
RESEARCH ARTICLE

Are trait-growth models transferable?

Predicting multi-species growth trajectories

between ecosystems using plant functional

traits

Freya M. Thomas*, Peter A. Vesk

School of BioSciences, ARC Centre of Excellence for Environmental Decisions, The University of Melbourne,

Victoria, Australia

* freyamthomas@gmail.com

Abstract

Plant functional traits are increasingly used to generalize across species, however few

examples exist of predictions from trait-based models being evaluated in new species or

new places. Can we use functional traits to predict growth of unknown species in different

areas? We used three independently collected datasets, each containing data on heights of

individuals from non-resprouting species over a chronosquence of time-since-fire sites from

three ecosystems in south-eastern Australia. We examined the influence of specific leaf

area, woody density, seed size and leaf nitrogen content on three aspects of plant growth;

maximum relative growth rate, age at maximum growth and asymptotic height. We tested

our capacity to perform out-of-sample prediction of growth trajectories between ecosystems

using species functional traits. We found strong trait-growth relationships in one of the data-

sets; whereby species with low SLA achieved the greatest asymptotic heights, species with

high leaf-nitrogen content achieved relatively fast growth rates, and species with low seed

mass reached their time of maximum growth early. However these same growth-trait rela-

tionships did not hold across the two other datasets, making accurate prediction from one

dataset to another unachievable. We believe there is evidence to suggest that growth trajec-

tories themselves may be fundamentally different between ecosystems and that trait-

height-growth relationships may change over environmental gradients.

Introduction

Ecologists struggle to make predictions. Those we do make, often speak to patterns over very

long time periods, or refer to very specific questions constrained to the scope of local datasets

[1]. Making sensible predictions from limited empirical datasets to new situations, on time-

scales relevant for management decisions is a difficult task [2]. There is a wide interest in test-

ing whether it is feasible to predict ecosystem dynamics through the use of plant functional

traits [3, 4]. Can easily measured traits help to reveal patterns that can be generalized over
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broad suits of species? The answer to this question remains unresolved, despite a broad litera-

ture motivated to finding general relationships between traits and environmental change

[5–8], disturbance [9–14] and demographic rates such as growth [11, 15–26].

Improved predictive power might be achieved by measuring functional traits at the same

time in the same location [24], by being cautious of using traits drawn from databases for

inference at a local scale [27, 28] and by having a more local focus instead of searching for

‘monolithic global relationships’ [4]. These points may be particularly relevant to making

local-scale trait based predictions, as we know that functional traits shift over productivity and

climatic gradients [6, 29–33], intraspecific trait variability increases with sampled geographic

range [27], leaf traits and wood density are known to vary up to three fold within species due

to differences in light [18 and references therein], and the strength and shape of the succes-

sional shift of functional traits changes among eco-regions [34] and ontogeny [35, 36]. There-

fore some broad trade-offs between traits may not be captured locally.

Gaining greater predictive capacity in trait-based ecology may also require stronger quanti-

tative tests of model transferability, which is a hard test of how general a model actually is.

Whilst attention to model transferability has increased within the species distribution model-

ing literature [37,38] it is less common in other ecological modeling [39,40]. The extent to

which local environmental effects confound generalization of trait-based predictions can be

tested through out-of-sample predictions that aim to assess model transferability. This is the

aim of our study; testing the transferability of trait-based multi-species hierarchical models

between different environments, species, and trait distributions.

We tested trait-height-growth relationships by examining the influence of specific leaf area,

woody density, seed size, and leaf nitrogen content on three aspects of plant growth: maximum

growth rate, age at maximum growth, and asymptotic height. We used three independent

datasets of plant height growth over time from different ecosystems to first compare how gen-

eral trait-growth relationships are across different environments and second, to test the trans-

ferability of our trait-based models. We do this by predicting species growth trajectories from

traits to out-of-sample data, a form of model validation rarely performed in ecological litera-

ture [40]. Last, modeling of all the datasets combined together did not increase our predictive

ability but did reveal an extra dimension of growth variation not apparent within the indepen-

dent datasets. By testing our capacity to perform out-of-sample prediction of growth trajecto-

ries between ecosystems using species functional traits, we found evidence to suggest that

these trajectories may be fundamentally different between ecosystems and that therefore trait-

height-growth relationships may change over broad environmental gradients.

Materials and methods

Datasets

We used three independently collected datasets, each containing data on heights of individuals

from non-resprouting species over a chronosquence of time-since-fire sites from three ecosys-

tems in south-eastern Australia, as well as functional traits which were collected for each spe-

cies at each site following established protocols [41]. Murray Sunset is an area of low, open

woodland within the semi-arid Murray Mallee region (34.7683˚ S, 141.8542˚ E) (field permit

from The Department of Environment, Land, Water and Planning), Myall Lakes Region

(32.4541˚ S, 152.3404˚ E) is an open sclerophyll forest region, and the Foothill Forest region

(37.8700˚ S, 145.3539˚ E) is an area of damp open lowland shrubby forests (Fig 1)[42]. For

details on sampling methodology see [43,44] and S1 File, see Fig 1 for sample sizes and study

site locations.

Prediction using plant trait-growth models
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Hierarchical, non-linear growth models

We built a hierarchical, non-linear growth model, with two components.

An observation model (Eq 1) treats the heights of individual plants as drawn from a lognor-

mal distribution. The lognormal distribution reflects the natural constraints of height data,

which are only positive numbers, with relatively few extreme height values [45]:

Hi � lnormðmi; s
� 2Þ; ð1Þ

where H is the observed height (cm) for each individual i which is drawn from a lognormal

distribution with mean μi and precision σ−2.

The statistical process model modeled individual heights μi with a nonlinear growth model.

A range of possible growth models exist [46–48]. We chose a sigmoidal model referred to as

the Hillslope equation [49], which is a re-paramaterisation of a logistic equation with three

parameters (Eq 2):

mi;j ¼
aj

1þ exp½� b jðTi � cjÞ�
: ð2Þ

Fig 1. Study site locations, species sample sizes and environmental attributes.

https://doi.org/10.1371/journal.pone.0176959.g001
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Here μi, j is the expected height of individual plant i of species j (cm) and Ti is the observed

time since fire (or age in years) of each individual i, and α, b, and c are species-specific con-

stants. These are biologically interpretable: α is the maximum height achieved (cm), the slope

(b) represents the maximum annual relative growth rate (cm cm-1 yr-1), and c is the time at

which this maximum growth occurs (yrs) (the location parameter). These growth parameters

were each modeled as drawn from normal distributions with hyperparameters for the grand

means and between species standard deviations estimated from the data.

We explored the relationships between parameter b , the parameter relating to growth rate

and two other derived measures of growth rate, absolute growth rate and relative growth rate

(S3 Fig). We found that there was a tight relationship between the Hillslope parameter of

growth rate and relative growth rate (R2 between 0.73 and 0.99) and these were also correlated

to measures of absolute growth rate. We also explored the correlations between these measure-

ments of growth rate and functional traits (S4–S6 Figs).

Including functional traits as species-specific linear predictors of growth

We used functional traits as predictors of the growth parameters in the growth model [49]. We

begin by incorporating functional traits into one of our datasets only. We used the Myall Lakes

dataset because this area has a mix of tall and short species, which represents a midpoint

between the low growing Murray Sunset species and the tall growing Foothill Forests species.

Each of the three parameters in our process model of growth were estimated via parameter

sub-models, Eqs 3–5. Mean parameter values are estimated by linear models, with species trait

values as covariates and intercepts also varying by species.

In deciding which functional traits to include in our models we relied on literature to gener-

ate hypotheses of trait effects on growth. We also wanted to minimise the numbers of parame-

ters, to avoid over-parameterization. We began by considering that seed mass should be most

influential on initial growth [50], stem density on achievable height [18,19,43,51] and leaf traits

potentially throughout the whole growth process [20,37]. In addition to this, we calculated the

Pearson’s R2 coefficient of determination between observed and predicted height values in a

model where we let all traits influence each parameter in our growth model (R2 = 0.8751) and

then used a process of backwards selection to test different trait-parameter combinations. Our

final model had SLA influencing maximum height, seed mass on age at maximum growth and

leaf nitrogen content on maximum relative growth rate (see Eqs 3–5) and had almost the same

R2 (0.8752), and so we chose to use the model with fewer parameters:

aj ¼ expðb0þ b1 � SLAj þ E jÞ; ð3Þ

b j ¼ expðb0þ b1 � Nj þ E jÞ; ð4Þ

cj ¼ expðb0þ b1 � SMj þ E jÞ: ð5Þ

Where independent ε terms represent species level random effects and describe the residual

variation between species in the predictive parameters after trait effects.

We used Bayesian inference, employing Markov chain Monte Carlo (MCMC) methods

with the open-source software package JAGS version 3.3.0 [52] run via the statistical software

environment R version 2.15.2 (R Development Core Team 2015) with the package R2jags [53].

Priors for mean parameters were normally distributed, centered on zero with a standard devia-

tion of 0.0001. We used weakly informative priors for the observation error and random

effects. These standard deviations were modeled as positive half Cauchy distributions, with

Prediction using plant trait-growth models

PLOS ONE | https://doi.org/10.1371/journal.pone.0176959 May 9, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0176959


prior mean 0 and prior scale 25 [54]. We initialized our model by using mean parameter values

taken from single species non-linear models.

Model convergence and checking

Three chains were monitored to ensure convergence, which was assessed both visually and via

the Brooks-Gelman-Rubin convergence diagnostic [55]. We evaluated model fit through

checks of predicted versus observed heights and by comparing Deviance Information Criteria

(DIC)[56] between alternative models. We evaluated the fit of our species-specific linear sub-

models by calculating Gelman’s R2 statistic (this R2 statistic can be interpreted like a classical

coefficient of determination; it reports the proportion of variance in the response explained by

the predictors for each level of a multi-level model) and pooling factors (which assesse the con-

tribution of mean model group estimates versus data) for each sub-model [57]. We plotted

coefficient estimates with 95% credible intervals of the linear predictors in our growth parame-

ter sub-models. An approximate hypothesis test can be made by comparing the overlap of two

95% CIs. If they overlap by less than half their length then the null hypothesis of no difference

can be rejected with p<0.05. If the intervals just touch, the null hypothesis can be rejected with

p<0.01 [58]. However, a more relevant inference is about the consistency or differences

between model coefficients, which we focus our discussion on.

Predicting growth trajectories between datasets

Our hierarchical trait-based model of the Myall Lakes data reveals how the functional traits influ-

enced each of the three growth parameters. We used these trait-growth relationships to undertake

out-of-sample prediction to the species in the other two datasets based on their trait informa-

tion only. To do this, we took the species trait data from Murray Sunset National Park and cen-

tered and scaled it based on the Myall Lakes trait data. We then predicted heights of Murray

Sunset species, based on their trait values but using the trait-growth relationships determined

in our Myall Lakes trait model. In this way, we could predict the growth trajectories of species

based only on their trait data, using a trait growth model that was trained on the independent

Myall Lakes dataset. We predicted the growth trajectories of each of the Murray Sunset and

Foothill forest species based on our Myall Lakes model. We made these predictions within the

model framework, by adding each species we wanted to predict to within the Myall Lakes data-

set but with missing height values but corresponding trait values for each missing height data

point. Using Bayesian methods, these missing values are imputed by Monte Carlo simulation.

Evaluating predictions

We measured the accuracy and bias of our trait-based predicted growth trajectories with error

statistics. Root mean squared deviance (RMSD) is the square root of the mean of the squared

differences between observation and prediction. It quantifies the average distance of repeated

samples from a known truth and is a measure of accuracy, the lower the value of RMSD, the

closer the simulation is to the measurement [59,60]. Bias is measured as the mean deviance

(MD) and reports the direction and size of the difference between the mean prediction and

observation [59]. We use these error statistics to compare trait-based predictions to those of a

multi-species model with no traits.

Trait-relationship checking with independent datasets and combined

datasets

To test whether the same trait relationships might hold between datasets, we took our trait

based model constructed with the Myall Lakes dataset and used the same model and trait

Prediction using plant trait-growth models
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structure to train separate models for both Murray Sunset and Foothills datasets. As for the

original trait models fitted to the Myall Lakes dataset, we assessed the R2 statistics between

models fitted with all traits influencing all parameters (Murray Sunset 0.785 and Foothills

0.793) and with the smaller trait parameter set with the same structure that was used for Myall

Lakes (Murray Sunset 0.779 and Foothills 0.791). Once again, there was little difference

between these values.

To test whether a combined dataset, which increases the number of species and may

increase the range of trait values, strengthens trait-growth parameter relationships, we then

combined all three datasets. To account for site-specific differences in this model we allowed

the intercept for each growth parameter to vary by system but this did not considerably

improve the model (S2 Fig).

Results

The species within these three datasets displayed broad differences between their growth pat-

terns (Fig 2). Murray Sunset species had the fastest maximum relative growth rate, reached

their maximum growth rates earlier and achieved the shortest heights compared to species in

the other two datasets (Fig 2a). The opposite extreme is the Foothills forest, which had the

slowest growing species, which reached their maximum growth rates latest and achieved the

tallest heights of all the species between each of the ecosystems (Fig 2c). Myall Lakes had a mix-

ture of tall and short species, which had maximum growth rates ranging from slow to fast.

Myall Lakes also had the greatest temporal overlap in species dominance (Fig 2b).

Maximum relative growth rates varied considerably between the three datasets (Fig 3);

Foothills Forest species achieved the slowest mean maximum relative growth rates of between

0.16 and 0.35 cm cm-1 yr-1, the Myall Lakes species grew faster than this with rates between

0.39 and 2.10 cm cm-1 yr-1 while Murray Sunset species grew at between 3.2 and 6.7 cm cm-1

yr-1 (Fig 3a). In general, species of the Foothill Forests reached their maximum growth signifi-

cantly later (between 8–21 years) compared to Myall Lakes species (0.68–10 years) and Murray

Sunset species (1.1–2.1 years)(Fig 3b). The species from the Foothill forests achieved the great-

est heights (between 274–1004 cm), followed by Myall Lake species (20–505 cm) and the short-

est were Murray Sunset species (42–463 cm)(Fig 3c).

The Myall Lakes and the Murray Sunset species overlapped greatly in age at which their

species reach their maximum growth rates, yet all the Murray Sunset species grew significantly

faster than the Myall Lakes species (Fig 3). Maximum growth rate varied greatly between data-

sets (log grand mean of growth rate Myall Lakes = 0.15, Murray Sunset = 1.35, Foothills =

-1.13), but little within datasets (standard deviation: Myall Lakes = 0.321, Murray Sun-

set = 0.025, Foothills = 0.381). Age at maximum growth varied considerably within datasets

(standard deviation: Myall Lakes = 0.741, Murray Sunset = 0.0.118, Foothills = 0.317), and

maximum height varies both within (standard deviation: Myall Lakes = 0.719, Murray Sun-

set = 0.671, Foothills = 0.433) and between datasets.

Fitting a trait-based model

We trained our trait model on the Myall Lakes dataset; which has growth parameter values

intermediate to the other two datasets (Fig 3). Within the Myall Lakes dataset, leaf-nitrogen

content was significantly positively associated with maximum growth rate, whereby species

with high leaf-nitrogen concentrations had faster growth rates than species with lower leaf-

nitrogen values. Seed mass was positively and significantly associated with age at maximum

growth rate, species with greater seed mass reached their maximum growth later than species

with lower seed mass. Specific leaf area (SLA) was significantly negatively associated with

Prediction using plant trait-growth models
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maximum height; species with lower SLA achieved greater heights than species with higher

SLA (Fig 4).

Transferring a trait-based model

The Murray Sunset species were always over predicted by the Myall Lakes model, except one

species Codonocarpus cotinifolius (Gyrostemonaceae) and the Foothills species are always

under predicted (Fig 5). We formalized this obvious visual pattern by calculating the mean

deviance and the root mean squared error for each prediction (Fig 5). While some species

Fig 2. Growth trajectories of species from a hierarchical model without traits, fitted independently to each dataset.

Each ecosystem had species with varied growth, but these differed considerably between systems; Murray Sunset species (a-

b) grow quickly relative to Myall Lakes species (c-d), and Foothill Forest species (e-f) are all relatively tall and slow growing

compared to the species in the two other ecosystems.

https://doi.org/10.1371/journal.pone.0176959.g002
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Fig 3. Species estimates for the three growth parameters for each dataset, with Murray Sunset species in yellow, Myall

Lakes in brown and Foothill forests in black; a) maximum relative growth rate, b) age at maximum growth and c)

asymptotic height. Bars indicate standard deviations around modeled parameters. The shaded panels at the base of each

figure show the intercepts of the three separate hierarchical models, which are the mean parameter values.

https://doi.org/10.1371/journal.pone.0176959.g003
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were predicted quite well—for example the mean deviance in Acacia wilhelmiana (Mimosa-

ceae) from Murray Sunset was only 82 cm—most were highly under- or over-predicted and

could be up to about 6 m different in height.

The predictive curves were based on trait-growth relationships and the trait values of indi-

vidual species. When we compared the trait distributions between datasets, we found large

differences in the empirical trait distributions, particularly between SLA and leaf-nitrogen

(S1 Fig). High SLA values in Murray Sunset National Park were relatively low compared to

SLA for species in Myall Lakes; and a low SLA value from the Foothills was average relative to

SLA values in Myall Lakes (S1 Fig).

Fig 4. Model fits from the hierarchical growth model to Myall Lakes Species. (a). coefficients for the linear predictors in our growth

parameter models. Coefficients describe how traits influence the growth parameter. Positive coefficients indicate a positive relationship

between the trait values and the growth parameter. Negative values indicate a negative relationship between the trait and the growth

parameter. (b-d) Trait effects on growth parameters. Along the x-axis are the standardized trait values and along the y-axis are the

parameter values for each species. Each panel represents a separate trait and that traits effect on that growth parameter. These figures

represent partial effect plots, representing the effect of one trait on one growth parameter with all other parameters held at their mean.

For example, in the Myall lakes dataset, species with low seed mass reach their maximum growth early, species with higher nitrogen

content achieve faster relative growth rates and species with low SLA achieve greater height.

https://doi.org/10.1371/journal.pone.0176959.g004
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Do traits play the same role in different ecosystems?

We tested to see whether the trait-growth influences found in our Myall lakes trait model were

found when modeled independently in each of the other two datasets. The traits did not have

the same influence on the same growth parameters in each of the datasets (Fig 6). None of the

significant trait effects that were apparent in Myall lakes were reflected in the Murray Sunset

Fig 5. Growth trajectory predictions from the modeled trait relationships from Myall Lakes dataset predicted to Murray Sunset

(top three rows) and Foothill forests (bottom two rows) based on species traits in those datasets. All but one of the growth

trajectories in Murray Sunset (orange dashed lines) were over predicted compared to modeled trajectories based on Murray Sunset

height-data (black solid lines). All the growth trajectories for the Foothill forests (grey dashed lines) were under predicted compared to the

trajectories based on the Foothills data (black solid lines). Species names are abbreviated to first three letters of genus and species; in

order from left to right: Acacia brachybotrya, Acacia montana, Acacia wilhelmiana, Beyeria opaca, Callitris gracilis, Codonocarpus

cotinifolius, Dodonaea bursarifolia, Eremophila glabra, Halgania cyanea, Olearia muelleri, Olearia pimeleoides, Phebalium

squamulosum, Senna artemisioides, Westringia rigida, Acacia oxycedrus, Acacia verticillata, Banksia spinulosa, Coprosma quadrifida,

Hakea decurrens, Olearia lirata, Pomaderris aspera, Prostanthera lasianthos, Pultenaea scabra.

https://doi.org/10.1371/journal.pone.0176959.g005
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or the Foothills datasets, with all these relationships mostly being non-significant as well as

small and highly uncertain in the case of Foothills (Fig 6). The trends of the relationships

between leaf nitrogen and maximum growth rate were positive in each dataset, and for seed

mass on the age of maximum growth (Fig 6). Specific leaf area was not consistently related to

maximum height across the datasets.

Does combining datasets improve models?

When we combined the datasets (Fig 6) and used the ensemble trait distributions we found

that the relationships were weaker, all non-significant, relatively uncertain and in the case of

seed mass and age of maximum growth (Fig 7) the relationship became negative. Including a

Fig 6. Model fits from the hierarchical growth models to Myall Lakes, Murray Sunset, Foothills and from an ensemble model

with those three datasets combined. Positive coefficients indicate a positive relationship between the trait values and growth

parameters. Negative values indicate a negative relationship between the trait and the growth parameter. Note: the estimates in the

ensemble dataset are re-modeled, so do not directly correspond to the points in each of the individual dataset models.

https://doi.org/10.1371/journal.pone.0176959.g006
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varying intercept for sites in this ensemble model, which could possibly account for variation

in the mean species slope, had little effect (S2 Fig).

To further investigate the diluted patterns, we looked at the covariance of parameters

between each of the datasets and in the ensemble dataset.

The poor transferability of the common trait-based model may be due to different patterns

of covariance between model parameters across the vegetation types. Parameters a and b nega-

tively co-varied within each dataset, meaning things that grew fast did so early (Fig 7). Com-

bining the datasets together magnified these patterns. Similarly, in each dataset there was

positive covariance between maximum height and age at which maximum growth occurs, so

that shorter species reach their maximum growth rates earlier than taller species; this was also

magnified in the ensemble dataset (Fig 7). Relationships between maximum height and maxi-

mum relative growth rate were weak and inconsistent between regions (negative for Myall

Lakes but positive for the other datasets) but became clearly positive in the ensemble dataset.

This extra dimension of co-variation that appeared within the ensemble dataset is that

Fig 7. Scatter plots of pairs of each of the model parameters for each dataset and the ensemble dataset. Numbers in the top right

hand corner are R2 statistics based on Pearson’s correlation coefficient. Brown squares are data from Myall Lakes, tan coloured circles

are from Murray Sunset, grey triangles are data from Foothill Forests. Note: the data points in the ensemble dataset are re-modeled, so

do not directly correspond to the points in each of the individual dataset models.

https://doi.org/10.1371/journal.pone.0176959.g007
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species with a greater maximum height (which may occur in different regions) grew more

slowly (Fig 7).

Discussion

One reason generality in ecology is sought, is to enable prediction. In this study we found

strong trait-growth relationships in our Myall Lakes dataset; whereby species with low SLA

achieved the greatest asymptotic heights, species with high leaf-nitrogen content achieved rela-

tively fast growth rates, and species with low seed mass reached their time of maximum growth

early. However these same growth-trait relationships did not hold across the two other data-

sets, making accurate prediction from one dataset to another unachievable. We suggest there

may be (at least) three reasons for this; 1) our models may be overfitted and not represent a

systematic or general pattern in the data, 2) height growth trajectories may be fundamentally

different between the three ecosystems and 3) trait-growth relationships may change over

environmental gradients.

There are some obvious reasons for why trait-based models fitted in one particular area

may not be transferable. Over-fitting occurs when a model is highly flexible and fitted so well

to the training data that the model captures patterns in the data but also random noise [39,61].

A growth curve constructed like this would have a fabulous fit to one particular data set, but

would not be representative of any new or unobserved data. Under-fitting results when impor-

tant predictor variables, or variables that may explain patterns in the data are ignored and so

the model does not capture important biological processes [39,62]. We aimed to balance these

concerns by using a data driven statistical model with constrained numbers of parameters and

we tried to choose trait-parameter combinations based on findings from the literature. We

acknowledge that models are simplistic representations of the world, and that making predic-

tive models in ecology is a difficult task. However, we believe there could be more interesting

ecological reasons for why transferring trait-growth models between species and ecosystems is

challenging.

There were broad differences in growth parameters between ecosystems. Maximum height

values varied widely between and within datasets, but maximum growth rates and the age at

which species reach their maximum growth varied more between datasets than within each

dataset. Murray Sunset species displayed the fastest growth but lowest overall height whilst

species from the Foothills grew the slowest and achieved the tallest heights (Fig 2). We suggest

that different ecosystem characteristics lead to different competitive and risk environments

after disturbance, which changes the relative importance of height-growth trajectories between

ecosystems. There are key structural differences between the canopies of each of the three eco-

systems: Foothill Forests and Myall Lakes have taller and more closed canopies dominated by

Eucalypts capable of strong epicormic resprouting and generally not fire-killed, whereas Mur-

ray Sunset canopy species are basal resprouter mallee eucalypts. These structural differences

change the game in terms of the race for light. In Murray Sunset, all species achieve rapid

growth, early and there is no distinct temporal partitioning of species dominance. In contrast,

Myall Lakes and the Foothill Forests display temporal partitioning, with each species having

some time in the sun, which has been reported in other closed canopy systems [18].

It has been suggested there are two axes of variation in plant height, delimited by time since

disturbance and vertical light availability, and these may be combined to one dimension of

successional growth [18]. Short, fast-growing, early-successional species take advantage of

high light environments, whilst taller, slow-growing, late-successional species can compete

under shaded conditions. Our study essentially tests this proposition in three different

resource–different competitive—environments. Within each independent dataset there was
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positive co-variation between maximum relative growth rate and the age at which a species

reaches maximum growth, therefore plants that grew fast did so early (Fig 7). However, there

was no obvious relationship between other pairs of growth parameters–for example within

each dataset both tall and short species displayed fast growth. This additional axis of variation,

between height and growth rate, only became apparent when the datasets were combined, and

it became clear that species that achieve a greater height had a lower maximum relative growth

rate (Fig 7). Therefore some broad trends in growth trade-offs are not captured locally within

each independent dataset but only become apparent in the ensemble data. Plants that will

grow tall do so in productive environments, but presumably because they need to support

themselves at greater heights (for longer) do not grow so quickly. Within the ensemble data

not only did co-variation in growth parameters change, but the trait-growth relationships

became weak, non-significant and uncertain (Fig 6). This was not aided by adding site as ran-

dom intercepts to the trait sub-models (S2 Fig), suggesting that ensemble modeling of multi-

species from different environments can dilute important trait-growth effects that may occur

between some species in some environments but not others.

Our three datasets contained species with different and sometimes non-overlapping trait

values (S2 Fig), with Murray Sunset species having significantly lower SLA values than species

in Myall Lakes and the Foothills. Weak predictions based on functional traits have been found

in communities where there was low variation in functional traits [28] and it has been demon-

strated that while sample size and sampled trait range affect relationships between leaf traits

within sites, general, though not universal, patterns in trait relationships exist at different sites

[32]. The different magnitudes of trait values may make it difficult to predict from one system

to another, and mean that when these data are combined in an ensemble dataset the increased

variation may not correspond to the same variation in growth between ecosystems.

Another explanation for poor trait-growth predictability across ecosystems, is that the

importance of traits influencing growth strategies might not hold in different environments.

We found that the trait-growth relationships were not consistent between ecosystems. Many

trait combinations occur among species [18], and a variety of strategies can sustain viable pop-

ulations [18,31]. Particular trait combinations maybe selected for because they give a competi-

tive advantage in one environment compared to other possible combinations. Ambiguous

relationships are found in the literature between growth rates and functional traits with some

authors suggesting we have little capacity to generalize based on traits [63], particularly at

global scales [4, 28]. An alternative explanation is that there could be real species-growth-trait

differences that are driven by productivity between ecosystems and that we have not been suc-

cessful at disentangling yet.

All studies are limited by with sample size. Our study is limited by the numbers of species

within regions (limiting the inference about trait effects on growth parameters), as well as the

number of regions representing different ecosystems (limiting inference about how trait effects

might vary between regions). Ideally, one would like to have datasets containing as many spe-

cies as possible covering a wide trait distribution that have been structurally sampled across a

productivity gradient. If datasets from several ecosystems were available, environmental covar-

iates could be explicitly incorporated into our hierarchical models. There are many growth

models to choose from, and as we have discussed, it remains to be seen whether sub-optimal

model fits are due to dataset size, or deeper underlying biological reasons. An important area

of future research is interrogating many different growth models across different datasets to

further diagnose model behaviors as well as to support the ongoing process of finding robust

and biologically relevant model evaluation tools.

That plants grow differently in different environments is well appreciated. However, how

height-growth trajectories of multiple species systematically change over environmental
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gradients and how this affects our ability to generalize demographic rates across species and

ecosystems is not clear. Furthermore, it seems likely that there is a complex interplay between

species functional traits and their height-growth trajectories that is not yet well understood.

This has major implications if our aim is to build predictive models that can be used to extend

hypotheses or to make broad generalizations. A future area for research is to disentangle site-

specific trait correlations from systematic effects, to try to understand whether the trait-growth

relationships we discover result from functional reasons or from correlations among traits that

are unrelated to growth. That is, we need to tease apart causal inferences from correlated infer-

ence. Apart from being a fundamental goal of much ecological research, finding generality

could have enormous practical importance for making management decisions, and this will be

most relevant at local scales.

Supporting information

S1 Fig. Raw trait value scatterplots compared between each trait in each ecosystem. Num-

bers in the top right hand corner are R2 statistics based on Pearson’s correlation coefficient.

Brown squares are data from Myall Lakes, sand coloured circles are from Murray Sunset, grey

triangles are data from Foothill Forests and black circles are the combined ensemble data.

(TIF)

S2 Fig. Model fits from the hierarchical growth model with the ensemble dataset where

vegetation type is included as a varying intercept. Brown squares are data from Myall Lakes,

sand coloured circles are from Murray Sunset National Park, grey triangles are data from Foot-

hill Forests.

(TIF)

S3 Fig. The relationships between the maximum growth rate parameter of the Hillslope

equation with units cm cm-1 yr-1 compared to derived growth rates of absolute growth rate

and relative growth rate. Numbers in the top right hand corner are R2 based on Pearson’s

correlation coefficient. Brown squares are data from Myall Lakes, sand coloured circles are

from Murray Sunset and grey triangles are data from Foothill Forests.

(TIF)

S4 Fig. The relationships between the maximum growth rate parameter of the Hillslope

equation, absolute growth rate (Max AGR) and relative growth rate (Max RGR) and func-

tional traits. Numbers in the top right hand corner are R2 based on Pearson’s correlation coef-

ficient. These data are for the Murray Sunset dataset.

(TIF)

S5 Fig. The relationships between the maximum growth rate parameter of the Hillslope

equation, absolute growth rate and relative growth rate and functional traits. Numbers in

the top right hand corner are R2 based on Pearson’s correlation coefficient. These data are for

the Myall Lakes dataset.

(TIF)

S6 Fig. The relationships between the maximum growth rate parameter of the Hillslope

equation, absolute growth rate and relative growth rate and functional traits. Numbers in

the top right hand corner are R2 based on Pearson’s correlation coefficient. These data are for

the Foothill Forest dataset.

(TIF)
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S1 File. Description of field sampling in Murray Sunset National Park.
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