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Abstract

Background

Routine immunisation with pneumococcal conjugate vaccines (PCV7/10/13) has reduced

invasive pneumococcal disease (IPD) due to vaccine serotypes significantly. However, an

increase in disease due to non-vaccine types, or serotype replacement, has been observed.

Serotypes’ individual contributions to IPD play a critical role in determining the overall effects

of PCVs. This study examines the distribution of pneumococcal serotypes in children to

identify leading serotypes associated with IPD post-PCV introduction.

Methods

A systematic search was performed to identify studies and surveillance reports (published

between 2000 and December 2015) of pneumococcal serotypes causing childhood IPD

post-PCV introduction. Serotype data were differentiated based on the PCV administered

during the study period: PCV7 or higher valent PCVs (PCV10 or PCV13). Meta-analysis

was conducted to estimate the proportional contributions of the most frequent serotypes in

childhood IPD in each period.

Results

We identified 68 studies reporting serotype data among IPD cases in children. We analysed

data from 38 studies (14 countries) where PCV7 was administered and 20 (24 countries)

where PCV10 or PCV13 have been introduced. Studies reported early and late periods of

PCV7 administration (range: 2001�13). In these settings, serotype 19A was the most pre-

dominant cause of childhood IPD, accounting for 21.8% (95%CI 18.6�25.6) of cases. In

countries that have introduced higher valent PCVs, study periods were largely representa-

tive of the transition and early years of PCV10 or PCV13. In these studies, the overall sero-

type-specific contribution of 19A was lower (14.2% 95%CI 11.1�18.3). Overall, non-PCV13

serotypes contributed to 42.2% (95%CI 36.1�49.5%) of childhood IPD cases. However,
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regional differences were noted (57.8% in North America, 71.9% in Europe, 45.9% in West-

ern Pacific, 28.5% in Latin America, 42.7% in one African country, and 9.2% in one Eastern

Mediterranean country). Predominant non-PCV13 serotypes overall were 22F, 12F, 33F,

24F, 15C, 15B, 23B, 10A, and 38 (descending order), but their rank order varied by region.

Conclusion

Childhood IPD is associated with a wide number of serotypes. In the early years after intro-

duction of higher valent PCVs, non-PCV13 types caused a considerable proportion of child-

hood IPD. Serotype data, particularly from resource-limited countries with high burden of

IPD, are needed to assess the importance of serotypes in different settings. The geographic

diversity of pneumococcal serotypes highlights the importance of continued surveillance to

guide vaccine design and recommendations.

Introduction

Streptococcus pneumoniae is the major cause of serious invasive diseases such as bacterial pneu-

monia, septicaemia, and meningitis in young children worldwide. An estimated 14.5 million

cases of invasive pneumococcal disease (IPD) occurred globally in 2000 before introduction of

pneumococcal conjugate vaccines (PCVs). Widespread availability of PCVs has reduced the

burden of IPD substantially, from over 800,000 annual deaths before PCV introduction to

541,000 deaths in 2008 [1, 2]. Although two formulations of PCVs are available to protect

against disease, S. pneumoniae still poses a significant burden on individuals and healthcare

systems.

PCVs have been largely effective in reducing IPD associated with serotypes included in cur-

rently available formulations. Yet, concerns exist about their long-term effects since these con-

tain a limited number of serotypes and the potential role of non-vaccine serotypes. The first

PCV, licensed in 2000, offered protection against 7 serotypes (4, 6B, 9V, 14, 18C, 19F, 23F). By

2015, PCV7 had been replaced, and PCV10 (PCV7 + 1, 3, 7F) or PCV13 (PCV10 + 19A, 6A, 3)

have been introduced in over 130 countries [3, 4]. Before the introduction of PCVs, vaccine-

targeted serotypes were associated with a 82�88% of IPD in North America, 72�88% in

Europe, 68�79% in Oceania, 58�82% in Latin America, 49�77% in Africa, and 52�74% in

Asia [5]. After the introduction and scale up of PCV7 in routine immunisation programmes,

IPD caused by these 7 serotypes decreased significantly in children and other age groups [6, 7].

Nasopharyngeal carriage of S. pneumoniae, which can lead to invasive disease [8], was also dra-

matically impacted by PCVs. Studies indicated that PCVs reduced the prevalence of targeted

serotypes among carriers [9] to the extent that these strains have nearly disappeared in some

settings in both the vaccinated and unvaccinated persons [10].

In light of global efforts for universal immunisation with PCV, it is important to examine

which serotypes are associated with IPD in the post-PCV era to gain insights into the evolv-

ing epidemiology of S. pneumoniae. Serotype replacement, an increase in incidence of disease

due to serotypes [8] not included in PCV7, was noticed among young children using data

from 21 large surveillance systems [11]. In these industrialised settings, by the 7th year of

PCV7, the rate ratio of vaccine-related IPD (RR 0.03 95%CI 0.01�0.10) decreased substan-

tially as compared to the ratio of non-PCV7 types (RR 2.81 95%CI 2.12�3.71). Thus, there is

a clear need for close monitoring of serotypes causing IPD to inform public health actions
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[8]. We aimed to systematically assess and describe the global distribution of serotypes caus-

ing IPD in young children after the introduction of PCVs to better understand the contribu-

tion of individual serotypes, including non-vaccine types and inform recommendations for

vaccine use.

Methods

Search methods and inclusion criteria

We conducted a systematic review of the literature according to the PRISMA guidelines. We

searched electronic medical databases for studies and surveillance reports (published between

1 January 2000 and 31 December 2015) reporting serotype data from children with IPD after

the introduction of a PCV in the study area. Search strategies with database-specific MeSH

and free search terms were developed with the assistance of a medical librarian for Medline,

Embase, and Global Health (via Ovid); EMRO, SEARO, and WPRO regional databases

(Global Health Library), LILACS, and Web of Science. Strategies were designed to retrieve rec-

ords that included the following terms: Streptococcus pneumoniae and, IPD or syndromes, and

vaccines, and serotypes (search strategies are available in S1 Table).

We included peer-reviewed studies and annual surveillance reports from Department of

Health websites from countries from which the electronic medical databases retrieved national

surveillance publications. IPD was defined as the identification of S. pneumoniae from a nor-

mally sterile site (e.g. blood, cerebrospinal, pleural effusions, or joint fluid) in children. No

language restrictions or publication type were imposed at this stage. We also scanned the refer-

ence list of included studies to identify any additional studies. Eligibility criteria were as

described in Box 1, which were modified from previous reviews assessing the serotype distri-

bution in childhood IPD [5, 11].

Data collection and analysis

Two reviewers (EB, LG) independently reviewed identified publications and extracted rele-

vant data into a template (Microsoft Excel), which was piloted before use. Datathief III soft-

ware (http://datathief.org/) was used to extract data from images. Study periods were

classified according to the PCV administered during the study period as either PCV7 or

higher valent (PCV10 or PCV13, hereafter PCV10/13). From each study included in analy-

sis, data for young children (<5 years) was preferred, if other age groups were available to

minimise bias. Non-vaccine types were those currently not included in PCV13 (non-

PCV13).

Meta-analysis. Serotype-specific percentages were calculated for each study (% serotype

x = total number of cases serotype x over total IPD isolates with serotype data x 100). Ser-

ogroup data were not redistributed into serotypes. Using metan in Stata 13 (Statacorp, Col-

lege Station, TX), pooled estimates and 95% confidence intervals (95%CI) were calculated for

serotype-specific proportions using the transformed log of the proportion and random effects

model (DerSimonian-Laird method). A continuity correction was used to include data from

studies with zero counts in independent meta-analyses. If there were multiple studies from

the same setting, the most representative of childhood IPD (i.e. larger sample size, or report-

ing data for any IPD rather than a single syndrome) was included in meta-analysis. Most data

for settings where PCV10 or PCV13 have been introduced were from countries that had tran-

sitioned from PCV7, except Brazil, Chile, and Colombia. The first year of PCV10 or PCV13

introduction for these 3 Latin American countries was excluded from analyses to allow time

for scaling up of vaccine uptake. For other settings, data from the transition year from PCV7

to higher valent PCVs was included in meta-analysis, as it was not possible to exclude this

S. pneumoniae serotype distribution in childhood IPD post-PCV
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year from analysis for all studies. We used data exclusively for years with either PCV7 or the

current higher valent PCV, except when disaggregation was not possible. We report overall

and regional pooled estimates with 95%CIs for vaccine types and individual non-PCV13

types causing at least 1% of IPD in the dataset of countries that have introduced PCV10 or

PCV13.

Box 1. Eligibility criteria for this review

Inclusion

• Observational studies or annual national surveillance reports from selected Depart-

ments of Health from settings with PCV uptake of at least 25% during the study period

described

• Studies reporting at least 20 serotyped isolates overall and with at least 50% of reported

IPD cases were serotyped

• Study reports data on different serogroups/types for invasive disease (defined as iso-

lates from normally sterile sites) in children

• Study population was representative of the general population, not a selected group

with specific co-morbidities

• Surveillance conducted for at least 12 continuous months

Exclusion

• Case reports, narrative reviews, quarterly or province-level surveillance reports, if

annual and/or national were available

• Serotype data from studies with high risk of bias: e.g. studies focused on serotypes

from severe cases, most frequent types, or antimicrobial resistance

• Data for years after PCV introduction are not extractable independently or the study

does not provide a description of PCV use in the area

• Data only reported for serotypes included in PCVs (PCV7, PCV10, PCV13)

• Serotype data included isolates obtained from non-sterile sites (e.g. nasopharynx) or

not extractable specifically for otherwise healthy children (i.e. study population

includes all immunocompromised population or adults)

• Data overlap with other studies included in the analysis (Studies with the longest study
period or larger sample size were preferred)

Serotypes in Pneumococcal conjugate vaccines

PCV7: 4, 6B, 9V, 14, 18C, 19F, 23F

PCV10: PCV7 + 1, 5, 7F

PCV13: PCV10 + 3, 6A, 19A

Non-PCV13: those not included in PCV13

S. pneumoniae serotype distribution in childhood IPD post-PCV
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Results

Literature review

We identified 5,912 records through databases search and identified 138 articles for full text

examination (Fig 1). Of these, 64 [6, 7, 12–73] articles met our pre-defined eligibility criteria

and we identified an additional 4 surveillance reports [74–77] from online searches.

Fig 1. PRISMA flowchart—Literature review process.

https://doi.org/10.1371/journal.pone.0177113.g001
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Characteristics of included publications

A total of 27 countries were represented in the 68 publications included in the review. Surveil-

lance data were retrieved from online reports for Latin America (SIREVA II reports 2009–12,

considered as 1 publication), Scotland (UK), Australia, New Zealand, and Singapore. Studies

identified overlapping geographic, time period or for individual clinical syndromes were

excluded from meta-analyses (details in S2 Table).

Main characteristics of studies included in meta-analysis are available in Table 1. Eight pub-

lications reported serotype data for years after both time periods after PCV7 and PCV10/13

implementation. These were extracted separately for analysis. After classification of the studies,

we analysed 67 data points assessing childhood IPD, primarily from North America (n stud-

ies = 17), Europe (n = 28), and Latin America (n = 11), but also from Western Pacific (n = 8),

Eastern Mediterranean (n = 2) and Africa (n = 1).

We analysed serotype data from 7,366 IPD isolates (range: 33�609) from 38 studies in 14

countries for study periods when PCV7 was administered (Table 1). Study periods ranged

from 2001, in the USA [19, 21, 38, 61, 72] until 2013 in Japan [24, 40, 66]. We excluded studies

reporting<25% PCV coverage, but studies included serotype data from different uptake levels.

For instance, from settings where PCV7 had been recently licensed, introduced into national

immunisation programmes, or it was largely available through the private system, for instance,

in Spain [16, 17, 22, 34, 52, 56, 57, 59, 60, 69], Portugal [12], and Austria [58]. Other studies

were from settings where vaccine uptake was high or PCV was recommended universally in

the study setting, such as in Canada [18, 26, 43], USA, UK, Colombia (Bogota) [55], France

[13].

We analysed 20 publications from 24 countries where PCV10 or PCV13 have been intro-

duced. The Americas region was the most represented (n = 12 countries). PCV10 was the pri-

mary vaccine in 6 countries (Brazil, Chile, Colombia, Ecuador, Peru, and the Netherlands),

while PCV13 had been introduced in the remaining 18. Most study periods included the year

of transition from PCV7 or the year after introduction of the current higher valent. PCV. A

total of 5,469 IPD isolates with serotype data were included in meta-analysis. The number of

isolates in individual studies ranged from 23 to 886. The countries with the largest number of

isolates were Canada and South Africa (n = 886 and 839, respectively). Six publications

reported data for fewer than 50 isolates and an additional 8 reported less than 100 cases.

Serotype distribution among paediatric IPD cases following PCV

introduction

PCV-targeted serotypes. In studies where PCV7 was administered, serotypes included in

the heptavalent conjugate vaccine accounted for an overall 14.8% (95%CI 11.4�19.1) of child-

hood IPD cases. In studies with study periods after higher valent PCVs were introduced, the

proportional contribution of these seven serotypes to IPD in children was 12.5% (95%CI

8.8�17.7). In the latter, all countries, except the Netherlands, identified PCV7 types. PCV7

types were most frequently isolated from childhood IPD cases in Latin America, Africa, and

Eastern Mediterranean regions (32.5%, 25.5%, 62.6% of IPD cases, respectively). Conversely,

PCV7 types accounted for lower proportions of IPD in North America, Europe, and the West-

ern Pacific, between 3.4�5.8%, after introduction of PCV10 or PCV13. Fig 2 and Tables 2 and

3 show the overall meta-estimate and regional stratifications results per period.

PCV10-specific serotypes. Serotypes 1, 5, and 7F were identified in all studies with peri-

ods of PCV7 implementation, accounting for an overall 16.3% (95%CI 13.5�91.8) of child-

hood IPD cases. These serotypes comprised 9.2% (95%CI 6.9�12.2) in settings where PCV10

or PCV13 have been introduced; which were reported in most countries (except France and

S. pneumoniae serotype distribution in childhood IPD post-PCV
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Table 1. Main characteristics of studies included in the review and meta-analyses.

Last author (publication

year)

Country PCV Introduction year Study years (PCV uptake) Isolates PCV13 types (%) Non-PCV13 (%)

Rendi-Wagner (2009) Austria PCV7 2001* 2005–06 (25%) 36 97.2 2.8

Lepoutre (2015) France PCV7 2003*, 2006† 2008–09 (83–95%) 483 71.4 28.6

Varon (2015) France PCV7 2006† 2008–09 (>86%) 388 67.5 32.5

van der Linden (2015) Germany PCV7 2006† 2007–10 (80–85%) 542 68.1 31.9

Knol (2015) Netherlands PCV7 2006† 2008–11 (94–95%) 128 52.3 47.7

Steens (2013) Norway PCV7 2006† 2006–10 (86–92%) 165 69.1 30.9

Aguiar (2008) Portugal PCV7 2001* 2003–05 (33%) 90 85.6 14.4

Aristegui (2007) Spain PCV7 2001* 2002–03 (28–45%) 77 88.3 11.7

Barricarte (2007) Spain PCV7 2001* 2001–05 (45%) 85 87.1 12.9

Calbo (2006) Spain PCV7 2001* 2002–04 (34%) 64 78.1 21.9

Guevara (2014) Spain PCV7 2001* 2004–09 (25–61%) 106 78.3 21.7

Munoz-Almagro (2011) Spain PCV7 2001* 2009§ 130 80.0 20.0

Perez-Trallero (2009) Spain PCV7 2001* 2002–07 (~50%) 45 86.7 13.3

Picazo (2011) Spain PCV7 2001* 2007–09 (~50%) 330 79.1 20.9

Rodriguez (2011) Spain PCV7 2006† 2007–09 (94.5%) 366 74.9 25.1

Salleras (2009) Spain PCV7 2001* 2005–07 (35%) 240 77.9 22.1

Vila-Corcoles (2013) Spain PCV7 2001* 2002–09 (13–47%) 65 84.6 15.4

Ceyhan (2011) Turkey PCV7 2008† 2008–10§ 146 77.4 22.6

Miller (2011) UK PCV7 2006† 2008–10§ 528 69.7 30.3

Moore (2014) UK PCV7 2006† 2006–10 (92–87%) 65 49.2 50.8

Parra (2013) Colombia PCV7 2009 2010–11 (69.9%) 84 70.2 29.8

Bettinger (2010) Canada PCV7 2005† 2006–07 (80–90%) 212 69.8 30.2

De Wals (2012) Canada PCV7 2004 2007 (>90%) 113 63.7 36.3

Kellner (2009) Canada PCV7 2002 2003-07(87–91%) 67 76.1 23.9

Black (2007) USA PCV7 2000† 2001–05 (86%) 84 34.5 65.5

Bruce (2015) USA PCV7 2001† 2005–08§ 126 61.9 38.1

Byington (2005) USA PCV7 2000† 2001–03§ 105 74.3 25.7

Croney (2013) USA PCV7 2000† 2002–10§ 157 60.5 39.5

Hsu (2010) USA PCV7 2000† 2001-02/06-07§ 130 66.2 33.8

Kaplan (2013) USA PCV7 2000† 2007–09§ 609 67.7 32.3

Pilishvili (2010) USA PCV7 2000† 2006–07§ 519 67.9 32.1

Schutze (2004) USA PCV7 2000† 2001–03§ 75 77.3 22.7

Sharma (2013) USA PCV7 2000† 2008–09§ 47 59.6 40.4

Weatherholtz (2010) USA PCV7 2000† 2001–06§ 115 76.5 23.5

Williams (2011) Australia PCV7 2001*, 2005† 2006–07§ 201 67.2 32.8

Chiba (2014) Japan PCV7 2010/11* 2011–12 (50–90%) 302 55.0 45.0

Ishiwada (2014) Japan PCV7 2010*, 2011† 2012–13§ 33 51.5 48.5

Suga (2015) Japan PCV7 2010* 2011–13 (89%) 308 68.8 31.2

von Gottberg (2013) South Africa PCV13 2011† 2011–12§ 839 57.3 42.7

Al-Sheikh (2014) Saudi Arabia PCV13 2010† 2009–12§ 78 85.9 14.1

Shibl (2012) Saudi Arabia PCV13 2010§ 108 94.4 5.6

Varon (2015) France PCV13 2010† 2012–13 (>92%) 181 17.7 82.3

van der Linden (2015) Germany PCV13 2009 Dic† 2010–14 (80–85%) 567 35.4 64.6

Knol (2015) Netherlands PCV10 2011† 2011–14 (94–95%) 57 21.1 78.9

Steens (2013) Norway PCV13 2011† 2011–12 (92%) 47 55.3 44.7

Guevara (2014) Spain PCV13 2010 2010–13 (78%) 25 52.0 48.0

(Continued )
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Singapore). In this most recent period, the contributions to paediatric IPD cases due to

PCV10-specific serotypes were similar in all regions (approximately 8�9%), except in the

Western Pacific (4.6%).

PCV13-specific serotypes. In both periods, the most frequent PCV13 type was 19A, fol-

lowed by 3, and then 6A. Serotype 3 accounted for 5�6% of childhood IPD cases after the

introduction of either PCV, while 6A was associated with approximately 3% of all cases. In

studies from countries where PCV10 or PCV13 have been introduced, serotype 19A accounted

for 14.2% (95% CI 11.1�18.3%) of childhood IPD cases across all regions (and at least 10% in

each of the regions).

Non-PCV13. There was wide-variation in the number of non-PCV13 strains reported. In

addition to the 16 non-PCV13 types included in meta-analysis, at least 1 case was reported for

over 60 different serotypes currently absent in any of the PCV formulations (a list is provided

in the S3 Table).

The overall contribution of non-PCV13 types to IPD in children was 29.4% (95%CI

26.8�32.4) in periods of PCV7 administration and 42.2% (95%CI 36.1�49.5) in studies where

higher valent PCVs have been introduced. In each period, differences between the individual

proportional contribution of non-PCV13 serotypes to childhood IPD were small and their

Table 1. (Continued)

Last author (publication

year)

Country PCV Introduction year Study years (PCV uptake) Isolates PCV13 types (%) Non-PCV13 (%)

Moore (2014) UK PCV13 2010† 2010–13§ 48 37.5 62.5

Scotland Surveillance UK PCV13 2010† 2010–15§ 206 19.9 80.1

Waight (2015) UK PCV13 2010† 2013–14§ 247 14.2 85.8

SIREVA (Brazil) Brazil PCV10 2010‡ 2011–12 (81.5%) 416 68.8 31.3

SIREVA (Chile) Chile PCV10 2011‡ 2012 (54.0%) 168 72.6 27.4

SIREVA (Colombia) Colombia PCV10 2010‡ 2011–12 (69.8%) 208 74.0 26.0

SIREVA (Costa Rica) Costa Rica PCV13 2011† 2011–12 (78.0%) 38 76.3 23.7

SIREVA (Ecuador) Ecuador PCV10 2010† 2011–12 (71.0%) 62 80.6 19.4

SIREVA (El Salvador) El Salvador PCV13 2011† 2011–12 (98.1%) 31 74.2 25.8

SIREVA (Mexico) Mexico PCV13 2011† 2012 (97.8%) 105 66.7 33.3

SIREVA (Panama) Panama PCV13 2011† 2011–12 (61.8%) 68 88.2 11.8

SIREVA (Peru) Peru PCV10 2011† 2011–12 (81.9%) 23 69.6 30.4

SIREVA (Uruguay) Uruguay PCV13 2010† 2010–12 (92.0%) 96 50.0 50.0

Demczuk (2013) Canada PCV13 2010† 2010–12 (74–90%) 886 55.5 44.5

Bruce (2015) USA PCV13 2010† 2010–13 (86–96%) 52 25.0 75.0

Kaplan (2013) USA PCV13 2010† 2010–11§ 283 56.5 43.5

Moore (2015) USA PCV13 2010 2012–13 (63–76%) 177 19.2 80.8

Australia Surveillance Australia PCV13 2011† 2012§ 184 43.5 56.5

Nakano (2015) Japan PCV13 2013† 2014§ 126 28.6 71.4

N Zealand Surveillance New

Zealand

PCV13 2014 2014–15 (93%) 78 51.3 48.7

Singapore Surveillance Singapore PCV13 2010* 2011† 2012–14§ 65 86.2 13.8

Notes—Definitions for PCV uptake varied by study. Uptake is presented as reported in each study.

*PCV was first recommended, approved or licenced,
†Included in national immunisation programmes/Universal administration recommended
‡ First year of PCV implementation in the country. Settings where national or universal PCV administration is recommended, where eligible for inclusion.
§Data not reported.

https://doi.org/10.1371/journal.pone.0177113.t001
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overall ranking varied within regions (Tables 2 and 3). Based on data from countries where

PCV10 or PCV13 have been introduced, 22F was the most common serotype (5% of overall

childhood IPD cases analysed), followed by 12F, 15C, 24F, 33F (4% each). Combined, the lead-

ing non-PCV13 serotypes 22F, 12F, 33F accounted for 4�16% of IPD cases in children across

regions, except in the Eastern Mediterranean region. Notably, serotype 24F appears to be prev-

alent in Europe and Western Pacific regions, but not North America.

Contributions of serotypes to childhood IPD between periods

We compared the contribution of various serotypes to childhood IPD in the two sets of studies

(PCV7 implementation and PCV10 or PCV13 introduction). We observed decreases in the

percentage point differences in PCV7 types (-2.3%), PCV10-only strains (-7.1%) and 19A

(-7.6%). Changes observed between periods for overall meta-estimates of non-PCV13 types

were small. Comparisons between the regions with the longest history of PCV use (North

America, Europe, and Western Pacific) show variations in the percentage point reductions in

PCV13 serotypes among childhood IPD cases:-29.5%, -46.4%, and -13.8% in North America,

Europe, and Western Pacific regions, respectively. Notably, studies from these regions

reported a range of early and late periods of PCV7 use in individual study settings, while data

from countries that have introduced higher valent PCVs were largely representative of the

transition and early years of the vaccines. Non-PCV13 serotype 22F accounted individually for

at least 5% of childhood IPD in North America, an increase of approximately 2 percentage

points, compared to the post-PCV7 period. Similar changes in this serotype was also seen in

Europe and Western Pacific (+3%). Other non-PCV13 serotypes with an increase in their pro-

portional contribution to paediatric IPD after introduction of PCV10/13 differ between

Fig 2. Estimates of serotype-specific contributions to IPD in children (%, 95%CI) reported are based on random

effects model from meta-analysis of 3 or more studies, unless indicated [one study (*) or two (**)].

https://doi.org/10.1371/journal.pone.0177113.g002
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regions. For instance, serotype 38 (+2.7%) accounted for more childhood IPD cases in North

America while 12F and 15C (+3.7%) and 10A (+4.2%) were more prominent in Europe.

Discussion

This is the first study to comprehensively report S. pneumoniae serotype-specific contributions

to IPD in young children subsequent to the introduction of PCVs. Our estimates, based on a

systematic analysis of data available to-date indicate that, in countries that have introduced

higher-valent PCVs, approximately 42% (95%CI 36�49) of childhood IPD cases were caused

by non-PCV13 serotypes. Our results provide insights into the relative importance of serotypes

in childhood IPD after widespread implementation of PCVs and highlight regional

differences.

It is well documented that routine immunisation with PCVs has led to significant decreases

in both colonisation and IPD by vaccine-targeted types in children and that it has indirectly

impacted non-targeted populations [78]. It was estimated that PCV7-targeted serotypes

accounted for 49�82% of childhood IPD before PCV introduction [5]. We found that, after

PCV7 implementation, their proportional contribution was approximately 11�19%. This is

consistent with other regional estimates, as prior to the introduction of PCV13 in Europe

PCV7-type IPD was approximately 19% among children based on data from 26 countries [79].

Table 2. Serotype-specific contributions (%) to paediatric IPD cases by region in studies with PCV7 implementation.

OVERALL

(N = 38)

LATIN AMERICA

(N = 1)

NORTH AMERICA

(N = 13)

EUROPE

(N = 20)

WESTERN PACIFIC

(N = 4)

PCV7 14.8 (11.4–19.1) * 38.1 (26.9–53.9) 8.6 (4.9–15.2) 16.8 (11.9–23.9) 27.5 (19.8–38)

PCV10-7 16.3 (13.5–19.8) * 10.7 (5.6–20.6) 13.6 (10.8–17) 24.9 (20.7–30) 1.5 (0.8–2.9)

PCV13 70.5 (67.6–73.5) * 70.2 (54.4–90.7) 66.8 (62.3–71.6) 74.3 (70.6–78.2) 62.5 (54.9–71.3)

19A 21.8 (18.6–25.6) * 6 (2.5–14.3) 28.9 (23–36.4) 18.7 (15.4–22.7) 25.9 (17.7–37.9)

3 4.9 (4.2–5.8) * 14.3 (8.1–25.2) 6.3 (5.1–7.8) 4.6 (4–5.4) 2.5 (1.4–4.6)

6A 3.1 (2.4–4.1) * 1.2 (0.2–8.5) 2.9 (1.5–5.6) 3.2 (2.2–4.5) 3 (2–4.5)

NON PCV13 29.4 (26.8–32.4) * 29.8 (20.1–44) 33.7 (29.4–38.7) 24.9 (21.7–28.8) 37.6 (30.1–46.9)

22F 3.5 (2.9–4.3) * 1.2 (0.2–8.5) 4.9 (4–6) 2.2 (1.5–3.3) 4 (2.8–5.6)

12F 2.3 (1.8–2.9) − 3.1 (1.6–6) 1.9 (1.5–2.4) * 0.3 (0–2.3)

33F 3.4 (2.6–4.6) − 4.8 (3.7–6.3) 3 (1.7–5.1) 2.1 (1.3–3.4)

24F 4 (3.4–4.8) * 1.2 (0.2–8.5) − 3.3 (2.5–4.5) ** 5 (3.1–8)

15C 2.8 (2.3–3.4) * 2.4 (0.6–9.5) 2.6 (1.7–3.8) 2.2 (1.7–2.9) 4.7 (3.3–6.7)

15B 2.4 (2–3) * 3.6 (1.2–11.1) 2.4 (1.6–3.5) 2.3 (1.8–3) ** 2.8 (1.8–4.6)

23B 1.7 (1.4–2.1) * 1.2 (0.2–8.5) 2 (1.4–2.8) 1.5 (1.1–2) −
10A 2.6 (2–3.3) − 2.5 (1.7–3.5) 2.5 (1.6–3.8) 2.5 (1.2–5.4)

38 2.3 (1.8–2.8) − 2.7 (1.8–4.2) 1.9 (1.4–2.7) 1.8 (1–3.2)

15A 1.8 (1.2–2.7) * 2.4 (0.6–9.5) 1.5 (1–2.3) 1.1 (0.8–1.6) 7.1 (5–10.2)

35B 1.2 (0.9–1.6) * 2.4 (0.6–9.5) 1.5 (0.9–2.6) 0.7 (0.4–1.1) 1.6 (0.8–3.1)

6C 2.8 (2.2–3.4) − 3.4 (2.4–4.8) 1.1 (0.7–1.7) ** 4.2 (2.7–6.8)

8 1.4 (1.1–1.9) * 2.4 (0.6–9.5) 0.9 (0.5–1.8) 1.6 (1.1–2.2) −
11A 1.3 (1–1.8) * 2.4 (0.6–9.5) 1.1 (0.6–2) 1.2 (0.8–1.7) ** 1.8 (0.7–4.5)

23A 1.6 (1.2–2.1) − 1.8 (1.2–2.7) 0.7 (0.4–1.2) ** 1.4 (0.2–9.1)

9N 0.9 (0.6–1.2) − 0.7 (0.4–1.3) 1 (0.6–1.7) −

Estimates of serotype-specific contributions to IPD in children (% 95%CI) reported are based on random effects model from meta-analysis of 3 or more

studies, unless indicated [one study (*) or two (**)].–indicates no data reported. Meta-analyses were conducted individually, thus the sum of each of the

serotypes in a category may exceed 100%

https://doi.org/10.1371/journal.pone.0177113.t002
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Subsequent to the introduction of higher valent PCVs, the proportional contribution of sero-

types targeted by PCVs continued to decrease, with differences across regions.

Concerns exist about optimum prevention of PCV13-types 3 and 19A−IPD in young chil-

dren. We estimated that serotype 3−specific contribution to childhood IPD was approximately

5% in the two PCV periods analysed. These estimates are noteworthy, as serotype 3 has been

associated with cases of vaccine failure [80]. Our meta-estimates also show the extent of 19A’s

predominant contribution to childhood IPD in different world regions after the introduction

of PCVs. Subsequent to the introduction of PCV7, 19A was consistently identified as the most

frequent serotype associated with childhood IPD cases in the Americas, Europe, and Western

Pacific regions (causing approximately 20% of cases). We also found an important contribu-

tion to childhood IPD cases of serotype 19A (14.2% 95%CI 11.1�18.3) in the early years of

higher valent PCVs. More recent data suggest different experiences regarding changes in the

contribution of 19A at the country level. In the USA, significant reductions of IPD after 5

years of use of PCV13 have been driven by decreases in 19A [81]. However, in other settings in

Europe, this serotype continues to pose challenges as a disease-causing strain despite wide-

spread use of PCVs [82, 83]. Differences in vaccine schedules and catch-up campaigns between

these settings, as well as time required to observe a decrease in disease due to vaccine-targeted

strains are key factors that will influence the epidemiology of S. pneumoniae strains. The

Table 3. Serotype-specific contributions (%) to paediatric IPD cases in settings that have introduced PCV10 or PCV13.

OVERALL

(N = 20)

LATIN AMERICA

(N = 1†)

NORTH AMERICA

(N = 4)

EUROPE

(N = 8)

WESTERN PACIFIC

(N = 4)

AFRICA

(N = 1)

EASTERN

MEDITERRANEAN

(N = 2)

PCV7 12.5 (8.8–17.7) 32.5 (25.5–41.3) 3.4 (2.5–4.5) 4.4 (3.3–5.7) 5.8 (1.6–21.1) * 25.5 (22.3–29.2) ** 62.6 (46.3–84.7)

PCV10-7 9.2 (6.9–12.2) 10.1 (5–20.4) 7.9 (4.5–13.9) 10.1 (6.6–15.4) 4.6 (1.5–14) * 9.8 (7.9–12.2) ** 8.9 (1–81.8)

PCV13 49.1 (42.3–56.9) 71.2 (65.9–77) 37.3 (25.4–54.7) 27.9 (19.9–39.1) 48.7 (31.6–74.8) * 57.3 (52.4–62.6) ** 91 (78.2–100)

19A 14.2 (11.1–18.3) 12.5 (7.7–20.2) 20.8 (13.3–32.6) 11.3 (7.6–17) 29.6 (20.3–43.1) * 11.4 (9.3–13.9) ** 6.2 (3.4–11.2)

3 5.3 (4.2–6.7) 6.7 (4.7–9.7) 6.1 (3.9–9.3) 4.7 (3.6–6.1) 7.1 (3.4–14.9) * 2 (1.3–3.2) * 2.2 (0.8–5.8)

6A 3.2 (2.1–4.9) 5.5 (4.2–7.1) ** 1 (0.6–1.8) 1 (0.5–2) * 0.5 (0.1–3.8) * 8.5 (6.8–10.8) ** 4.9 (2.2–11.3)

NON-PCV13 42.2 (36.1–49.5) 28.5 (23.4–34.7) 57.8 (41.6–80.4) 71.9 (63.1–82) 45.9 (30.9–68.2) * 42.7 (38.5–47.4) * 9.2 (3.7–22.9)

22F 5.3 (4.2–6.7) 2.3 (1.4–3.7) 6.9 (4.5–10.4) 5.2 (3.6–7.5) 7.4 (4.6–12) − −
12F 4.3 (3.5–5.3) 4 (2.8–5.7) ** 3.3 (1.3–8.3) 5.6 (4.4–7) − * 4 (2.9–5.6) * 1.3 (0.2–9.1)

33F 4.5 (3.4–5.9) ** 2 (0.8–4.8) 4.9 (2.2–10.8) 4.9 (3.3–7.4) 4.3 (2.5–7.5) − −
24F 4.2 (2.6–6.8) 2.4 (1.6–3.8) − 6.7 (3.8–11.9) * 3.9 (0.1–12.4) − −
15C 4 (3.1–5) 1.5 (0.8–2.7) 3.9 (2.4–6.5) 5.9 (4.4–7.8) * 4.3 (2.2–8.7) − −
15B 3.7 (3.1–4.4) 2.5 (1.5–4.3) 4.2 (2.3–7.8) 3.7 (2.6–5.2) ** 3.3 (1.7–6.7) * 4.3 (3.1–5.9) −
23B 3.4 (2.6–4.3) 2.4 (1.4–4.1) 3 (2–4.4) 4.1 (2.6–6.5) ** 3.9 (2.1–7.3) − * 1.3 (0.2–9.1)

10A 3.4 (2.2–5.4) 1.3 (0.8–2.3) ** 2.6 (1.7–3.8) 6.7 (3.7–12.4) ** 3 (1.6–5.8) − −
38 3.4 (2.4–4.8) 1.8 (0.6–5.5) ** 5 (1.7–14.3) 3.2 (1.8–5.6) ** 0.7 (0.2–2.6) − −

15A 2.9 (1.9–4.4) 1.4 (0.8–2.5) 3.3 (1.5–7.4) 3.9 (1.9–7.9) ** 3 (0.2–38.9) − −
35B 2.6 (1.8–3.8) 1.2 (0.2–6.4) 4.5 (1.7–11.4) 1.4 (0.9–2.3) ** 3.9 (2.2–6.9) − −
6C 2.4 (1.8–3) 2.4 (1.6–3.7) 2.3 (1.6–3.3) 1.6 (0.7–3.6) 3 (1.2–7.1) − −

8 2.2 (1.3–3.8) 1.2 (0.6–2.3) ** 1.5 (0.9–2.5) 2.9 (1.3–6.2) * 3.8 (1.2–11.9) * 8.3 (6.6–10.5) * 1.3 (0.2–9.1)

11A 2 (1.6–2.6) 2.2 (1.5–3.3) ** 2.5 (1.6–3.7) 1.7 (1.1–2.6) ** 0.7 (0.2–2.6) − −
23A 2 (1.6–2.6) 2 (1.2–3.6) 2.2 (1.5–3.2) 1.6 (1–2.5) 2.4 (1.1–5) − * 2.6 (0.6–10.2)

9N 1.3 (1–1.8) 1.3 (0.6–2.8) ** 1.3 (0.7–2.4) 1.3 (0.7–2.4) ** 1.5 (0.5–4.7) * 1.8 (1.1–3) −

Estimates of serotype-specific contributions to IPD in children (% 95%CI) reported are based on random effects model from meta-analysis of 3 or more

studies, unless indicated [one study (*) or two (**)].–indicates no data reported.
†10 countries from the SIREVA surveillance network. Meta-analyses were conducted individually, thus the sum of each of the serotypes in a category may

exceed 100%

https://doi.org/10.1371/journal.pone.0177113.t003
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estimated contributions of serotypes to childhood IPD in this study emphasise the need for a

better understanding of factors associated with disease due to vaccine types, especially as

PCV10 and PCV13 continue to be administered worldwide.

Widespread use of PCVs has resulted in dramatic reductions of IPD associated with vaccine

serotypes among young children in high-income countries in North America, Europe, and the

Western Pacific [11, 51, 79]. Knowledge of the serotypes that are associated with IPD among

the target population is important for the development of new vaccines that extend protection

against non-PCV13, which could also affect other age groups. We found that subsequent to

the introduction of higher valent PCVs in North America and Europe, approximately half of

childhood IPD cases were due to serotypes for which there is no protection via immunisation.

Serotypes likely to provide further reductions in disease are 22F, 33F, 15B, 38, and 35B (25%

combined) in North America. In Europe, the leading disease-causing non-PCV13 strains were

12F, 10A, 24F, 22F, and 15C, accounting for 30% of IPD. Serotypes 12F, 22F, 24F, and 33F

have been identified to have high invasive disease potentials [68, 84, 85]. Studies have also

shown that non-PCV13 15B/C/A, 23B, 24F, 35B are not only important causes of IPD but also

are common nasopharyngeal colonisers and have high prevalence of antibiotic resistance [86–

90]. Considering the important contribution of non-PCV13 serotypes to childhood IPD in

these settings, next generation PCVs with greater coverage will be needed to reduce the

remaining burden of pneumococcal disease.

There is paucity of data on burden of pneumococcal disease in Latin American countries.

Nevertheless, 1,500,000 cases and 28,000 deaths of IPD are estimated to occur annually in chil-

dren less than 5 years of age in Latin America [91]. We analysed data from 10 countries in

Latin America, all from SIREVA surveillance systems, of which 5 currently use PCV10. Com-

pared with other regions, the proportions of IPD caused by vaccine types were highest in this

region. The contribution of PCV7 serotypes for IPD was 10-fold higher in Latin America than

in the North America. Given the predominant role of vaccine types, the expansion of immuni-

sation programmes with PCVs and surveillance of epidemiological changes is critical for effec-

tively reducing the burden of pneumococcal disease in Latin American countries.

Before PCVs became available, the highest proportion of deaths (60%) associated with

childhood IPD were estimated to occur in Africa and Asia [1]. A limited number of coun-

tries in the South East Asian and Mediterranean region have introduced PCVs and are eval-

uating their impact [92]. A recent systematic review of serotypes associated with IPD found

that 1, 14, and 19F were common in South Asian countries. Further, serotypes varied across

countries and there was low prevalence of serotype 19A [93]. We only included serotype

data for two countries from two of these regions—South Africa and Saudi Arabia. In South

Africa, serotype 8 was the most frequent serotype in childhood IPD post-PCV. This is in

contrast to its position during the pre-PCV era in Africa, when its contribution was approxi-

mately 1% of IPD, ranking 8th [5]. Thus, our overall pooled estimates for the so-called Afri-

can and Eastern Mediterranean regions in this study should be interpreted with caution.

Our review of the literature shows that evidence of the effects of PCV in countries in Asia,

Africa, and Eastern Mediterranean is urgently needed to further understand the role of sero-

types following PCV10 and PCV13 introduction in settings with high burden of S. pneumo-
niae disease.

Serotype-specific meta-analysis, as performed in this study, provides evidence on potential

serotypes of interest in the post-PCV era. However, changes in the proportional contribution

of different strains to childhood IPD need to be interpreted carefully and in the context of

changes in IPD incidence in a particular setting. For example, if the percentage of isolates for a

serotype doubled, but the IPD decreased by 50%, it would indicate that there was no change in

the absolute number of cases for particular serotypes. Without incidence data, we are unable

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0177113


to indicate if there has been a change in the absolute number of IPD cases in any given sero-

type in the post-PCV era or to account for varying factors, such as temporal changes in the

study population and vaccine utilisation [11]. Yet, evidence in this review and meta-estimates

adds to the information base about serotypes’ individual importance in IPD and emphasise the

need for closer attention to regional differences in the post-PCV era.

Limitations

This study is not exempt from limitations of systematic reviews and meta-analysis. For some

studies, case counts by serotype were not exact as we extracted data from images or calculated

them from proportions. In other instances, serotype data were only available in a grouped for-

mat (e.g. “other”) or not all IPD cases were serotyped/reported. Missing information is likely

to affect serotypes considered “rare” or “infrequent”, which will vary in each setting. These

issues can potentially introduce biases to our results since not all serotypes could be assessed

individually. Our meta-estimates could also be influenced by the differences across studies and

are not exempt from risk of under or over-estimation. Although we sought to include large

studies, datasets were heterogeneous, reported different sample sizes, observed diverse popula-

tions with varying rates of vaccine coverage, immunisation schedules, and methods for case

detection of IPD (either by clinical and testing practices). Additionally, analyses were con-

ducted individually per serotype, thus the sum of serotypes into categories may exceed 100%.

Limitations withstanding, the large number of countries represented and isolates analysed is a

strength of our review. We aimed to address issues of heterogeneity by analysing the most

comparable data and case definitions. We also stratified analysis by PCV formulation and used

data for children of the same age (<5 years) whenever possible. We would recommend future

studies assessing serotype distribution after PCV introduction to report a clear definition and

description of vaccine coverage in order contextualise results and better understand vaccine

impact.

Conclusion

In the post-PCV era, childhood IPD is associated with a wide number of serotypes. After

PCV7 and in the early years after introduction of higher valent PCVs, 19A was the most

commonly identified serotype in different world regions. Non-PCV13 serotypes caused a con-

siderable proportion of childhood IPD, which emphasises the need for new vaccines with addi-

tional serotypes to reduce the remaining burden of childhood pneumococcal disease. Data on

serotypes causing IPD from the regions with the highest burden were not available to draw

robust regional conclusions. The geographic diversity of serotypes and changing epidemiology

of S. pneumoniae underscores the importance of continued surveillance of pneumococcal sero-

types to guide vaccine recommendations.

Supporting information

S1 Checklist.

(DOC)

S1 Table. Search strategies by database.

(DOCX)

S2 Table. Characteristics of studies excluded from meta-analysis.

(DOCX)

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 13 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s003
https://doi.org/10.1371/journal.pone.0177113


S3 Table. Proportional contribution of serotypes (%) to childhood IPD in individual stud-

ies included in meta-analysis.

(DOCX)

S4 Table. Additional serogroups/serotypes reported in studies identified through the

review, not included in meta-analysis.

(DOCX)

S5 Table. Meta-analyses results.

(DOCX)

S6 Table. Sensitivity analysis.

(DOCX)

Acknowledgments

We thank Marshall Dozier, medical librarian, and Claire Parker from the University of Edin-

burgh for their support in the development of search strategies and management of this study,

respectively.

Author Contributions

Conceptualization: EB MK HN.

Data curation: EB LG.

Formal analysis: EB LG.

Funding acquisition: MK.

Investigation: EB LG MK HN.

Methodology: EB MK HN.

Writing – original draft: EB MK.

Writing – review & editing: EB LG HN MK.

References
1. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused

by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009; 374

(9693):893–902. https://doi.org/10.1016/S0140-6736(09)61204-6 PMID: 19748398

2. World Health Organization. Estimated Hib and pneumococcal deaths for children under 5 years of age,

2008 2008 [cited 2016 28 March]. http://www.who.int/immunization/monitoring_surveillance/burden/

estimates/Pneumo_hib/en/.

3. World Health Organization. WHO vaccine-preventable diseases: monitoring system. 2015 global sum-

mary 2015. http://apps.who.int/immunization_monitoring/globalsummary/schedules.

4. International Vaccine Access Center (IVAC), Johns Hopkins Bloomberg School of Public Health. Vac-

cine Information Management System (VIMS) Global Vaccine Introduction Report 2015. www.jhsph.

edu/ivac/vims.html.

5. Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Hance LF, Reithinger R, et al. Systematic evalu-

ation of serotypes causing invasive pneumococcal disease among children under five: The Pneumo-

coccal Global Serotype Project. PLos Medicine. 2010; 7(10).

6. Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM, et al. Sustained reductions in inva-

sive pneumococcal disease in the era of conjugate vaccine. Journal of Infectious Diseases. 2010; 201

(1):32–41. https://doi.org/10.1086/648593 PMID: 19947881

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 14 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177113.s007
https://doi.org/10.1016/S0140-6736(09)61204-6
http://www.ncbi.nlm.nih.gov/pubmed/19748398
http://www.who.int/immunization/monitoring_surveillance/burden/estimates/Pneumo_hib/en/
http://www.who.int/immunization/monitoring_surveillance/burden/estimates/Pneumo_hib/en/
http://apps.who.int/immunization_monitoring/globalsummary/schedules
http://www.jhsph.edu/ivac/vims.html
http://www.jhsph.edu/ivac/vims.html
https://doi.org/10.1086/648593
http://www.ncbi.nlm.nih.gov/pubmed/19947881
https://doi.org/10.1371/journal.pone.0177113


7. Miller E, Andrews NJ, Waight PA, Slack MP, George RC. Herd immunity and serotype replacement 4

years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational

cohort study. Lancet Infectious Diseases. 2011; 11(10):760–68. https://doi.org/10.1016/S1473-3099

(11)70090-1 PMID: 21621466

8. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccina-

tion. Lancet. 2011; 378(9807):1962–73. https://doi.org/10.1016/S0140-6736(10)62225-8 PMID:

21492929

9. Fleming-Dutra KE, Conklin L, Loo JD, Knoll MD, Park DE, Kirk J, et al. Systematic review of the effect of

pneumococcal conjugate vaccine dosing schedules on vaccine-type nasopharyngeal carriage. The

Pediatric infectious disease journal. 2014; 33 Suppl 2:S152–60.

10. Loo JD, Conklin L, Fleming-Dutra KE, Knoll MD, Park DE, Kirk J, et al. Systematic review of the indirect

effect of pneumococcal conjugate vaccine dosing schedules on pneumococcal disease and coloniza-

tion. The Pediatric infectious disease journal. 2014; 33 Suppl 2:S161–71.

11. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, et al. Serotype-specific changes

in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analy-

sis of multiple surveillance sites. PLoS Medicine. 2013; 10(9):e1001517. https://doi.org/10.1371/

journal.pmed.1001517 PMID: 24086113

12. Aguiar SI, Serrano I, Pinto FR, Melo-Cristino J, Ramirez M. Changes in Streptococcus pneumoniae

serotypes causing invasive disease with non-universal vaccination coverage of the seven-valent conju-

gate vaccine. Clinical Microbiology and Infection. 2008; 14(9):835–43. https://doi.org/10.1111/j.1469-

0691.2008.02031.x PMID: 18844684

13. Alexandre C, Dubos F, Courouble C, Pruvost I, Varon E, Martinot A. Rebound in the incidence of pneu-

mococcal meningitis in northern France: Effect of serotype replacement. Acta Paediatrica, International

Journal of Paediatrics. 2010; 99(11):1686–90.

14. Al-Sheikh YA, G L K, Mohammed Ali MM, John J, Khaled Homoud Mohammed D, Chikkabidare Sha-

shidhar P. Distribution of serotypes and antibiotic susceptibility patterns among invasive pneumococcal

diseases in Saudi Arabia.[Erratum appears in Ann Lab Med. 2014 Sep;34(5):411 Note: A Al-Sherikh,

Yazeed [corrected to Al-Sheikh, Yazeed A]]. Annals of Laboratory Medicine. 2014.

15. Angoulvant F, Levy C, Grimprel E, Varon E, Lorrot M, Biscardi S, et al. Early impact of 13-valent pneu-

mococcal conjugate vaccine on community-acquired pneumonia in children. Clinical Infectious Dis-

eases. 2014; 58(7):918–24. https://doi.org/10.1093/cid/ciu006 PMID: 24532543

16. Aristegui J, Bernaola E, Pocheville I, Garcia C, Arranz L, Duran G, et al. Reduction in pediatric invasive

pneumococcal disease in the Basque Country and Navarre, Spain, after introduction of the heptavalent

pneumococcal conjugate vaccine. European Journal of Clinical Microbiology and Infectious Diseases.

2007; 26(5):303–10. https://doi.org/10.1007/s10096-007-0294-4 PMID: 17457623

17. Barricarte A, Castilla J, Gil-Setas A, Torroba L, Navarro-Alonso JA, Irisarri F, et al. Effectiveness of the

7-valent pneumococcal conjugate vaccine: a population-based case-control study. Clinical Infectious

Diseases. 2007; 44:1436–41. https://doi.org/10.1086/516779 PMID: 17479939

18. Bettinger JA, Scheifele DW, Kellner JD, Halperin SA, Vaudry W, Law B, et al. The effect of routine vacci-

nation on invasive pneumococcal infections in Canadian children, Immunization Monitoring Program,

Active 2000–2007. Vaccine. 2010; 28(9):2130–6. https://doi.org/10.1016/j.vaccine.2009.12.026 PMID:

20044050

19. Black S, France EK, Isaacman D, Bracken L, Lewis E, Hansen J, et al. Surveillance for invasive pneu-

mococcal disease during 2000–2005 in a population of children who received 7-valent pneumococcal

conjugate vaccine. Pediatric Infectious Disease Journal. 2007; 26(9):771–7. https://doi.org/10.1097/

INF.0b013e318124a494 PMID: 17721369

20. Bruce MG, Singleton R, Bulkow L, Rudolph K, Zulz T, Gounder P, et al. Impact of the 13-valent pneumo-

coccal conjugate vaccine (pcv13) on invasive pneumococcal disease and carriage in Alaska. Vaccine.

2015; 33(38):4813–9. https://doi.org/10.1016/j.vaccine.2015.07.080 PMID: 26247901

21. Byington CL, Samore MH, Stoddard GJ, Barlow S, Daly J, Korgenski K, et al. Temporal trends of inva-

sive disease due to Streptococcus pneumoniae among children in the Intermountain West: Emergence

of nonvaccine serogroups. Clinical Infectious Diseases. 2005; 41(1):21–9. https://doi.org/10.1086/

430604 PMID: 15937758

22. Calbo E, Diaz A, Canadell E, Fabrega J, Uriz S, Xercavins M, et al. Invasive pneumococcal disease

among children in a health district of Barcelona: Early impact of pneumococcal conjugate vaccine. Clini-

cal Microbiology and Infection. 2006; 12(9):867–72. https://doi.org/10.1111/j.1469-0691.2006.1502_1.x

PMID: 16882291

23. Ceyhan M, Gurler N, Yaman A, Ozturk C, Oksuz L, Ozkan S, et al. Serotypes of Streptococcus pneu-

moniae isolates from children with invasive pneumococcal disease in Turkey: Baseline evaluation of the

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 15 / 20

https://doi.org/10.1016/S1473-3099(11)70090-1
https://doi.org/10.1016/S1473-3099(11)70090-1
http://www.ncbi.nlm.nih.gov/pubmed/21621466
https://doi.org/10.1016/S0140-6736(10)62225-8
http://www.ncbi.nlm.nih.gov/pubmed/21492929
https://doi.org/10.1371/journal.pmed.1001517
https://doi.org/10.1371/journal.pmed.1001517
http://www.ncbi.nlm.nih.gov/pubmed/24086113
https://doi.org/10.1111/j.1469-0691.2008.02031.x
https://doi.org/10.1111/j.1469-0691.2008.02031.x
http://www.ncbi.nlm.nih.gov/pubmed/18844684
https://doi.org/10.1093/cid/ciu006
http://www.ncbi.nlm.nih.gov/pubmed/24532543
https://doi.org/10.1007/s10096-007-0294-4
http://www.ncbi.nlm.nih.gov/pubmed/17457623
https://doi.org/10.1086/516779
http://www.ncbi.nlm.nih.gov/pubmed/17479939
https://doi.org/10.1016/j.vaccine.2009.12.026
http://www.ncbi.nlm.nih.gov/pubmed/20044050
https://doi.org/10.1097/INF.0b013e318124a494
https://doi.org/10.1097/INF.0b013e318124a494
http://www.ncbi.nlm.nih.gov/pubmed/17721369
https://doi.org/10.1016/j.vaccine.2015.07.080
http://www.ncbi.nlm.nih.gov/pubmed/26247901
https://doi.org/10.1086/430604
https://doi.org/10.1086/430604
http://www.ncbi.nlm.nih.gov/pubmed/15937758
https://doi.org/10.1111/j.1469-0691.2006.1502_1.x
http://www.ncbi.nlm.nih.gov/pubmed/16882291
https://doi.org/10.1371/journal.pone.0177113


introduction of the pneumococcal conjugate vaccine nationwide. Clinical and Vaccine Immunology.

2011; 18(6):1028–30. https://doi.org/10.1128/CVI.00526-10 PMID: 21508171

24. Chiba N, Morozumi M, Shouji M, Wajima T, Iwata S, Ubukata K. Changes in capsule and drug resis-

tance of pneumococci after introduction of PCV7, Japan, 2010–2013. Emerging Infectious Diseases.

2014; 20(7):1132–9. https://doi.org/10.3201/eid2007.131485 PMID: 24960150

25. Croney CM, Coats MT, Nahm MH, Briles DE, Craina MJ. PspA family distribution, unlike capsular sero-

type, remains unaltered following introduction of the heptavalent pneumococcal conjugate vaccine.

Clinical and Vaccine Immunology. 2012; 19(6):891–6. https://doi.org/10.1128/CVI.05671-11 PMID:

22539473

26. De Wals P, Lefebvre B, Defay F, Deceuninck G, Boulianne N. Invasive pneumococcal diseases in birth

cohorts vaccinated with PCV-7 and/or PHiD-CV in the province of Quebec, Canada. Vaccine. 2012; 30

(45):6416–20. https://doi.org/10.1016/j.vaccine.2012.08.017 PMID: 22921290

27. del Amo E, Brotons P, Monsonis M, Trivino M, Inigo M, Selva L, et al. High invasiveness of pneumococ-

cal serotypes included in the new generation of conjugate vaccines. Clinical Microbiology & Infection.

2014; 20(684–89).

28. del Amo E, Selva L, de Sevilla MF, Ciruela P, Brotons P, Trivino M, et al. Estimation of the invasive dis-

ease potential of Streptococcus pneumoniae in children by the use of direct capsular typing in clinical

specimens. European Journal of Clinical Microbiology and Infectious Diseases. 2015; 34(4):705–11.

https://doi.org/10.1007/s10096-014-2280-y PMID: 25413925

29. Demczuk WH, Martin I, Griffith A, Lefebvre B, McGeer A, Lovgren M, et al. Serotype distribution of inva-

sive Streptococcus pneumoniae in Canada after the introduction of the 13-valent pneumococcal conju-

gate vaccine, 2010–2012. Canadian Journal of Microbiology. 2013; 59:778–88. https://doi.org/10.1139/

cjm-2013-0614 PMID: 24313450

30. Desai AP, Sharma D, Crispell EK, Baughman W, Thomas S, Tunali A, et al. Decline in pneumococcal

nasopharyngeal carriage of vaccine serotypes after the introduction of the 13-valent pneumococcal

conjugate vaccine in children in Atlanta, Georgia. Pediatric Infectious Disease Journal. 2015; 34

(11):1168–74. https://doi.org/10.1097/INF.0000000000000849 PMID: 26226445

31. Doit C, Mariani-Kurkdjian P, Mahjoub-Messai F, Bidet P, Bonacorsi S, Carol A, et al. Epidemiology of

pediatric community-acquired bloodstream infections in a children hospital in Paris, France, 2001 to

2008. Diagnostic Microbiology and Infectious Disease. 2010; 66(3):332–5. https://doi.org/10.1016/j.

diagmicrobio.2009.10.012 PMID: 20159378

32. Foster D, Walker AS, Paul J, Griffiths D, Knox K, Peto TE, et al. Reduction in invasive pneumococcal

disease following implementation of the conjugate vaccine in the Oxfordshire region, England. Journal

of Medical Microbiology. 2011; 60(1):91–7.

33. Guevara M, Ezpeleta C, Gil-Setas A, Torroba L, Beristain X, Aguinaga A, et al. Reduced incidence of

invasive pneumococcal disease after introduction of the 13-valent conjugate vaccine in Navarre, Spain,

2001–2013. Vaccine. 2014; 32(22):2553–62. https://doi.org/10.1016/j.vaccine.2014.03.054 PMID:

24674661

34. Herrero M, Alcalde M, Gomez B, Hernandez JL, Sota M, Benito J, et al. Invasive bacterial infections in a

paediatric emergency department in the era of the heptavalent pneumococcal conjugate vaccine. Euro-

pean Journal of Emergency Medicine. 2012; 19(2):89–94. https://doi.org/10.1097/MEJ.

0b013e3283484bbc PMID: 21659882

35. Herz AM, Greenhow TL, Alcantara J, Hansen J, Baxter RP, Black SB, et al. Changing epidemiology of

outpatient bacteremia in 3- to 36-month-old children after the introduction of the heptavalent-conjugated

pneumococcal vaccine. Pediatric Infectious Disease Journal. 2006; 25(4):293–300. https://doi.org/10.

1097/01.inf.0000207485.39112.bf PMID: 16567979

36. Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, et al. Incidence of pneumococcal

disease due to non- pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the

era of widespread PCV7 vaccination, 1998–2004. Journal of Infectious Diseases. 2007; 196(9):1346–

54. https://doi.org/10.1086/521626 PMID: 17922399

37. Hsu K, Pelton S, Karumuri S, Heisey-Grove D, Klein J. Population-based surveillance for childhood

invasive pneumococcal disease in the era of conjugate vaccine. Pediatric Infectious Disease Journal.

2005; 24(1):17–23. PMID: 15665705

38. Hsu KK, Shea KM, Stevenson AE, Pelton SI. Changing serotypes causing childhood invasive pneumo-

coccal disease: Massachusetts, 2001–2007. Pediatric Infectious Disease Journal. 2010; 29(4):289–93.

PMID: 19935447

39. Imohl M, Moller J, Perniciaro S, van der Linden M, Aktas O. Pneumococcal meningitis and vaccine

effects in the era of conjugate vaccination: Results of 20 years of nationwide surveillance in Germany.

BMC Infectious Diseases. 2015; 15(1).

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 16 / 20

https://doi.org/10.1128/CVI.00526-10
http://www.ncbi.nlm.nih.gov/pubmed/21508171
https://doi.org/10.3201/eid2007.131485
http://www.ncbi.nlm.nih.gov/pubmed/24960150
https://doi.org/10.1128/CVI.05671-11
http://www.ncbi.nlm.nih.gov/pubmed/22539473
https://doi.org/10.1016/j.vaccine.2012.08.017
http://www.ncbi.nlm.nih.gov/pubmed/22921290
https://doi.org/10.1007/s10096-014-2280-y
http://www.ncbi.nlm.nih.gov/pubmed/25413925
https://doi.org/10.1139/cjm-2013-0614
https://doi.org/10.1139/cjm-2013-0614
http://www.ncbi.nlm.nih.gov/pubmed/24313450
https://doi.org/10.1097/INF.0000000000000849
http://www.ncbi.nlm.nih.gov/pubmed/26226445
https://doi.org/10.1016/j.diagmicrobio.2009.10.012
https://doi.org/10.1016/j.diagmicrobio.2009.10.012
http://www.ncbi.nlm.nih.gov/pubmed/20159378
https://doi.org/10.1016/j.vaccine.2014.03.054
http://www.ncbi.nlm.nih.gov/pubmed/24674661
https://doi.org/10.1097/MEJ.0b013e3283484bbc
https://doi.org/10.1097/MEJ.0b013e3283484bbc
http://www.ncbi.nlm.nih.gov/pubmed/21659882
https://doi.org/10.1097/01.inf.0000207485.39112.bf
https://doi.org/10.1097/01.inf.0000207485.39112.bf
http://www.ncbi.nlm.nih.gov/pubmed/16567979
https://doi.org/10.1086/521626
http://www.ncbi.nlm.nih.gov/pubmed/17922399
http://www.ncbi.nlm.nih.gov/pubmed/15665705
http://www.ncbi.nlm.nih.gov/pubmed/19935447
https://doi.org/10.1371/journal.pone.0177113


40. Ishiwada N, Hishiki H, Nagasawa K, Naito S, Sato Y, Chang B, et al. The incidence of pediatric invasive

Haemophilus influenzae and pneumococcal disease in Chiba prefecture, Japan before and after the

introduction of conjugate vaccines. Vaccine. 2014; 32(42):5425–31. https://doi.org/10.1016/j.vaccine.

2014.07.100 PMID: 25131741

41. Kaplan SL, Barson WJ, Lin PL, Romero JR, Bradley JS, Tan TQ, et al. Early trends for invasive pneu-

mococcal infections in children after the introduction of the 13-valent pneumococcal conjugate vaccine.

Pediatric Infectious Disease Journal. 2013; 32(3):203–7. https://doi.org/10.1097/INF.

0b013e318275614b PMID: 23558320

42. Kaplan SL, Barson WJ, Lin PL, Stovall SH, Bradley JS, Tan TQ, et al. Serotype 19A is the most com-

mon serotype causing invasive pneumococcal infections in children. Pediatrics. 2010; 125(3):429–36.

https://doi.org/10.1542/peds.2008-1702 PMID: 20176669

43. Kellner JD, Vanderkooi OG, MacDonald J, Church DL, Tyrrell GJ, Scheifele DW. Changing epidemiol-

ogy of invasive pneumococcal disease in Canada, 1998–2007: Update from the calgary-area Strepto-

coccus pneumoniae research (Casper) study. Clinical Infectious Diseases. 2009; 49(2):205–12. https://

doi.org/10.1086/599827 PMID: 19508165

44. Knol MJ, Wagenvoort GHJ, Sanders EAM, Elberse K, Vlaminckx BJ, de Melker HE, et al. Invasive

pneumococcal disease 3 years after introduction of 10-valent pneumococcal conjugate vaccine, the

Netherlands. Emerging Infectious Diseases. 2015; 21(11):2040–4. https://doi.org/10.3201/eid2111.

140780 PMID: 26488415

45. Lepoutre A, Varon E, Georges S, Dorleans F, Janoir C, Gutmann L, et al. Impact of the pneumococcal

conjugate vaccines on invasive pneumococcal disease in France, 2001–2012. Vaccine. 2015; 33

(2):359–66. https://doi.org/10.1016/j.vaccine.2014.11.011 PMID: 25448105

46. Lepoutre A, Varon E, Georges S, Gutmann L, Levy-Bruhl D. Impact of infant pneumococcal vaccination

on invasive pneumococcal diseases in France, 2001–2006. Euro surveillance. 2008; 13(35).

47. Levy C, Varon E, Bingen E, Lecuyer A, Boucherat M, Cohen R. Pneumococcal meningitis in French

children before and after the introduction of pneumococcal conjugate vaccine. Pediatric Infectious Dis-

ease Journal. 2011; 30(2):168–70. PMID: 21298818

48. Levy C, Varon E, Picard C, Bechet S, Martinot A, Bonacorsi S, et al. Trends of pneumococcal meningitis

in children after introduction of the 13-valent pneumococcal conjugate vaccine in France. Pediatric

Infectious Disease Journal. 2014; 33(12):1216–21. https://doi.org/10.1097/INF.0000000000000451

PMID: 25037044

49. Mistry RD, Wedin T, Balamuth F, McGowan KL, Ellison AM, Nelson KA, et al. Emergency department

epidemiology of pneumococcal bacteremia in children since the institution of widespread PCV7 vacci-

nation. Journal of Emergency Medicine. 2013; 45(6):813–20. https://doi.org/10.1016/j.jemermed.2013.

04.029 PMID: 23992851

50. Moore CE, Paul J, Foster D, Mahar SA, Griffiths D, Knox K, et al. Reduction of invasive pneumococcal

disease 3 years after the introduction of the 13-valent conjugate vaccine in the Oxfordshire region of

England. Journal of Infectious Diseases. 2014; 210(7):1001–11. https://doi.org/10.1093/infdis/jiu213

PMID: 24719477

51. Moore MR, Link-Gelles R, Schaffner W, Lynfield R, Lexau C, Bennett NM, et al. Effect of use of 13-

valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and

adults in the USA: analysis of multisite, population-based surveillance. Lancet Infectious Diseases.

2015; 15(3):301–9. https://doi.org/10.1016/S1473-3099(14)71081-3 PMID: 25656600

52. Munoz-Almagro C, Ciruela P, Esteva C, Marco F, Navarro M, Bartolome R, et al. Serotypes and clones

causing invasive pneumococcal disease before the use of new conjugate vaccines in Catalonia, Spain.

Journal of Infection. 2011; 63(2):151–62. https://doi.org/10.1016/j.jinf.2011.06.002 PMID: 21679725

53. Nakano S, Fujisawa T, Ito Y, Chang B, Suga S, Noguchi T, et al. Serotypes, antimicrobial susceptibility,

and molecular epidemiology of invasive and non-invasive Streptococcus pneumoniae isolates in paedi-

atric patients after the introduction of 13-valent conjugate vaccine in a nationwide surveillance study

conducted in Japan in 2012–2014. Vaccine. 2016; 34(1):67–76. https://doi.org/10.1016/j.vaccine.2015.

11.015 PMID: 26602268

54. Olarte L, Barson WJ, Barson RM, Lin PL, Romero JR, Tan TQ, et al. Impact of the 13-valent pneumo-

coccal conjugate vaccine on pneumococcal meningitis in us children. Clinical Infectious Diseases.

2015; 61(5):767–75. https://doi.org/10.1093/cid/civ368 PMID: 25972022

55. Parra EL, De La Hoz F, Diaz PL, Sanabria O, Realpe ME, Moreno J. Changes in Streptococcus pneu-

moniae serotype distribution in invasive disease and nasopharyngeal carriage after the heptavalent

pneumococcal conjugate vaccine introduction in Bogota, Colombia. Vaccine. 2013; 31(37):4033–8.

https://doi.org/10.1016/j.vaccine.2013.04.074 PMID: 23680440

56. Perez-Trallero E, Marimon JM, Ercibengoa M, Vicente D, Perez-Yarza EG. Invasive Streptococcus

pneumoniae infections in children and older adults in the north of Spain before and after the introduction

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 17 / 20

https://doi.org/10.1016/j.vaccine.2014.07.100
https://doi.org/10.1016/j.vaccine.2014.07.100
http://www.ncbi.nlm.nih.gov/pubmed/25131741
https://doi.org/10.1097/INF.0b013e318275614b
https://doi.org/10.1097/INF.0b013e318275614b
http://www.ncbi.nlm.nih.gov/pubmed/23558320
https://doi.org/10.1542/peds.2008-1702
http://www.ncbi.nlm.nih.gov/pubmed/20176669
https://doi.org/10.1086/599827
https://doi.org/10.1086/599827
http://www.ncbi.nlm.nih.gov/pubmed/19508165
https://doi.org/10.3201/eid2111.140780
https://doi.org/10.3201/eid2111.140780
http://www.ncbi.nlm.nih.gov/pubmed/26488415
https://doi.org/10.1016/j.vaccine.2014.11.011
http://www.ncbi.nlm.nih.gov/pubmed/25448105
http://www.ncbi.nlm.nih.gov/pubmed/21298818
https://doi.org/10.1097/INF.0000000000000451
http://www.ncbi.nlm.nih.gov/pubmed/25037044
https://doi.org/10.1016/j.jemermed.2013.04.029
https://doi.org/10.1016/j.jemermed.2013.04.029
http://www.ncbi.nlm.nih.gov/pubmed/23992851
https://doi.org/10.1093/infdis/jiu213
http://www.ncbi.nlm.nih.gov/pubmed/24719477
https://doi.org/10.1016/S1473-3099(14)71081-3
http://www.ncbi.nlm.nih.gov/pubmed/25656600
https://doi.org/10.1016/j.jinf.2011.06.002
http://www.ncbi.nlm.nih.gov/pubmed/21679725
https://doi.org/10.1016/j.vaccine.2015.11.015
https://doi.org/10.1016/j.vaccine.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26602268
https://doi.org/10.1093/cid/civ368
http://www.ncbi.nlm.nih.gov/pubmed/25972022
https://doi.org/10.1016/j.vaccine.2013.04.074
http://www.ncbi.nlm.nih.gov/pubmed/23680440
https://doi.org/10.1371/journal.pone.0177113


of the heptavalent pneumococcal conjugate vaccine. European Journal of Clinical Microbiology and

Infectious Diseases. 2009; 28(7):731–8. https://doi.org/10.1007/s10096-008-0693-1 PMID: 19153783

57. Picazo J, Ruiz-Contreras J, Casado-Flores J, Giangaspro E, Del Castillo F, Hernandez-Sampelayo T,

et al. Relationship between serotypes, age, and clinical presentation of invasive pneumococcal disease

in Madrid, Spain, after introduction of the 7-valent pneumococcal conjugate vaccine into the vaccination

calendar. Clinical and Vaccine Immunology. 2011; 18(1):89–94. https://doi.org/10.1128/CVI.00317-10

PMID: 21047996

58. Rendi-Wagner P, Paulke-Korinek M, Kundi M, Burgmann H, Georgopoulos A, Vecsei A, et al. National

paediatric immunization program of high risk groups: No effect on the incidence of invasive pneumococ-

cal diseases. Vaccine. 2009; 27(30):3963–8. https://doi.org/10.1016/j.vaccine.2009.04.044 PMID:

19393711

59. Rodriguez MA, Gonzalez AV, Gavin MA, Martinez FM, Marin NG, Blazquez BR, et al. Invasive pneumo-

coccal disease: association between serotype, clinical presentation and lethality. Vaccine. 2011; 29

(34):5740–46. https://doi.org/10.1016/j.vaccine.2011.05.099 PMID: 21683112

60. Salleras L, Dominguez A, Ciruela P, Izquierdo C, Navas E, Torner N, et al. Changes in serotypes caus-

ing invasive pneumococcal disease (2005–2007 vs. 1997–1999) in children under 2 years of age in a

population with intermediate coverage of the 7-valent pneumococcal conjugated vaccine. Clinical

Microbiology & Infection. 2009; 15(11):997–1001.

61. Schutze GE, Tucker NC, Mason EO Jr. Impact of the conjugate pneumococcal vaccine in Arkansas.

Pediatric Infectious Disease Journal. 2004; 23(12):1125–9. PMID: 15626950

62. Sharma D, Baughman W, Holst A, Thomas S, Jackson D, Da Gloria Carvalho M, et al. Pneumococcal

carriage and invasive disease in children before introduction of the 13-valent conjugate vaccine: Com-

parison with the era before 7-valent conjugate vaccine. Pediatric Infectious Disease Journal. 2013; 32

(2):e45–e53. https://doi.org/10.1097/INF.0b013e3182788fdd PMID: 23080290

63. Shibl AM, Memish ZA, Al-Kattan KM. Antibiotic resistance and serotype distribution of invasive pneumo-

coccal diseases before and after introduction of pneumococcal conjugate vaccine in the Kingdom of

Saudi Arabia (KSA). Vaccine. 2012; 30(SUPPL. 6):G32–G6.

64. SIREVA II. Informe Regional de SIREVA II, 2009–12: Datos por paı́s y por grupos de edad sobre las

caracterı́sticas de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y neisseria

meningitidis, en procesos invasores SIREVA II Regional Report, 2009–12: Data by country and by age

group on the characteristics of isolates of Streptococcus pneumoniae, Haemophilus influenzae and

Neisseria meningitidis in invasive processes 2012. http://new.paho.org/hq/index.php?option=com_

docman&task=doc_view&gid=21402&Itemid=.

65. Steens A, Bergsaker MAR, Aaberge IS, Ronning K, Vestrheim DF. Prompt effect of replacing the 7-

valent pneumococcal conjugate vaccine with the 13-valent vaccine on the epidemiology of invasive

pneumococcal disease in Norway. Vaccine. 2013; 31(52):6232–8. https://doi.org/10.1016/j.vaccine.

2013.10.032 PMID: 24176490

66. Suga S, Chang B, Asada K, Akeda H, Nishi J, Okada K, et al. Nationwide population-based surveillance

of invasive pneumococcal disease in Japanese children: Effects of the seven-valent pneumococcal

conjugate vaccine. Vaccine. 2015; 33(45):6054–60. https://doi.org/10.1016/j.vaccine.2015.07.069

PMID: 26235372

67. Van Der Linden M, Falkenhorst G, Perniciaro S, Imohl M. Effects of infant pneumococcal conjugate vac-

cination on serotype distribution in invasive pneumococcal disease among children and adults in Ger-

many. PLoS ONE. 2015; 10(7).

68. Varon E, Cohen R, Bechet S, Doit C, Levy C. Invasive disease potential of pneumococci before and

after the 13-valent pneumococcal conjugate vaccine implementation in children. Vaccine. 2015; 33

(46):6178–85. https://doi.org/10.1016/j.vaccine.2015.10.015 PMID: 26476365

69. Vila-Corcoles A, Ochoa-Gondar O, Guzman-Avalos A, Gomez-Bertomeu F, Figuerola-Massana E,

Raga-Luria X, et al. Incidence of pneumococcal infections among children under 15 years in southern

Catalonia throughout the heptavalent conjugate vaccine era, 2002–2009. Infection. 2013; 41(2):439–

46. https://doi.org/10.1007/s15010-012-0345-3 PMID: 23055151

70. Von Gottberg A, De Gouveia L, Tempia S, Quan V, Meiring S, Von Mollendorf C, et al. Effects of vacci-

nation on invasive pneumococcal disease in South Africa. New England Journal of Medicine. 2014; 371

(20):1889–99. https://doi.org/10.1056/NEJMoa1401914 PMID: 25386897

71. Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of the 13-valent pneu-

mococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its

introduction: an observational cohort study. Lancet Infectious Diseases. 2015.

72. Weatherholtz R, Millar EV, Moulton LH, Reid R, Rudolph K, Santosham M, et al. Invasive pneumococ-

cal disease a decade after pneumococcal conjugate vaccine use in an American Indian population at

high risk for disease. CID. 2010.

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 18 / 20

https://doi.org/10.1007/s10096-008-0693-1
http://www.ncbi.nlm.nih.gov/pubmed/19153783
https://doi.org/10.1128/CVI.00317-10
http://www.ncbi.nlm.nih.gov/pubmed/21047996
https://doi.org/10.1016/j.vaccine.2009.04.044
http://www.ncbi.nlm.nih.gov/pubmed/19393711
https://doi.org/10.1016/j.vaccine.2011.05.099
http://www.ncbi.nlm.nih.gov/pubmed/21683112
http://www.ncbi.nlm.nih.gov/pubmed/15626950
https://doi.org/10.1097/INF.0b013e3182788fdd
http://www.ncbi.nlm.nih.gov/pubmed/23080290
http://new.paho.org/hq/index.php?option=com_docman&amp;task=doc_view&amp;gid=21402&amp;Itemid=
http://new.paho.org/hq/index.php?option=com_docman&amp;task=doc_view&amp;gid=21402&amp;Itemid=
https://doi.org/10.1016/j.vaccine.2013.10.032
https://doi.org/10.1016/j.vaccine.2013.10.032
http://www.ncbi.nlm.nih.gov/pubmed/24176490
https://doi.org/10.1016/j.vaccine.2015.07.069
http://www.ncbi.nlm.nih.gov/pubmed/26235372
https://doi.org/10.1016/j.vaccine.2015.10.015
http://www.ncbi.nlm.nih.gov/pubmed/26476365
https://doi.org/10.1007/s15010-012-0345-3
http://www.ncbi.nlm.nih.gov/pubmed/23055151
https://doi.org/10.1056/NEJMoa1401914
http://www.ncbi.nlm.nih.gov/pubmed/25386897
https://doi.org/10.1371/journal.pone.0177113


73. Williams SR, Mernagh PJ, Lee MHT, Tan JT. Changing epidemiology of invasive pneumococcal dis-

ease in Australian children after introduction of a 7-valent pneumococcal conjugate vaccine. Medical

Journal of Australia. 2011; 194(3):116–20. PMID: 21299484

74. Australian Goverment Department of Health. Invasive Pneumococcal Disease Surveillance Australia:

National Notifiable Diseases Surveillance; 2012 [cited 2016 January 15]. http://www.health.gov.au/

internet/main/publishing.nsf/Content/cda-surveil-nndss-ipd-reports.htm.

75. Health Protection Scotland. Pneumococcal Disease 2015 [cited 2016 January 15]. http://www.hps.scot.

nhs.uk/resp/pneumococcaldisease.aspx.

76. New Zealand Ministry of Health. Invasive Pneumococcal Disease Reports 2015 [cited 2016 January

15]. https://surv.esr.cri.nz/surveillance/IPD.php.

77. Ministry of Health Singapore. Epidemiological News Bulletin Laboratory data on surveillance of invasive

pneumococcal diseases in Singapore 2012–14. https://www.moh.gov.sg/content/dam/moh_web/

Statistics/Epidemiological_News_Bulletin/2013/ENB02Q_13.pdf https://www.moh.gov.sg/content/

dam/moh_web/Publications/Reports/2014/Communicable%20Diseases%20Surveillance%20in%

20Singapore%202013/Full%20version.pdf https://www.moh.gov.sg/content/dam/moh_web/

Publications/Reports/2015/Air%20Droplet-Borne%20Diseases.pdf.

78. Hausdorff WP, Hanage WP. Interim results of an ecological experiment—Conjugate vaccination

against the pneumococcus and serotype replacement. Human Vaccines Immunotherapies. 2016; 12

(2):358–74.

79. Navarro Torne A, Dias JG, Quinten C, Hruba F, Busana MC, Lopalco PL, et al. European enhanced sur-

veillance of invasive pneumococcal disease in 2010: Data from 26 European countries in the post-hep-

tavalent conjugate vaccine era. Vaccine. 2014; 32(29):3644–50. https://doi.org/10.1016/j.vaccine.2014.

04.066 PMID: 24795228

80. Oligbu G, Collins S, Andrews N, Sheppard C, Fry N, Slack PEM, et al., editors. Pneumococcal Conju-

gate Vaccine Failure in children younger than 5 years old in England and Wales, 2006–14. 10th Interna-

tional Symposium on Pneumococci & Pneumococcal Diseases; 2016; Glasgow, UK.

81. Pilishvili T, Gierke R, Farley M, Schaffner W, Thomas A, Reingold A, et al., editors. Changes in invasive

pneumococcal disease (IPD) following 5 years of 13-valent pneumococcal conjugate vaccine in the U.

S. 10th International Symposium on Pneumococci & Pneumococcal Diseases; 2016; Glasgow, UK.

82. Fry N, Kapatai G, Sheppard C, Litt D, Collins S, Ladhani S, et al., editors. The fall and rise of serotype

19A in invasive pneumococcal disease: application of whole genome sequencing to investigate the

recent rise in England and Wales. 10th International Symposium on Pneumococci & Pneumococcal

Diseases; 2016; Glasgow, UK.

83. Corcoran M, Vickers I, Fitzgerald M, Mereckiene J, Murchan S, Cotter S, et al., editors. The persistence

of serotype 19A—Despite the introduction of PCV13 vaccine. 10th International Symposium on Pneu-

mococci & Pneumococcal Diseases; 2016; Glasgow, UK.

84. Brueggemann AB, Peto TE, Crook DW, Butler JC, Kristinsson KG, Spratt BG. Temporal and geo-

graphic stability of the serogroup-specific invasive disease potential of Streptococcus pneumoniae in

children. 2004.

85. Yildirim I, Hanage WP, Lipsitch M, Shea KM, Stevenson A, Finkelstein J, et al. Serotype specific inva-

sive capacity and persistent reduction in invasive pneumococcal disease. Vaccine. 2010; 29(2):283–8.

https://doi.org/10.1016/j.vaccine.2010.10.032 PMID: 21029807

86. Lee GM, Kleinman K, Pelton SI, Hanage W, Huang SS, Lakoma M, et al. Impact of 13-valent pneumo-

coccal conjugate vaccination on Streptococcus pneumoniae carriage in young children in Massachu-

setts. Journal of the Pediatric Infectious Diseases Society. 2014; 3(1):23–32. https://doi.org/10.1093/

jpids/pit057 PMID: 24567842

87. Metcalf BJ, Gertz RE Jr., Gladstone RA, Walker H, Sherwood LK, Jackson D, et al. Strain features and

distributions in pneumococci from children with invasive disease before and after 13-valent conjugate

vaccine implementation in the USA. Clinical microbiology and infection: the official publication of the

European Society of Clinical Microbiology and Infectious Diseases. 2016; 22(1):60 e9–e29.

88. Kim L, McGee L, Tomczyk S, Beall B. Biological and Epidemiological Features of Antibiotic-Resistant

Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective.

Clin Microbiol Rev. 2016; 29(3):525–52. https://doi.org/10.1128/CMR.00058-15 PMID: 27076637

89. Camilli R, Daprai L, Cavrini F, Lombardo D, D’Ambrosio F, Del Grosso M, et al. Pneumococcal carriage

in young children one year after introduction of the 13-valent conjugate vaccine in Italy. PLoS ONE.

2013; 8(10):e76309. https://doi.org/10.1371/journal.pone.0076309 PMID: 24124543

90. Van Hoek AJ, Sheppard CL, Andrews NJ, Waight PA, Slack MPE, Harrison TG, et al. Pneumococcal

carriage in children and adults two years after introduction of the thirteen valent pneumococcal conju-

gate vaccine in England. Vaccine. 2014; 32(34):4349–55. https://doi.org/10.1016/j.vaccine.2014.03.

017 PMID: 24657717

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 19 / 20

http://www.ncbi.nlm.nih.gov/pubmed/21299484
http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-nndss-ipd-reports.htm
http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-nndss-ipd-reports.htm
http://www.hps.scot.nhs.uk/resp/pneumococcaldisease.aspx
http://www.hps.scot.nhs.uk/resp/pneumococcaldisease.aspx
https://surv.esr.cri.nz/surveillance/IPD.php
https://www.moh.gov.sg/content/dam/moh_web/Statistics/Epidemiological_News_Bulletin/2013/ENB02Q_13.pdf
https://www.moh.gov.sg/content/dam/moh_web/Statistics/Epidemiological_News_Bulletin/2013/ENB02Q_13.pdf
https://www.moh.gov.sg/content/dam/moh_web/Publications/Reports/2014/Communicable%20Diseases%20Surveillance%20in%20Singapore%202013/Full%20version.pdf
https://www.moh.gov.sg/content/dam/moh_web/Publications/Reports/2014/Communicable%20Diseases%20Surveillance%20in%20Singapore%202013/Full%20version.pdf
https://www.moh.gov.sg/content/dam/moh_web/Publications/Reports/2014/Communicable%20Diseases%20Surveillance%20in%20Singapore%202013/Full%20version.pdf
https://www.moh.gov.sg/content/dam/moh_web/Publications/Reports/2015/Air%20Droplet-Borne%20Diseases.pdf
https://www.moh.gov.sg/content/dam/moh_web/Publications/Reports/2015/Air%20Droplet-Borne%20Diseases.pdf
https://doi.org/10.1016/j.vaccine.2014.04.066
https://doi.org/10.1016/j.vaccine.2014.04.066
http://www.ncbi.nlm.nih.gov/pubmed/24795228
https://doi.org/10.1016/j.vaccine.2010.10.032
http://www.ncbi.nlm.nih.gov/pubmed/21029807
https://doi.org/10.1093/jpids/pit057
https://doi.org/10.1093/jpids/pit057
http://www.ncbi.nlm.nih.gov/pubmed/24567842
https://doi.org/10.1128/CMR.00058-15
http://www.ncbi.nlm.nih.gov/pubmed/27076637
https://doi.org/10.1371/journal.pone.0076309
http://www.ncbi.nlm.nih.gov/pubmed/24124543
https://doi.org/10.1016/j.vaccine.2014.03.017
https://doi.org/10.1016/j.vaccine.2014.03.017
http://www.ncbi.nlm.nih.gov/pubmed/24657717
https://doi.org/10.1371/journal.pone.0177113


91. Valenzuela MT, O’Loughlin R, De La Hoz F, Gomez E, Constenla D, Sinha A, et al. The burden of pneu-

mococcal disease among Latin American and Caribbean children: Review of the evidence. Revista

Panamericana de Salud Publica/Pan American Journal of Public Health. 2009; 25(3):270–9. PMID:

19454155

92. (IVAC) IVAC. State of PCV Use and Impact Evaluations: The Johns Hopkins Bloomberg School of Pub-

lic Health; 2016. http://www.jhsph.edu/research/centers-and-institutes/ivac/resources/

PCVImpactGapAnalysis_MAR2016_FINAL_public.pdf.

93. Jaiswal N, Singh M, Das RR, Jindal I, Agarwal A, Thumburu KK, et al. Distribution of serotypes, vaccine

coverage, and antimicrobial susceptibility pattern of Streptococcus pneumoniae in children living in

SAARC countries: a systematic review. PloS ONE. 2014; 9(9):e108617. https://doi.org/10.1371/journal.

pone.0108617 PMID: 25268974

S. pneumoniae serotype distribution in childhood IPD post-PCV

PLOS ONE | https://doi.org/10.1371/journal.pone.0177113 May 9, 2017 20 / 20

http://www.ncbi.nlm.nih.gov/pubmed/19454155
http://www.jhsph.edu/research/centers-and-institutes/ivac/resources/PCVImpactGapAnalysis_MAR2016_FINAL_public.pdf
http://www.jhsph.edu/research/centers-and-institutes/ivac/resources/PCVImpactGapAnalysis_MAR2016_FINAL_public.pdf
https://doi.org/10.1371/journal.pone.0108617
https://doi.org/10.1371/journal.pone.0108617
http://www.ncbi.nlm.nih.gov/pubmed/25268974
https://doi.org/10.1371/journal.pone.0177113

