
RESEARCH ARTICLE

A fast and robust interpolation filter for

airborne lidar point clouds

Chuanfa Chen1,2*, Yanyan Li3, Na Zhao4, Jinyun Guo1,2, Guolin Liu2

1 State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and

the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, China,

2 Shandong Provincial Key Laboratory of Geomatics and Digital Technology of Shandong Province,

Shandong University of Science and Technology, Qingdao, China, 3 Shool of Geodesy and Geomatics,

Wuhan University, Wuhan, China, 4 State Key Laboratory of Resources and Environment Information

System, Institute of Geographical Sciences and Natural Resources Research, Beijing, China

* chencf@lreis.ac.cn

Abstract

A fast and robust interpolation filter based on finite difference TPS has been proposed in this

paper. The proposed method employs discrete cosine transform to efficiently solve the lin-

ear system of TPS equations in case of gridded data, and by a pre-defined weight function

with respect to simulation residuals to reduce the effect of outliers and misclassified non-

ground points on the accuracy of reference ground surface construction. Fifteen groups of

benchmark datasets, provided by the International Society for Photogrammetry and Remote

Sensing (ISPRS) commission, were employed to compare the performance of the proposed

method with that of the multi-resolution hierarchical classification method (MHC). Results

indicate that with respect to kappa coefficient and total error, the proposed method is aver-

agely more accurate than MHC. Specifically, the proposed method is 1.03 and 1.32 times

as accurate as MHC in terms of kappa coefficient and total errors. More importantly, the pro-

posed method is averagely more than 8 times faster than MHC. In comparison with some

recently developed methods, the proposed algorithm also achieves a good performance.

Introduction

With an efficient collection of high-resolution 3D information of the Earth’s surface, airborne

light detection and ranging (lidar) data have been widely used in many applications, such as

construction of digital elevation models (DEMs) [1], forest inventory [2, 3] and animal distri-

bution simulation [4]. Since raw lidar data contains a large volume of points acquired from dif-

ferent objects [5, 6], it is necessary to differentiate ground and non-ground points.

Many filtering algorithms have been proposed to extract ground points from raw point

clouds. Generally, these methods can be categorized into three main groups [7–9]: slope-

based, morphological-based and interpolation-based filters. Slope-based methods are based on

the assumption that two nearby points should have a small height difference. Thus, if the slope

of two nearby points is larger than a predefined threshold, the higher elevation point is classi-

fied as the non-ground point [10]. However, due to constant slope threshold, slope-based
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methods restrict their uses to smooth terrain. Morphological-based filters employ a series of

operations, such as opening and closing, on lidar measurements to approximate terrain sur-

face. The success of this method mainly depends on the selection of a proper filter window

size. Ideally, the window size should be small enough to preserve subtle terrain features and

large enough to remove non-ground objects [11–15]. However, it is difficult to determine the

optimal size in practice. For interpolation-based filters, a critical step is to construct reference

surfaces using interpolation methods. Thin plate spline (TPS) with high interpolation accuracy

and numerical stability has been commonly adopted [16–19]. It is generally performed with an

analytical version. However, the analytical TPS has a highly computational cost due to its local

interpolation of the huge volume of data points for surface construction [18–23]. Alternatively,

the reference surface can be globally and efficiently produced by finite difference TPS in case

of gridded data [24]. For example, the computational complexity of solving a linear system

with discrete cosine transform (DCT) is only O(n log (n)), whereas that of analytical TPS is O
(n3), where n is the order of the system [25].

Motivated by this idea, a fast and robust interpolation filter based on finite difference TPS is

developed in this paper. Compared with the present TPS-based filters [16–19], the advantages

of the proposed method are as follows: (i) it is computationally efficient, as DCT is employed

to solve the linear system of TPS equations; and (ii) it is robust, since a pre-defined weight

function with respect to fitting residuals is introduced to resist the effect of outliers and non-

ground points on the construction of reference ground surfaces.

Principle of the proposed method for lidar point classification

The proposed filter can be considered as an updated version of multi-resolution hierarchical

classification (MHC) algorithm [18], which is grouped into interpolation-based filters. Like

MHC, the new method uses a hierarchy with three levels, where the resolution of reference

surfaces steadily increases from the low to the high level. Unlike MHC, the proposed method

achieves surface interpolation with a robust finite difference TPS. The proposed method incor-

porates the existing interpolation methods analytical TPS [35] and weighted finite difference

TPS [25]. The following sections provide background information about these existing inter-

polation methods.

Analytical TPS for surface interpolation

Let (xi, yi, zi), i = 1,. . ., n represent the coordinates of airborne lidar points. Suppose that the

data set can be modeled as zi = f(xi, yi) + ei, where ei is an independent and normally distrib-

uted noise with zero mean and unknown variance; f(x, y) is a smoothing function used to

describe the surface.

TPS interpolation is achieved by minimizing a criterion function that balances the tradeoff

between the fidelity to the data and the smoothness of the interpolated surface [26]. Specifi-

cally, the objective function of TPS is expressed as

min
f
ðkzi � f ðxi; yiÞk

2
þ lTðf ÞÞ ð1Þ

where λ is a smoothing parameter determined by the generalized cross validation; T(f) repre-

sents the penalty term of the smoothness defined as Tðf Þ ¼
ð

R2

ðf 2

xx þ 2f 2

xy þ f 2

yyÞdxdy, where fxx

and fyy are the second order partial derivatives of f(x, y) with respect to x and y, respectively,

and fxy is the cross partial derivative.
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For the analytical TPS, the function is expressed as,

f ðx0; y0Þ ¼
Xt

i¼1

qðr0iÞai þ
Xs

j¼0

pjðx; yÞbj ð2Þ

where q(�) and α represent the kernel function and the corresponding weight; p(�) and β repre-

sent the polynomial and its coefficient; r0i is the Euclidean distance between the interpolated

point (x0, y0) and the ith sample point; t and s represent the number of sample points used for

computation and the order of the polynomial; q(r) = r2log(r).

To estimate the surface, the parameters α and βmust be pre-obtained by solving the follow-

ing system:

Qþ lI P

P
T

0

" #
α

β

" #

¼
z

0

" #

ð3Þ

where Q ¼

q11 � � � q1t

..

. . .
. ..

.

qt1 � � � qtt

2

6
6
4

3

7
7
5; qij = q(rij); P ¼

p10 � � � p1s

..

. . .
. ..

.

pt0 � � � pts

2

6
6
4

3

7
7
5; pij = pj(xi, yi).

Generally, the computing cost for solving (Eq 3) is about t3/3 [27]. In practice, the analytical

TPS is commonly performed within a local neighborhood. Supposing the number of neighbors

for an interpolation is k, the cost of the local TPS for estimating a surface with m×n grids is

about (k3mn)/3. Thus, the analytical TPS with a local interpolation still needs a highly compu-

tational cost.

Fast and robust TPS for gridded surface interpolation

In case of gridded surface, T( f ) can be formulated by a second-order finite difference operator

[28]:

Tð f Þ ¼ kD f k
2

ð4Þ

where f = [f11 � � � f1m; f21 � � � f2m; � � �; fn1 � � � fn-m]T; fij is the function value at the grid (i, j); n and

m, respectively, denote the row and column of gridded data; D = [D1, 2D2, D3]T; D1, D2 and

D3 represent the second-order finite difference matrix of fxx, fxy and fyy, respectively.

Based on (Eq 4), the matrix form of (Eq 1) is expressed as:

min
f
ðz � f ÞTðz � f Þ þ l f TDTDf ð5Þ

Minimizing (Eq 5) with respect to f and letting it be zero, we can obtain the equation: f − z +

λDTDf = 0. Namely, (I + λDTD)f = z. Thus,

f ¼ H � 1z ð6Þ

where H = I + λDTD.

Based on DCT [25, 36], (Eq 6) is reformulated as,

f ¼ IDCTðΓDCTðzÞÞ ð7Þ

where DCT and IDCT represent the discrete cosine transform and the inverse discrete cosine

transform, respectively; Γ is a diagonal matrix with each nonzero element being the function

of the smoothing parameter λ and eigenvalues of D.
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The computational cost for solving (Eq 7) is about (mnlog(mn))/3 [25], indicating that its

performance is approximately linear with respect to the number of grids in the study domain.

From the following discussion, we can see that DCT-based robust TPS should be performed

with an iterative manner. Therefore, the ratio of the computational cost of the analytical TPS

to that of the DCT-based robust TPS is k3/llog(mn), where l is the totally iterative times of

DCT-based TPS for surface modeling. In practice, to assure the interpolation accuracy of the

analytical TPS, we often set k = 12, and for the DCT-based robust TPS, three iterations are

enough to make it convergence, i.e. l = 3. Based on above assumption, the ratio can be trans-

formed to 576/log(mn). Therefore, how much time the new method can save in a real case

depends on the number of grids (i.e. m×n) in the study domain.

Due to various reasons such as the physical limitation of sensors, low contrast of terrain tex-

tures, multiple reflectance and occlusions, outliers commonly occur in lidar point clouds [29,

30]. To reduce the influence of outliers on the construction of reference surfaces, a robust TPS

is further introduced based on a pre-defined weight function with respect to fitting residuals.

Supposing that W is a diagonal matrix diag(wi) that contains the weight wi2[0,1] correspond-

ing to the data zi, the objective function of robust TPS is reformulated as:

min
f
ðkW1=2ðz � f Þk2

þ lkDf k
2
Þ ð8Þ

Like the deduction of (Eq 6), we can obtain the equation: (W + λDTD)f = Wz. Or, (I + λDTD)f
= (I − W)z + Wz. Thus, we obtain:

f iþ1
¼ H � 1ðWðz � f i

Þ þ f i
Þ ð9Þ

where i is the iterative times.

Based on DCT [25, 36], (Eq 9) can be expressed as

f iþ1
¼ IDCTðΓDCTðWðz � f i

Þ þ f i
ÞÞ ð10Þ

It should be noted that for the grids without lidar points located in, we set w = 0. For the grids

containing lidar points, their weights for the first iteration are set to one, and for the following

iterations are defined by a bisquare weight function with respect to simulation residuals:

wi ¼
1 �

ri

4:685

� �2
� �2

forj
ri

4:685
j < 1

0 others

8
><

>:
ð11Þ

where ri is the Studentized residual defined as, ri ¼ ei=ŝ
ffiffiffiffiffiffiffiffiffiffiffi
1 � h
p

, where ei is the simulation

residual; h is the leverage value, defined by h = Tr(H)/m�n; ŝ is the standard deviation of simu-

lation residuals, computed by ŝ ¼ 1:483MAD, where MAD denotes the median absolute devi-

ation of residuals [31]. The rationale behind defining (Eq 11) is that points with large

simulation residuals are commonly less accurate. Thus, they should have small weights. This

trick was commonly adopted in weighted least square algorithm, such as robust locally

weighted regression [32]. Note that to solve Eqs 7 and 10, we use the MATLAB codes DCTN,

IDCTN and SMOOTHN [25, 36] available from the MATLAB file exchange via the following

links:

1. https://cn.mathworks.com/matlabcentral/fileexchange/25634-robust-spline-smoothing-

for-1-d-to-n-d-data

2. https://cn.mathworks.com/matlabcentral/fileexchange/26040-dct-and-dst- -+-inverse- -in-

arbitrary-dimension
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Procedure of the proposed method for classification

The detailed procedure of the proposed method for lidar classification is as follows (Fig 1):

(i) Select initial ground points. The minimum points in a local square window with the size of

w are selected as the initial ground points. For almost all filters, low outliers, caused by

multi-path reflections and lidar system errors, must be removed beforehand [8, 12, 16, 19].

However, this is unnecessary for the proposed method, since the effect of low outliers on

the construction of reference surfaces can be reduced by the pre-defined weight function.

(ii) Cover the study domain using grids with a resolution of h.

(iii) Locate the selected ground points on the grids. Due to the irregular distribution of lidar

points, some grids may be empty, which do not contain lidar points. They are termed

empty grids. The other grids are termed known grids. When more than one point is located

on the same grid, the minimum point is used.

(iv) Interpolate the grid surface by the robust TPS. Here, only the empty grids and the grids

containing outliers are estimated. After the interpolation, all grids have values. The interpo-

lated surface is used as the reference surface in step (v).

(v) Compute the elevation differences between unclassified points and the corresponding 3×3

neighboring grids in the reference surface.

(vi) Classify the lidar points as ground returns, if at least 4 out of 9 elevation differences are

smaller than a pre-defined threshold t.

(vii) Repeat (iii)-(vi) until the maximum number of iteration is reached or no ground point is

included. This process is called inner iteration.

(viii) Repeat (ii)-(vii) at the next hierarchy with h = h/2 and t = t+Δt. This process is called

outer iteration.

Experiments and results

Fifteen benchmark reference samples from seven sites, provided by ISPRS Commission III/

WG3 [7] and downloaded from the website (https://www.itc.nl/isprs/wgIII-3/filtertest/

downloadsites/), were used to assess the performances of the proposed algorithm and MHC.

Note that the proposed algorithm and MHC were coded using MATLAB R2014b on a per-

sonal computer with Intel Core i7-4700 CPU @ 3.6 GHz and 8.0 GB memory. For quantitative

analysis, kappa coefficient (κ), type I, type II and total errors were used as accuracy measures.

Four parameters including w, h, t and Δt should be pre-defined for the proposed method.

Their optimal values determined by trial-and-error are shown in Table 1. Moreover, classifica-

tion errors of the proposed method and MHC, and their computational costs (CCs) of execut-

ing the codes on the computer are given.

Results demonstrate that the proposed method obtains the best performance for samp42 in

terms of total error and κ. This may be attributed to its low type I error, indicating that almost

all ground points are correctly classified. Similar results can be also found for samp31. The

proposed method has the lowest accuracy for samp53 in terms of κ, and for samp11 in terms

of total error. This result can be expected, since almost all filters produced poor classification

results for steep slope and discontinuities areas [7, 8, 20]. Comparatively, with respect to total

error and κ, the proposed method has a better performance than MHC in almost all samples,

except for samp31, samp51 and samp71. Averagely, the former produces better results than

the latter. Specifically, compared with MHC, the total error of the proposed method is reduced
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Fig 1. Flow chart of the proposed algorithm for lidar classification.

https://doi.org/10.1371/journal.pone.0176954.g001
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by 26.3% and κ is increased by 3.7%. Computing costs of the two methods show that the pro-

posed method is considerably more efficient that MHC for almost all samples. On average, the

former is about 8.2 times as fast as the latter. The high speed of the proposed method is mainly

attributed to the fast solution of TPS equations with DCT.

Here, two study sites (i.e. samp11 and samp53) with different landscapes were employed as

representatives to compare the classification results of the proposed method and MHC.

Samp11 is located in an urban area with low vegetation and mixed buildings on steep slopes

[7]. This sample with a complex landscape often puzzled the classical filters. The type I error of

MHC is much larger than that of the proposed method (Figs 2 and 3). For MHC, many terrain

points on steep slopes are misclassified, such as those flagged by the rectangles (Fig 2). Com-

paratively, the new method preserves the shapes of discontinuous terrain features very well

(Fig 3). Yet, it has a more tendency toward type II error than MHC. For example, the non-

ground points marked by the ellipses are wrongly flagged as ground points (Fig 3). This may

be caused by the fact that some points located on the building are selected as the initial ground

points due to the small window size (i.e. 20 m) (Table 1). Considering the fact that type II

errors can be more easily handled by human editing than type I errors, the inclination to type

II errors may not be a shortcoming in filtering strategies.

Samp53 is located in a rural area, and mainly characterized by discontinuities and low vege-

tation on steep slopes [7]. Results demonstrate that the proposed method performs better than

MHC for capturing ground points in terms of type I error (Figs 4 and 5). Some ground points

on steep slopes are misclassified as non-ground points by MHC, such as those flagged by the

rectangles (Fig 4). Comparatively, the proposed method has the ability of keeping terrain

points very well at the cost of increasing type II errors, such as the points marked by the ellipses

(Fig 5). According to quantitative analysis, the proposed method is much more accurate than

MHC in terms of total error and κ (Table 1).

Recently, several promising filtering methods [14, 19, 20, 33] have been developed and were

assessed with the 15 groups of ISPRS benchmarks. Accuracy comparison between our method

Table 1. Classification errors and computational costs (CCs) of MHC and the proposed method with the optimized parameters. Classification errors

include type I error (T.I), type II error (T.II), total error (T.E) and kappa (κ).

sample Optimized (m) Proposed method MHC

w h t Δt T.I

(%)

T.II

(%)

T.E

(%)

κ
(%)

CC

(s)

T.E

(%)

κ
(%)

CC

(s)

11 20 4 0.2 0.3 8.34 11.06 9.50 80.58 29 13.01 74.12 66

12 28 4 0.4 0.1 1.47 4.29 2.85 94.30 9 3.38 93.23 156

21 30 6 0.2 0.2 0.18 4.38 1.11 96.74 17 1.34 96.10 11

22 30 4 0.6 0.1 1.79 8.23 3.80 91.04 8 4.67 89.03 245

23 20 2 0.2 0.2 3.86 5.15 4.47 91.03 7 5.24 89.49 155

24 12 1 0.3 0.1 1.99 7.97 3.63 90.81 16 6.29 84.53 44

31 16 9 0.2 0.1 0.52 2.18 1.29 97.41 7 1.11 97.76 12

41 30 4 0.4 0.3 3.41 4.21 3.81 92.38 16 5.58 88.83 72

42 30 6 0.2 0.3 0.39 1.03 0.85 97.97 15 1.72 95.81 31

51 20 4 0.3 0.1 0.83 5.60 1.87 94.46 19 1.64 95.17 91

52 30 2 0.6 0.1 1.58 16.34 3.13 83.15 26 4.18 78.91 527

53 10 2 0.8 0.1 2.50 25.41 3.42 62.02 28 7.29 46.69 140

54 22 4 0.35 0.1 2.11 3.33 2.76 94.45 19 3.09 93.90 19

61 10 2 0.8 0.1 0.39 16.67 0.95 85.26 34 1.81 77.36 548

71 30 8 0.4 0.1 1.55 6.10 2.06 89.98 16 1.33 93.19 109

Average 2.06 8.13 3.03 89.44 18 4.11 86.27 148

https://doi.org/10.1371/journal.pone.0176954.t001
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Fig 2. Classification errors of MHC for samp11.

https://doi.org/10.1371/journal.pone.0176954.g002
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Fig 3. Classification errors of the proposed method for samp11.

https://doi.org/10.1371/journal.pone.0176954.g003
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and the four newly developed methods are shown in Figs 6 and 7. It can be found that no

method is consistently more accurate than the others in all samples. Our method obtains the

best results for samp12, samp21 and samp24 in terms of type I error (Fig 6), and for samp41 in

terms of type II error (Fig 7).

To assess the robustness of the proposed method, a series of experiments were performed

with different parameters configurations, namely, w ranges from 20 to 30 m with an interval of

5 m, h ranges from 2 to 10 m with an interval of 2 m, t ranges from 0.2 to 0.8 m with an interval

of 0.1 m and Δt ranges from 0.1 to 0.3 m with an interval of 0.1 m. Thus, there are totally 315

results for each sample. Fig 8 shows the average total error of all parameters configurations

and the total error of the optimized parameters for each sample. Results show that samp41 has

the largest difference between the average and optimized total errors. Specifically, the increas-

ing ratio of the total error is about 195%. The reason may be that this site has many buildings

Fig 4. Classification errors of MHC for samp53.

https://doi.org/10.1371/journal.pone.0176954.g004
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with the sizes larger than 20 m, and when the size of the local square window is not larger than

20 m, many non-ground points would be mixed in the initial ground points. For all samples,

the average total errors range from 2.55% to 12.88% with the mean of 3.03%, while the opti-

mized total errors from 0.85% to 9.5% with the mean of 5.88%. Therefore, the proposed

method is not much influenced by the configuration of the parameters values in a reasonable

range and thus obtains robust filtering results.

Discussion

In geosciences, any sources of sample points are subject to noise. Thus, a smoothing interpola-

tion method is more proper than an exact one for performing interpolations [34, 35]. In this

paper, we used finite difference TPS for constructing reference surfaces. Here, samp21 was

used to evaluate the effect of smoothness on classification, where TPS performs interpolations

Fig 5. Classification errors of the proposed method for samp53.

https://doi.org/10.1371/journal.pone.0176954.g005
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with and without the smoothing parameter. Samp21 is located in an urban area with a narrow

bridge (Figs 9 and 10). It can be found that without the smoothing parameter, some points

located on the bridge are misclassified as ground, as flagged by the rectangle (Fig 9). The rea-

son for the large type II error can be explained by analyzing the initial ground points. We

found that when the size of the local square window is 30 m (Table 1), one point located on the

bridge is incorrectly selected as the ground seed. Thus, in the following iterations, the

Fig 6. Type I errors of the proposed method and the methods respectively presented by [19], [20], [14], and [33].

https://doi.org/10.1371/journal.pone.0176954.g006

Fig 7. Type II errors of the proposed method and the methods respectively presented by [19], [20], [14], and [33].

https://doi.org/10.1371/journal.pone.0176954.g007
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Fig 8. Average total error of all parameters configurations and the total error of the optimized parameters

for each sample.

https://doi.org/10.1371/journal.pone.0176954.g008

Fig 9. Classification errors of the proposed method without the smoothing parameter for samp21.

https://doi.org/10.1371/journal.pone.0176954.g009
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misclassified point influences the accuracy of reference surfaces, which allow more non-

ground points to be marked as ground. With the smoothing parameter, the negative effect of

non-ground points can be resisted for surface construction in the following iterations (Fig 10).

To further assess the advantages of the robustness scheme in TPS interpolation, we

employed samp22 to analyze filter results, with and without the weight function. Samp22 is

located in an urban area, mainly characterized by a bridge and a gangway. Results demonstrate

that only using the smoothness effect cannot completely avoid misclassification of non-ground

points, such as those marked by the rectangles (Fig 11). However, when the weight function is

adopted, the marked non-ground points located on the bridge and gangway are correctly

labeled (Fig 12). This indirectly proves the good ability of the weight function for reducing the

effect of non-ground points.

Fig 10. Classification errors of the proposed method with the smoothing parameter for samp21.

https://doi.org/10.1371/journal.pone.0176954.g010
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Smoothing effect can result in a peak-cutting and valley-filling problem for surface con-

struction, where subtle terrain features may be lost [19]. In our test, this shortcoming was eas-

ily overcome by replacing the simulated values of all known grids with their original ones,

except for outliers. The weight function (i.e. Equation (17)) can classify points into inliers and

outliers. Figs 13 and 14 show the effect of point replacement on classification errors for

samp52. Samp52 is located in a rural area with low vegetation located on steep slopes and dis-

continuities. Results indicate that without point replacement, some ground points located on

discontinuities, such as those flagged by the rectangles, are wrongly labeled as non-ground

points (Fig 13). However, the above misclassification is completely avoided by the point

replacement scheme (Fig 14).

From aforementioned discussion, we can see that the superior performance of the proposed

algorithm to MHC can be attributed to the following facts: (i) the new algorithm uses a

Fig 11. Classification errors of the proposed method without the weight function for samp22.

https://doi.org/10.1371/journal.pone.0176954.g011
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smoothing parameter to remove noise inherent in sample points; (ii) it employs a weight func-

tion to reduce the influence of outliers and misclassified non-ground points on reference sur-

face construction and (iii) it avoids the peak-cutting and valley-filling problems by replacing

the fitted values with the original ones.

Conclusions

To improve the computational efficiency of present TPS-based interpolation filters, a fast and

robust filter based on finite difference TPS computation was developed in this paper. The high

speed and robustness of the proposed method were respectively achieved by DCT to solve the

linear system of TPS equations and by a pre-defined weight function to reduce the effect of

outliers on the construction of reference surfaces. Fifteen groups of ISPRS benchmarks were

employed to comparatively analyze the performances of the proposed method and MHC.

Fig 12. Classification errors of the proposed method with the weight function for samp22.

https://doi.org/10.1371/journal.pone.0176954.g012
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Fig 13. Classification errors of the proposed method without point replacement for samp52.

https://doi.org/10.1371/journal.pone.0176954.g013

Fig 14. Classification errors of the proposed method with point replacement for samp52.

https://doi.org/10.1371/journal.pone.0176954.g014
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Results indicated that the former was averagely much more accurate than the latter in terms of

total error and kappa coefficient. Specifically, compared with MHC, the total error of the pro-

posed method is reduced by 26%, and the kappa coefficient is increased by 3.7%. Moreover,

the proposed method is about 8.2 times faster than MHC. Compared with the recently devel-

oped methods, the proposed method also obtains a good performance.
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