LIKE 2-like EMS63149.1 8.6 3.98E-05

DN60312-c2-g2 MADS box VRT-2 [Hordeum vulgare] CAM59070.1 8.3 1.98E-10

DN55669-c2-g1 MADS-domain transcription factor [Zea mays] ADR51708.1 8.3 0.0002

DN56531-c3-g1 flowering locus T 1 [Hordeum vulgare] CAE53888.1 8.2 0.0002

DN53048-c0-g2 flowering-promoting factor 15 EMT26987.1 7.2 8.14E-11

DN59278-c0-g2 GIGANTEA [Oryza sativa Japonica Group] CDM81775.1 4.8 7.06E-08

DN52048-c0-g4 CONSTANS CO6 [Zea mays] BAJ98422.1 4.5 0.0001

a nr ID is the protein accession number in NCBI non redundant protein database
b logFC stands for logFoldChange, where it is log base 2
c FDR stands for false discovery rate, which is used to determine the threshold P value in multiple tests

https://doi.org/10.1371/journal.pone.0177417.t003
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KEGG pathway database, which including plant circadian rhythm. Third, a COL homolog

DN52048-c0-g4 seemed to be a CO candidate gene in crested wheatgrass. These findings not

only demonstrated the effectiveness of RNA-Seq and differential gene expression analysis in

the identification and characterization of genes related to complex traits in a species without a

reference genome, but also advanced our understanding of the conserved photoperiod-circa-

dian clock-CO-FT regulatory circuit for flowering initiation in crested wheatgrass.

We generated 69 million high quality sequence reads from three cDNA libraries represent-

ing the transition from juvenile to the adult phase and identified 311,671 transcripts. These

transcripts were clustered into 152,849 genes and 68.8% of genes were annotated in the NCBI

nr protein database. The proportion of annotated genes was compatible with the report of

62.4% of 73,664 genes detected from a similar RNA-Seq analysis of flag leaf and young spike

samples in tetraploid crested wheatgrass plants [17]. However, we do not know the reason(s)

for such a considerable proportion of un-annotated genes obtained from the two similar stud-

ies. Some un-annotated genes may represent novel genes associated with vegetative and repro-

ductive growth of crested wheatgrass in unique processes and pathways. It is possible that

those un-annotated genes detected from the tetraploid crested wheatgrass may contain many

separate paralogs, chimeras and differentially expressed isoforms. Also, the stringent condi-

tions used for running Bowtie2 to map reads to the transcriptome for gene detection using

Corset would generate more genes with paralogs for lowering gene annotation.

Table 4. List of 20 differentially expressed genes related to floral development of crested wheatgrass between stem elongation stage (VS) and

boot stage (BS).

VS vs BS

Gene ID Putative function Nr IDa log2FCb FDRc

DN61161-c0-g1 MCM complex family [Zea mays] BAJ99818.1 -12.5 2.52E-07

DN56706-c0-g5 MADS-box transcription factor 8 AAQ11687.1 -12.5 2.69E-07

DN60175-c2-g2 MADS-box transcription factor 3 isoform X1 ALM58836.1 -11.8 1.66E-06

DN61626-c1-g1 kinesin KIF22 [Oryza brachyantha] EMT04655.1 -11 1.02E-05

DN55924-c2-g1 glycerol-3-phosphate 2-O-acyltransferase 6 AKL71379.1 -11 1.13E-05

DN52987-c0-g1 DL related [Zea mays] BAJ54068.1 -10.6 2.93E-05

DN55370-c0-g1 PISTILLATA-like MADS-box transcription partial AMO12834.1 -10.5 4.33E-05

DN53410-c0-g1 lysine-specific demethylase JMJ706-like isoform X1 BAK00861.1 -10.2 7.40E-05

DN55848-c0-g1 auxin response factor AEV40985.1 -10.2 7.93E-05

DN58910-c2-g4 leafy hull sterile partial EMS65447.1 -9.9 0.0002

DN43571-c0-g1 WD repeat-containing 61 BAK04016.1 -9.9 0.0002

DN54871-c3-g1 WW domain-binding 11-like XP_003557433.1 -9.5 0.0004

DN62455-c0-g1 S-acyltransferase 21 isoform X1 BAJ88912.1 -9.4 0.0005

DN62601-c2-g1 polycomb group EMBRYONIC FLOWER 2 isoform BAJ97315.1 -9.3 0.0007

DN62521-c1-g11 probable chromo domain-containing LHP1 BAJ95567.1 -9.2 0.0008

DN59231-c1-g2 DNA polymerase alpha subunit B BAK05466.1 -9.2 0.0009

DN56706-c0-g6 MADS-box transcription factor 7 BAF75017.1 -8.5 5.18E-07

DN56923-c0-g1 DNA replication licensing factor mcm2 AAS68103.1 -7.2 1.24E-05

DN57261-c0-g1 systemin receptor SR160 CDM83621.1 -5.4 0.0006

DN36907-c0-g1 MADS-box transcription factor 58 CAM59041.1 -5.1 0.001

a nr ID is the protein accession number in NCBI non redundant protein database
b logFC stands for logFoldChange, where it is log base 2
c FDR stands for false discovery rate, which is used to determine the threshold P value in multiple tests

https://doi.org/10.1371/journal.pone.0177417.t004
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Fig 6. The qRT-PCR analysis of gene expression in the floral developmental stages of crested wheatgrass [stem elongation stage (VS) vs. boot

stage (BS)].

https://doi.org/10.1371/journal.pone.0177417.g006
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Many genes associated with vernalization and photoperiod pathways for floral transition

have been identified in crested wheatgrass (Table 2 and S6 File). Vernalization is the process

by which flowering is promoted by prolonged exposure to cold period. Vernalization removes

blocking of flowering so that the plant can perceive inductive signals, such as long-day photo-

period. The FLC gene of A. thaliana has been identified as a central flowering repressor which

can directly interfere with FT expression in leaves [37]. In winter wheat and barley, three genes

VRN1,VRN2 and VRN3 (FT) form a regulatory loop that regulates the initiation of flowering

[38–41]. VRN1 encodes an AP1-related MADS-box protein [42]. VRN2 has CCT zinc finger,

functioning as floral repressor FLC [43–46]. VRN3 corresponds to an ortholog of A. thaliana
FT [47]. During growth of vernalization-requiring cereals in the fall, VRN2 represses FT to pre-

vent flowering and VRN1 is transcribed at very low levels [41,47,48,49]. However, when winter

comes, VRN1 expression level increases, which causing the repression of VRN2 and activation

of VRN3 [41,49,50]. In our transcriptome data, homologs of VRN1 and FT were found. How-

ever, no VRN2 homologous gene has been detected. This may reflect the late sampling of tissue

in our study and the high level of VRN1 after vernalization repressed the expression of the

VRN2. Also, two other vernalization genes homologous to VIN3 and VIN4were found. As a

cool-season grass, crested wheatgrass requires vernalization to induce floral initiation. These

newly detected genes will allow us to further study the molecular mechanism of vernalization

in this perennial species.

Photoperiod is an important factors regulating flowering [51]. The photoperiod pathway

consists of three parts: photoreceptors, a circadian clock and an output pathway from the

clock specific to flowering. Interactions between photoreceptors and the circadian clock are

thought to allow plants to distinguish different day lengths. Phytochromes (PHYA-PHYE)

detect red/far-red light and the cryptochromes (CRYs) detect blue light [52–55]. In our tran-

scriptome data, homologous genes for phytochromes (PHYA and PHYC) and two crypto-

chromes (CRY1 and CRY2) were found (Table 2 and S6 File). These photoreceptors process

physical signals and produce a circadian clock. The circadian clock is an endogenous time-

keeper that controls many rhythmic processes in organisms as they experience 24h cycle of

day and night [56]. There are several genes in the long-day flowering pathway affecting both

circadian rhythms and flowering time in A. thaliana. The ELF3 gene is responsible for light

input signals to the clock, measures daylength and represses flowering under short days [57].

The elf3 mutant shows early, daylength-insensitive flowering [57]. The best-characterized tran-

scriptional-translational regulatory feedback loop in the circadian clock is comprised of two

morning-expressed Myb transcription factors, CCA1 and LHY, and an evening-expressed

gene TOC1 [58,59]. This central loop interlocks with the morning and evening loops, forming

the basic architecture of the plant circadian clock. Overexpression of either of LHY and CCA1
resulted in the late flowering plants and the expression of several genes controlled by circadian

clock was disrupted [59,60]. The mutation of TOC1 can accelerate circadian rhythms and

cause early flowering A. thaliana under short days [61]. The identification of these homolo-

gous genes (Table 2 and S6 File) confirmed that photoreceptors and circadian clock are con-

served for flowering in crested wheatgrass.

The circadian clock controls the CO expression level rhythm through GI, a large plant-spe-

cific protein [62,63]. GI activates expression of CO protein, a B-box-type zinc finger transcrip-

tion factor-encoding gene expressed in leaves [64,65]. When it coincides with a light period,

indicating long days of summer, translated CO protein is stable and directly activates its prime

target, the FT gene [64]. FT protein then acts as a transcription factor to activate expression

of APETALA1 (AP1) and promote floral meristem identity gene at the shoot apex [66,67].

Expression of CO in dark periods of a long night, however, results in degradation of CO pro-

tein and no FT activation [68]. COL genes have been identified in some plant species, each of
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which seems to have a large family with several genes [69]. There are 17 COL genes in A. thali-
ana [34] and at least 16 COL genes in rice [69]. In this study, eleven of the 22 crested wheat-

grass COL homologs were identified with the conserved CCT domain. The phylogenetic

analysis revealed that these COL proteins were classified into three conserved COL subgroups

as defined previously [33,34,69]. COL proteins of different subgroups are expected to perform

distinct biological function and our 11 COL proteins are expected to perform different bio-

logical roles. CO homolog DN52048-c0-g4 clustered with AtCO and OsHd1 in class I of the

COL gene family. The AtCO gene integrates inductive photoperiod information via the circa-

dian clock and actives the FT gene promoting flowering in Arabidopsis. OsHd1 was found to

encode an ortholog of the AtCO gene in rice [5]. Besides CO homologous genes, sequence

homologs for GI and FT genes were also found in our transcriptome data, which suggests that

the output pathway of circadian clock, CO and FT proteins all are involved in flowering in

crested wheatgrass.

As crested wheatgrass is an open pollinated species, each plant is genetically heterogeneous

and our bulk of four genotypes should be informative to our current DEG analysis with edgeR.

Our effort has detected 1544 DEGs between VS and BS stages and 1671 genes between BS and

AS stages. The circadian clock output gene GI (DN59278-c0-g2) showed higher expression in

VS than that in BS, indicating its role in the transition to flowering. CO (DN52048-c0-g4) and

FT (DN56531-c3-g1) homologs showed specific expressions in the leaves (VS) of crested

wheatgrass. COwas reported to be expressed in the vasculature of A. thaliana leaves, and its

role in flowering is to activate the expression of FT [70]. In both rice and Arabidopsis, FT is a

strong promoter of flowering that is translocated from the vasculature of leaves to the shoot

apical meristem [3,71]. Our phylogenetic data also showed that CO homolog (DN52048-

c0-g4) clustered with AtCO and OsHd1, indicating that it could be the CO candidate gene

responsible for integrating photoperiod and activating FT gene in crested wheatgrass. Thus,

our DEG analysis was informative and provided additional support that ancient and evolu-

tionarily adaptable module CO/FT is conserved in crested wheatgrass.

Altogether, our RNA-Seq analysis has generated a new set of genomic resources for charac-

terizing genes and pathways involved in floral transition and development in crested wheat-

grass. These genomic resources can be explored and utilized to develop marker-based tools for

development of late maturing lines in this species. Our research findings clearly showed that

vernalization and photoperiod pathways are involved in the regulation of flowering time in

crested wheatgrass, and thus advanced our understanding of the mechanisms for flowering

initiation in this species. Also, the photoperiod-circadian clock-CO-FT regulatory circuit is

conserved in crested wheatgrass. However, many questions remain, like how GI is regulated

by circadian clock and how it controls the expression of CO. The possible role of CO and FT

in photoperiod response and whether FT moves from leaves to meristem as mobile flowering

signals are worthy to pursue. The answers to these questions require more extensive expression

analysis and successful cloning of these genes. Also, the research outputs presented here have

clearly demonstrated the effectiveness of RNA-Seq and differential gene expression analysis in

the identification and characterization of genes related to specific traits in species without a

reference genome. These technologies have made the informative genomic investigation of a

specific complex pathway such as floral development in a non-model plant practically possible.
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