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Abstract

This empirical study sheds light on the spatial correlation of traffic links under different traffic

regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between

140 freeway traffic links in a major sub-network of the Minneapolis—St. Paul freeway sys-

tem with a grid-like network topology. This topology enables us to juxtapose the positive and

negative correlation between links, which has been overlooked in short-term traffic forecast-

ing models. To accurately and reliably measure the correlation between traffic links, we

develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimen-

sion, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation

of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects

route choice. Although this correlation occurs mostly in parallel links, it is also observed

upstream, where travelers receive information and are able to switch to substitute paths.

Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed

between upstream and downstream links. This correlation is stronger in uncongested

regimes, as traffic flow passes through consecutive links more quickly and there is no con-

gestion effect to shift or stall traffic. The extracted spatial correlation structure can augment

the accuracy of short-term traffic forecasting models.

Introduction

The rapid development of technology and new availability of large amounts of data enhance

the ability to monitor and forecast mobility and, more specifically, traffic over time and space

[1–4]. Traffic analysts have utilized the spatial dependency of road segments to solve three typ-

ical problems in a traffic network: (1) short-term traffic forecasting [1, 2, 5, 6], (2) reliable path

problem [7], and (3) missing data estimation [8].

Irrespective of the problem, studies have revealed the positive spatial correlation between

road segments for two main reasons. First, the topology of studied networks typically consists

of traffic links that are immediately upstream or downstream, and thereby they exhibit positive

correlation in terms of traffic due to the physics of conservation of flow. Second, traffic rises
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and falls by time-of-day, day-of-week, and week-of-year across the network, more-or-less

independent of spatial configuration. Failing to extract the exact temporal dependency of traf-

fic characteristics throughout a network results in neglecting a major source of correlation

between traffic links.

The first source of positive correlation stands on traffic flow theory, and more precisely on

the time-space diagram. This positivity derives from vehicles observed upstream at one time

slice being observed downstream in the same or at a later time slice. It holds when changing

the road costs and demands over time has no impact. In reality, however, traffic may shift

from one road to another due to traveler responses to congestion or closure. This may result in

negative correlation between two links which are in series, as well as negative correlation for

links in parallel. Although recent contributions from network science emphasize the necessity

for procuring the exact dependency between road segments [9, 10], little is known about exist-

ing negative and positive correlations in a complex traffic network.

We hypothesize that traffic links in a real network exhibit both negative and positive corre-

lations after detrending. This empirical study sheds light on the correlation of traffic links

under different traffic regimes by adopting an in-depth statistical analysis to pinpoint the cor-

relation of traffic. We contribute to the literature by defining and measuring the correlation of

traffic on a real-world network, and explore their causes. This correlation structure is capable

of augmenting the accuracy of short-term traffic forecasting models. We restrict our attention

to a major sub-network of the Minneapolis—St. Paul freeway system with a grid-like network

topology, measured by 140 loop detectors. This topology enables us to juxtapose the negative

correlation of competitive segments with the positive correlation of complementary segments.

The remainder of the paper is set out as follows. First, we review the literature discussing

the correlation nature of traffic links in road networks. Next, we discuss the data and method-

ology used in this study in detail. We proceed to graphically display the empirical correlation

of traffic links, and collate the results in individual traffic regimes. In the penultimate section,

we quantitatively discuss the results of the spatial correlation analysis. We finally conclude the

paper by summarizing the main findings and broaching a number of recommendations for

future research.

Previous studies

Understanding the correlation of traffic links augments the accuracy of short-term traffic fore-

casting, reliable path finding, and missing data estimation. The literature discussing these

three branches of research is prolific, and a well-established body of literature reviews the

methodologies used in these studies. In 2004, Vlahogianni et al. [11] reviewed objectives and

methods used in short-term traffic forecasting. They examined the pros and cons of modeling

frameworks under the umbrella of parametric and non-parametric techniques. Ten years later,

Vlahogianni et al. [12] examined the challenges of modeling in short-term traffic forecasting,

and concluded there is an uncertainty whether the accuracy of developed complex methods

are better than models developed 30 years ago. More recently, Ermagun and Levinson [13] sys-

tematically reviewed more than 130 papers using spatiotemporal models for traffic forecasting.

They emphasized that a large gulf exists between the spatial dependence of traffic links on a

real network and the networks studied in current literature, and drew attention to three short-

comings: (1) looking only at spatial dependency of either adjacent or distant upstream and

downstream of study link, (2) prejudging the spatial dependence between traffic links in

modeling, and (3) neglecting the negative correlation between traffic links in modeling.

One of the main difficulties in the literature is that it is plagued with multifarious complex

forecasting methods, while representing a long but shallow comprehension of spatial
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dependency between traffic links. In this part we dig into the correlation analysis used in the

literature, and emphasize the approach of capturing spatial dependence between traffic links.

Table 1 summarizes studies using the spatial correlation between traffic links to augment traf-

fic forecasting.

Early researchers used the information from links upstream and downstream of the study

link, as there is a reasonable belief that they are highly and positively correlated with the study

link. Okutani and Stephanedes [28] were the first to utilize the information of adjacent

upstream links in predicting traffic flow in 1984, although they never pointed out the correla-

tion between traffic links. This approach spread through the literature for two major reasons.

First, it was simple. The traffic network is a complex system and understanding the detailed

interrelationship between all traffic links requires comprehensive knowledge and large compu-

tational efforts. Thus, considering only the immediate upstream and downstream of the study

link eases the calculation. Second, it was effective. Research typically studied a corridor com-

prising a small number of traffic links, which narrows the neighboring links of the study link

down to adjacent upstream and downstream links. Therefore, it is not surprising to achieve

decent results. For instance, Stathopoulos et al. [29] used spatial correlation between two loop

detectors. Embedding the information of the immediate upstream link, they improved traffic

forecasts. Although Chandra and Al-Deek [30] examined a significant correlation of the study

link with both adjacent and far traffic links, they only utilized the information of immediate

upstream and downstream links.

Despite the simplicity and effectiveness, this method ignores the effects of other traffic

links, as correlation only between adjacent links was presented in the literature. Li et al. [8], for

instance, narrowed their study area to three consecutive traffic links: “It had been shown that

the correlation degrees among different points decreases significantly with respect to distances.

So, [. . .] we only consider m = 3 in this paper. That is, only the upstream and downstream

neighboring detecting points are studied.” This approach is incomplete, as it selects only a part

of the network and neglects the correlation between other traffic links.

More recently studies have emerged to examine the effects of not just adjacent traffic links,

and thereby embed more information to enhance the accuracy of forecasting methods. One

class of studies prejudges the correlation between traffic links in different distance thresholds.

Table 1. Summary of studies used spatial information in traffic forecasting.

Study Location Scale Variable Spatial Capturing Method

Cai et al. [14] China Freeway Speed Spatiotemporal correlation

Jiang et al. [15] China Freeway Speed Adjacent upstream and downstream

Zou et al. [16] U.S. Freeway Time Cross-correlation

Cheng et al. [17] London Arterial Time lth-order neighbors

Djuric et al. [18] U.S. Freeway Speed Adjacent upstream and downstream

Zou et al. [19] China Arterial Speed lth-order neighbors

Min et al. [20] China Arterial Flow lth-order neighbors

Ma et al. [21] China Freeway Speed lth-order neighbors

Chandra and Al-Deek [22] U.S. Freeway Speed Cross-correlation

Yang et al. [23] China Arterial Speed lth-order neighbors

Van Lint [24] Netherlands Arterial Time Adjacent upstream and downstream

Vlahogianni et al. [25] Greece Freeway Flow Adjacent upstream

Kamarianakis and Prastacos [26] Greece Arterial Flow lth-order neighbors

Stathopoulos and Karlaftis [27] Greece Arterial Flow Adjacent upstream

Okutani and Stephanedes [28] Japan Arterial Flow Adjacent upstream

https://doi.org/10.1371/journal.pone.0176853.t001
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This class is so-called “lth-order neighbors”, where l represents the ring of neighbors. For

example, the first-order neighbors are those links that adjoin the study link, while the second-

order neighbors are indirectly joined to the study link, having the adjacent links in the middle.

Studies falling into this class assign a similar correlation value to each neighbor. In 2003, for

example, Kamarianakis and Prastacos [26] considered both the first- and second-order neigh-

bors and equally weighted all first- and second-order neighbors. In a similar manner, Cai et al.

[14] defined equivalent distance as a criterion that is used to determine correlations between

the road segment in study and other related road segments to capture the spatial dependence

between traffic links.

The other class of studies benefits from the correlation coefficient analysis to determine the

correlated links with the study link. In 2005, Sun et al. [31] analyzed a grid network comprising

31 traffic links in Beijing, China. To capture all spatial and temporal correlation between traffic

links, they adapted Pearson correlation coefficient analysis. The results indicated the traffic

flows of links are positively correlated, and the correlation does not follow any distance pat-

tern. Using cross-correlation analysis, Yue and Yeh [32] quantitatively measured the correla-

tion between seven traffic links in an urban corridor of Kowloon, Hong Kong. They illustrated

that the consecutive traffic links are positively correlated, and this correlation decreases by dis-

tance. They also found a significant drop in the correlation coefficient of one upstream link,

which was justified by the presence of an off-ramp before the upstream link to a large residen-

tial area. Zou et al. [16] proposed a space-time diurnal method to embed both spatial and tem-

poral travel time information in short-term travel time prediction. They studied a freeway

corridor in Houston, Texas, and showed an increase in the distance between the two links

decreases the cross-correlation value between them. A recent study [33] scrutinized the corre-

lation between 3,254 loop detectors installed on the Minneapolis—St. Paul freeway system.

Their analysis underlined that positive correlations exist in hundreds of sensors distributed on

the whole road network sparsely, not just the neighborhood around the study link. Although

they were the first to reveal the sparse correlation between traffic links, they overlooked the

potential for negative correlation between competing, substitute, and parallel traffic links.

In defiance of various approaches to capture spatial correlation between traffic links, the lit-

erature has come to a longstanding agreement that traffic links are positively correlated. We

argue that network segments are both positively and negatively correlated, as one would expect

from an understanding of spatial network structure that has links in both series and parallel,

and where travelers have choice of route and are sensitive to perceived travel time [34]. The

positive and negative spatial correlations are shown after properly controlling for temporal

demand effects, which is discussed in detail in the Methodological Framework section.

Data

In 2007, the Minnesota Department of Transportation (MnDOT) released Intelligent Roadway

Information System (IRIS), an open-source advanced traffic management system to monitor

and manage freeway traffic. The system collects and reports traffic flow, speed, occupancy,

density, and headway from 7,246 loop and virtual detectors in 30 seconds increments. Detec-

tors are located in five distinct places: (1) Mainline Detectors, which collect data from all traffic

lanes of interstates and highways, (2) Entrance ramp detectors, which collect the data at on-

ramps, (3) Exit ramp detectors, which collect the data from off-ramps, (4) Queue ramp detec-

tors at the start of ramps, and (5) Passage ramp detectors just downstream of ramp meters.

The data used in this study is collected from single-loop detectors. The Traffic Management

Center of the Minnesota Department of Transportation ensures that its detectors are highly

accurate as they are used for ramp meter control as well as monitoring. Single-loop detectors

Spatial correlation of traffic
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are typically deployed to collect volume and lane occupancy. These characteristics are valuable

sources for transportation planning and traffic control. Accurate speed and vehicle-classifica-

tion data are more accurately collected from dual-loop detectors. The current research extracts

traffic flow of a major sub-network of the Minneapolis—St. Paul freeway system for the pur-

pose of this study, so the lack of dual-loop detectors does not affect these results.

The sub-network consists of major highways in the western suburbs, specifically I-494, I-

94, I-394, US 169, TH 212, TH 100, and TH 62 for the East-West and South-North directions.

They are among the busiest major highways in the Minneapolis—St. Paul freeway system. This

sample includes 687 detectors, 146 of which are entrance and exit ramps. In road segments,

the number of detectors varies from 1 to 4 depending on the number of lanes. We aggregated

the flow information of all traffic lanes on a road segment, which results in 149 stations. We

excluded 9 stations and 91 ramps due to lack of data. We collected the traffic flow measure-

ments for all Tuesdays in 2015 in three distinct times-of-day:

1. Morning rush hour: From 7:30–8:30 AM

2. Non-rush hour: From 10:00–11:00 AM

3. Evening rush hour: From 4:30–5:30 PM

We also extracted the same information for all Saturdays in 2015. This trajectory enables us

to compare the variation in the competitive and complementary nature of traffic links not only

over congested and uncongested regimes, but also over weekdays and weekends. We have

experimented with different levels of aggregation, at 30 seconds, and at 1, 2, 5, 8, 10, and 15

minutes. Essentially there is a trade-off between Type I and Type II statistical errors. Lower lev-

els of aggregation show higher volatility and some instances of stronger correlation, while the

higher levels of aggregation smooth the data, and isolated occurrences of strong correlation

are found in reduced numbers. However, strong relations between neighboring segments and

between some parallel paths typically still remain at several higher levels of aggregation. When

we aggregate data over a longer time interval, the number of effective observations to build the

statistical model is reduced, which can reduce the statistical reliability of the discovered corre-

lations. There is also the concern of stationarity of data over long time intervals. We selected

the 1-minute aggregation time interval, which is assumed reasonable for the purpose of this

study.

This results in 3,120 observations (52 × 60) for each detector for each time-of-day. The

missing data are excluded from the analysis for each detector. We select illustrative examples

to understand the descriptive flow of traffic links. Four stations were targeted in a stratified

sampling method. They are stations 719, 340, 933, and 762, which are located on I-494, I-394,

TH 100, and US 169, respectively. The characteristics of traffic flow for these four stations for

all weeks are summarized in Table 2. As shown, the maximum traffic flow belongs to link 340

for Tuesday evening rush hour. The minimum traffic flow was observed on Saturday between

7:30 AM and 8:30 AM on link 719.

To portray the traffic oscillation during day-of-week and day-of-weekend, we plotted the

traffic flow of the selected links in Fig 1 for February 24th and 28th, 2015. As we expected, the

traffic flow pattern of Tuesday is markedly different from Saturday. On Tuesday, traffic flow

has two major peaks: between 7:30 AM and 8:30 AM, and between 16:30 PM and 17:30 PM.

Comparing the traffic flow of morning with evening peak periods, we observe evening rush

hour is generally more congested than the mornings due to more non-work trips. On Satur-

day, we witness one major traffic peak, which starts about 10:00 AM. However, the traffic vol-

ume on Saturday is lower than Tuesday.

Spatial correlation of traffic
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Methodological framework

Three-dimensional data detrending

Traffic flow exhibits time trends in time-of-day, day-of-week, and week-of-year. These trends

are observed not only at the link level, but also at the system level, which is the total system

travel by time-of-day. Eliminating these time variations is fundamental to capture accurate

and reliable spatial correlation between traffic links. As discussed in the preceding section, we

extracted traffic flow from three different one-hour time thresholds in both Tuesdays and Sat-

urdays of 2015. For the purpose of temporal detrending and observing spatial correlation, we

detrend the data in three dimensions:

1. Hourly Dimension: In this step, the trend in each one-hour time threshold is removed

from each traffic link. For example, the trend from time threshold of 7:30–8:30 AM of the

first Tuesday of 2015 is eliminated from link 719. This step is repeated for all Tuesdays and

for all links.

2. Weekly Dimension: The hourly detrended data of each traffic link has a weekly trend of 52

weeks of the year. In this step, this trend is eliminated from the data.

3. System Dimension: Although removing the trend in two aforementioned directions is

prevalent in the traffic literature, this dimension is typically overlooked in the traffic data

analysis. This dimension emphasizes on extracting the total system travel by time-of-day.

Traffic flow of each link in a specific time span during a day displays a remarkable

Table 2. Traffic flow characteristics of selected stations over week-of-year (Vehicles per hour).

Link Time Average St. Dev. Max Min

719 Tuesday 7:30–8:30 6082.5 849.7 7166 3788

Tuesday 10:00–11:00 3399.4 608.3 4426 2138

Tuesday 16:30–17:30 6227.4 1248.7 8036 3273

Saturday 7:30–8:30 1921.1 880.0 3152 1

Saturday 10:00–11:00 3690.4 1069.9 4826 18

Saturday 16:30–17:30 4223.3 1167.7 5468 8

340 Tuesday 7:30–8:30 5470.5 411.8 5864 3818

Tuesday 10:00–11:00 2679.0 248.5 3151 1942

Tuesday 16:30–17:30 7768.5 643.8 8634 5966

Saturday 7:30–8:30 1544.6 161.9 1870 1266

Saturday 10:00–11:00 3182.5 202.8 3594 2834

Saturday 16:30–17:30 3826.3 406.4 4673 2915

933 Tuesday 7:30–8:30 3672.4 299.7 4188 2576

Tuesday 10:00–11:00 2292.5 199.1 2653 1714

Tuesday 16:30–17:30 6687.7 706.4 7425 3341

Saturday 7:30–8:30 1148.4 202.0 1450 703

Saturday 10:00–11:00 2172.0 315.3 2639 1379

Saturday 16:30–17:30 2810.3 406.3 3824 1672

762 Tuesday 7:30–8:30 4608.4 620.9 5517 2281

Tuesday 10:00–11:00 3314.1 838.7 5839 1691

Tuesday 16:30–17:30 4832.9 764.0 7368 3290

Saturday 7:30–8:30 2017.1 589.2 3527 849

Saturday 10:00–11:00 3602.8 744.2 5058 2023

Saturday 16:30–17:30 3970.4 753.7 5985 2157

https://doi.org/10.1371/journal.pone.0176853.t002
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Fig 1. Traffic flow of selected sections for February 24th and 28th, 2015.

https://doi.org/10.1371/journal.pone.0176853.g001
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correlation with total flow of all traffic links. Deriving this trend is fundamental to observe

the competitive nature of traffic links.

The remainder of this section unpacks the statistical steps behind the three-dimensional

data detrending. We utilize an algorithm to remove time-of-day and day-of-week trend for

each link, and the total system travel by time-of-day trend.

Data detrending algorithm

Loop detectors may not be functional for different periods of time during any given day owing

to malfunction or other technical issues, and in some cases they may not be functional for lon-

ger stretches of time due to construction work or other longer term issues. There are various

ways in which such detector data issues are indicated and addressed.

After reading the data and parsing it correctly to account for malfunctions, we concentrate

on the specific day of the week and duration of time that is of interest for our analysis. To ver-

ify algorithmic robustness, we tested the algorithm for all days of the week, at various start and

end time points, and different levels of data aggregation. This yields a vector of traffic data for

each traffic link and each day. Consider m the total number of aggregated data points. In our

example m = 60, which represents 60 minutes of data during a one-hour period. The vector of

observations is then represented by Y(s, t) = (Ys,t,1, . . ., Ys,t,m) for each station s and each day t.
The notations s 2 {s1, . . ., sS} and t = 1, 2, . . ., T stand for study stations and days, respectively.

In our present data analysis T = 52 (weeks in a year). We fit a robust location estimator to the

data vectors Y(s, t) for each station s 2 {s1, . . ., sS}. This is captured by obtaining the minimizer

m̂ðsÞ 2 Rm as per Eq 1.

XT

t¼1

jjYðs; tÞ � mðsÞjj1 ð1Þ

Where || � ||1 is the L1-norm of a vector. This yields the vector of medians for each location.

This step removes the secular trend for each coordinate of the vector obtained from the pre-

vious step. To this detrended data, we fit an autoregression model of appropriate order, to

model the temporal dependencies between successive time aggregation intervals. This step

involves a model selection, and we select the best available autoregression up to and including

lags of order 0 to 5. A lag zero model implies no temporal dependency.

In order to do this, we define ~Y ðs; t; kÞ ¼ Yðs; t; kÞ � m̂ðs; kÞ and fit under penalization the

following model using the assumption that for each s and t, the sequence {ε(s, t, k)} is a mean

zero, finite variance white noise sequence.

~Y ðs; t; kÞ ¼
XJ

j¼0

�s;j
~Y ðs; t; k � jÞ þ εðs; t; kÞ: ð2Þ

Fig 2 represents the selected models for Link 719 in different time thresholds.

We assume second order stationarity for the above model fitting. We obtain the residuals

after this autoregression model fitting. Let S denote the set of all stations under consideration.

Based on the residuals R(s, t, k) for each fixed t and k we define the proportional residuals as

Eq 3.

~Rðs; t; kÞ ¼
X

s2S

Rðs; t; kÞ

" #� 1

Rðs; t; kÞ: ð3Þ
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Fig 2. Fitted autoregressive model to Link 719 in different time thresholds.

https://doi.org/10.1371/journal.pone.0176853.g002
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As a result, we derive Eq 4:

Rðs; t; kÞ ¼ Yðs; t; kÞ � m̂ðs; kÞ �
XJ

j¼1

�̂s;j Yðs; t; k � jÞ � m̂ðs; k � jÞð Þ ð4Þ

Following the aforementioned steps to remove the trend and temporal dependencies, we

embark on steps to obtain the spatial dependency patterns using the R(s, t, k) values. The first

step is to elicit the neighborhood dependency relations. For this, we obtain serial correlations

across each pair of stations s1 and s2 for each time t. This results in:

Cðs1; s2; tÞ ¼ Cor Rðs1; t; kÞ;Rðs2; t; kÞð Þ ð5Þ

We construct a robust yearly summary of these by taking the median Ĉ1ðs1; s2Þ of

{C(s1, s2, 1), . . ., C(s1, s2, T)}. If Ĉ1ðs1; s2Þ is above a threshold c1, we consider the stations s1

and s2 to be spatially correlated. We adopt c1 = 0.10 for the present study. The correlation

analysis is based upon Pearson correlation coefficient. We experimented with Kendall’s and

Spearman’s correlation coefficient as well, but we did not find any substantial differences.

After obtaining and identifying correlation structures in the above manner, we study a lon-

ger range of complementary relations between stations. To achieve this, we first compute the

proportion of trend and temporal dependency adjusted residuals for each day t and each sta-

tion s, which represents the proportion of traffic flowing through station s on day t at each

time aggregation step. Let these proportional residuals be ~Rðs; t; kÞ. We use the same measure

of association, namely the correlation, using these. That is, across each pair of stations s1 and s2

for each time t, we obtain:

~Cðs1; s2; tÞ ¼ Cor ~Rðs1; t; kÞ; ~Rðs2; t; kÞ
� �

: ð6Þ

As in the previous step, we construct a robust yearly summary of these by taking the median

Ĉ2ðs1; s2Þ of f~Cðs1; s2; 1Þ; . . . ; ~Cðs1; s2;TÞg, and obtain a negative or positive relation between

stations s1 and s2 if Ĉ2ðs1; s2Þ < � c2 for a chosen threshold c2. In the present study, we used

c2 = 0.10.

It is worth mentioning that for any pair of stations s1 and s2, if Ĉðs1; s2Þ > c1, we consider

these to be spatially correlated. For such pairs we do not search for complementary relations.

For any pair of stations that are not spatially correlated according to the above consideration,

we evaluate if Ĉ2ðs1; s2Þ < � c2. If this happens, we declare a complementary relation between

the two stations.

We have cross checked our computations with other choices of thresholds and other tuning

parameters of our algorithm. At very low levels of the thresholds c1 and c2, numerous relations

between stations are obtained. For thresholds in the range 0.05–0.25, the results are stable and

are largely insensitive to algorithmic choices. If we increase these beyond a reasonable point,

connections between stations are lost at a steady rate, and very few survive beyond 0.6. The

sensitivity to c2 is higher than that to c1. We can make the reasonable assumption that a very

low threshold may result in many spurious and transient relations being detected, while a very

high threshold possibly results in not detecting true and persistent relations between stations.

Thus, the choice of c1 = c2 = 0.1 as a threshold reflects a scenario where the results are stable,

and have reduced possibility of containing spurious relations, yet not so high as to not detect

true relations between stations. We will conduct more detailed studies on the choice of thresh-

olds and tuning parameters in the future with comparable datasets to understand these fea-

tures better.
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Graphical discussion

After the temporal detrending of the data, we represent and discuss the results of spatial corre-

lation of selected freeway traffic links in this section. To give the reader a sense of how the

value of correlation fluctuates between traffic links and time-of-day, we plotted the box and

whisker diagram of four traffic links in Fig 3. The upper and lower hinges of boxes show the

first and the third quartile of the data, respectively. The upper whisker represent the upper

adjacent value, and the lower whisker represent the lower adjacent value. In Fig 3, dots stand

for the values that are equal or greater than 1.5 times of the interquartile range above upper

quartile or below the lower quartile. Looking at the plots, the dots above and below each

box show that only a few number of links are highly correlated with the study link. The positive

correlation is stronger than negative correlation, although they are similar in the number. In

general, the negative correlation is more prevalent on Tuesday morning and evening rush

hours than other times-of-day. It is explained by peak period congestion, which brings to light

the competitive role of parallel traffic links in the network. A weak negative correlation is

observed during non-rush hour and weekends, due to the low level of traffic congestion.

To examine the relationship of negative and positive correlations with the network struc-

ture, and more precisely the parallel and series links, we mapped the correlation results of the

selected links for Tuesday morning rush hour in Fig 4. In this figure, the color spectrum of

Fig 3. Statistical correlation analysis for selected sections.

https://doi.org/10.1371/journal.pone.0176853.g003
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Fig 4. Correlation of four selected sections for Tuesday between 7:30 AM and 8:30 AM.

https://doi.org/10.1371/journal.pone.0176853.g004
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negative correlation changes from light pink to violet, and for positive correlation it varies

from light blue to dark blue. The study link is shown by a black star. The correlation magni-

tude greater than |10.0| represents a strong significant correlation at the 90% confidence

interval.

The correlation results of station 719 highlight that, after detrending, there is a network

structure effect. Both negative and positive correlation exist between flows at this station and

others. This correlation ranges from −48.3 to 70.0 for station 719. A strong positive correlation

belongs to the immediate upstream and downstream links of station 719. It is in line with our

hypothesis and previous studies. The strength of positive correlation declines with distance.

The positive correlation stretch upstream turns negative at station 515, which is located before

an off-ramp. We posit traffic congestion propagation on station 719 results in some upstream

traffic switching to a substitute path, and thereby more traffic on station 719 reduces traffic

upstream as travelers seek substitutes. A strong stretch of negative correlation is also observed

in the links parallel to station 719. This supports our hypothesis about competitive links. US

169 and TH 100 are two main competitive paths for I-494. Thereupon, it is not surprising that

traffic chooses substitute paths, when traffic congestion has a strong effect on at least part of

the network.

Likewise, there is a strong positive correlation between station 340 and its immediate

upstream and downstream. This correlation is weakened by distance from station 340 and is

transformed into the negative correlation upstream. There is a strong negative correlation

between station 340 and its competitive links in TH 62 and I-494. Looking at the correlation

analysis of station 933, we observe a strong positive correlation between station 933 and its two

immediate upstream links, but not its downstream link. As shown, the downstream station

935 stands a significant distance from station 933, which results in a weak positive correlation.

Stations 755, 756, and 724 that are strong substitutes with station 933 exhibit a strong negative

correlation.

Noteworthy is that spurious correlation appears in correlation analysis of all links. Although

it includes fewer than 10% of the correlation results, it should be kept in mind that it stems

from the nature of using real-world data and a significant number of missing data in loop

detector data samples. For example, we do not have any physical justification to support why

there is a strong negative correlation between stations 762 and 1769 or stations 340 and 935.

Instead we believe it is a spurious correlation.

Traffic flow varies between weekdays and weekends. This variation results in a different

correlation structure between traffic links. For example, we do not expect a strong negative

correlation between traffic links outside the peak period, as there is little congestion causing

traffic flow to switch to the competitive paths. However, we still expect a strong positive corre-

lation between the study link and its immediate upstream and downstream links. We also

expect the evening rush hour and morning rush hour are alike in the correlation structure. To

test these hypotheses, we present the correlation analysis of station 719 for different times of

day in Tuesday and Saturday in Fig 5.

First cut analysis shows a significant difference between rush hour and non-rush hour, and

between weekdays and weekends. In Tuesday non-rush hour, we observe a positive correlation

between upstream and downstream of the study link. Not only does a strong correlation exist

between the immediate links, but also in a second-order upstream link. Traffic flow passes

through links faster in the uncongested traffic condition than congested traffic condition. As a

consequence, the traffic observed in the upstream links are observed in the study link in a

shorter time slice, and thereby they show a stronger positive correlation. A strong point of

emphasis is the strength of this correlation in comparison with morning rush hour. The corre-

lation between upstream and downstream in non-rush hour is stronger than rush hour, as
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Fig 5. Comparison of correlation for different times and days.

https://doi.org/10.1371/journal.pone.0176853.g005
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fewer travelers divert to alternative routes. As we expected, there is no significant negative cor-

relation in non-rush hour. Comparing the evening rush hour with morning rush hour, we

detect a similar correlation not only in pattern, but in the magnitude as well. The results indi-

cate dissimilarities between correlation patterns for Saturday and Tuesday between 7:30 AM

and 8:30 AM. The correlation pattern of station 719 for Saturday between 7:30 AM and 8:30

AM is fairly similar to Tuesday between 10:00 AM and 11:00 AM. It is not surprising as there

is no congestion on Saturday early morning, and thereby there is no negative correlation

effect. Interestingly, the negative correlations show up between 10:00 AM and 11:00 AM on

Saturday.

Interpretation of spatial correlation analysis

Unlike the preceding section that focused on 4 selected traffic links, this section analyzes the

spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapo-

lis—St. Paul freeway system. To evaluate time-of-day and day-of-week effects, we juxtapose

Tuesday with Saturday and rush hour with non-rush hour. Fig 6 represents the heat maps of

the spatial correlation matrix for 140 traffic links in different times of day. The positive and

negative spatial correlations are colored by blue and pink spectra, respectively. The navy blue

exhibits a strong positive spatial correlation and purple exhibits a strong negative spatial corre-

lation. As shown, the pattern of spatial correlation between traffic links is different not only for

different times of day, but also between Tuesday and Saturday. Looking at the heat maps, it is

found that about half of the traffic links are negatively correlated, while the strength of the spa-

tial correlation is particular during congested periods.

As far as the time of day is concerned, the negative spatial correlation is severe and higher

in rush hours than non-rush hours. The results indicate that 39.9% and 40.9% of traffic links

are negatively correlated on Tuesdays between 7:30 and 8:30 AM and between 16:30 and 17:30

PM, respectively. For Tuesdays between 10:00–11: AM, 30.4% of traffic links are negatively

correlated, and the spatial correlation of less than 0.4% of them ranges between −0.2 and −0.4.

This is clearly observed by comparing the heat maps of Tuesday 7:30–8:30 AM, Tuesday

10:00–11:00 AM, and Tuesday 16:30–17:30 PM. Although the dark pink points are reasonably

distributed in the heat maps of Tuesday 7:30–8:30 AM and Tuesday 16:30–17:30 PM, there are

few links that are highly correlated on Tuesday 10:00–11:00 AM. The same pattern is observed

on Saturdays. The spatial correlation analysis demonstrates that 49.4% of the links are nega-

tively correlated on Saturdays between 16:30 and 17:30 PM, among which the spatial correla-

tion of 3.5% of them ranges between −0.2 and −0.4. However, there is no severe negative

spatial correlation between traffic links on Saturdays between 7:30 and 8:30 AM, and 44.5% of

traffic links are negatively correlated.

As far as the weekday and weekend is concerned, the negative spatial correlation is higher

on Saturdays than Tuesdays. The severity of the spatial correlation is mixed. In the morning

rush hour, which is 7:30–8:30 AM for Tuesdays and 10:00–11:00 AM for Saturdays, 2.3% and

0.4% of traffic links have a negative spatial correlation greater than |0.2| on Tuesdays and Sat-

urdays, respectively. Likewise in the morning non-rush hour, which is 10:00–11:00 AM for

Tuesdays and 7:30–8:30 AM for Saturdays, 0.3% and 0.05% of traffic links have a negative spa-

tial correlation greater than |0.2|, respectively.

To give the reader a quantitative sense of spatial correlation between traffic links, we sum-

marize the main statistics of the spatial correlation patterns between traffic links in different

times of day for both Tuesday and Saturday in Table 3. These statistics are calculated in two

steps: (1) We calculated minimum, average, and maximum of spatial correlation of each link

with the other 139 links, and (2) We calculated the main statistics, including minimum,
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Fig 6. Heat maps of the spatial correlation matrix for 140 traffic links.

https://doi.org/10.1371/journal.pone.0176853.g006
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average, maximum, and standard deviation of extracted spatial correlations over all 140 traffic

links. Looking at Tuesday 7:30–8:30 AM, for example, it is found that the minimum of positive

spatial correlations between traffic links fluctuates between 0.0002 and 0.5413 with the average

value of 0.0732. Likewise, the minimum of negative spatial correlations between traffic links

fluctuates between −0.0006 and −0.5058 with the average value of −0.0921. On average over all

traffic links, the severity of the negative spatial correlations is 1.53, 0.76, and 1.45 times the pos-

itive spatial correlations on Tuesdays 7:30–8:30 AM, 10:00–11:00 AM, and 16:30–17:30 PM,

respectively. For different times on Saturdays, the results indicate that the severity of the nega-

tive spatial correlations is 0.69, 1.01, and 1.53 times the positive spatial correlations at 7:30–

8:30 AM, 10:00–11:00 AM, and 16:30–17:30 PM, respectively, on average over all traffic links.

It pinpoints that the severity of spatial correlation between traffic links in the evening rush

hour is similar between weekdays and weekends. However, as alluded to previously, the corre-

lation pattern of early morning on Tuesdays is closer to the late morning on Saturdays than

early morning. This is justified by the different morning peak hour period for weekdays and

weekends.

Closing remarks

Okutani and Stephanedes [28] directed attention to spatial correlation of traffic links. They did

not recommend incorporating the information of correlated links in traffic forecasting models,

but rather the immediate upstream link. This school of thought has spread through the litera-

ture of short-term traffic forecasting. Using the spatial correlation between links has grown in

popularity, not just because it is a way to augment short-term traffic forecasting models, but

also because it is a way to cope with missing data and path selection. However, the literature

provides little empirical evidence for the correlation of traffic in a real-world network, and is

limited to correlation analysis of links in a series corridor encompassing consecutive links. The

literature is comprehensive in the sense that it deals with positive correlation among the study

Table 3. Summary statistics of correlation among 140 traffic links.

Time Statistic Positive Correlation Negative Correlation

Min Average Max St. Dev. Min Average Max St. Dev.

Tuesday

7:30–8:30

Min 0.0002 0.0732 0.5413 0.0821 −0.0006 −0.0921 −0.5058 0.0847

Average 2.8419 4.5920 8.8360 0.8879 −3.4454 −7.0460 −14.5262 2.4122

Max 11.3444 51.9420 83.2131 15.8386 −12.8052 −26.7907 −51.6852 8.5331

Tuesday

10:00–11:00

Min 0.0012 0.0651 0.4809 0.0719 −0.00331 −0.0840 −0.5511 0.0824

Average 2.7799 4.3112 10.5472 0.8913 −1.2970 −3.2920 −17.0792 1.5551

Max 12.5362 56.0384 81.5292 13.7092 −3.7808 −17.3003 −61.2716 9.3772

Tuesday

16:30–17:30

Min 0.0002 0.0987 0.9203 0.1176 −0.0008 −0.0872 −0.8898 0.1095

Average 2.7813 4.5303 10.5150 1.0023 −3.3539 −6.5874 −26.9203 2.5496

Max 11.2634 43.4621 74.6475 15.1453 −14.5139 −31.6532 −89.9045 19.5348

Saturday

7:30–8:30

Min 0.0020 0.0585 0.4113 0.0579 −4.8E-19 −0.0600 −0.3851 0.0597

Average 2.2073 4.1808 7.7444 0.8158 −1.3323 −2.8975 −6.9404 0.9106

Max 7.1419 56.8089 80.5798 13.5529 −5.3676 −13.4494 −24.2231 3.7155

Saturday

10:00–11:00

Min 0.0005 0.0605 0.3492 0.0688 −7.8E-20 −0.0562 −0.4432 0.0690

Average 2.3019 4.1511 7.8657 0.8515 −1.5823 −4.1978 −12.3678 1.6000

Max 12.8943 55.5271 80.3031 13.7045 −6.2097 −18.4740 −38.4436 5.7068

Saturday

16:30–17:30

Min 0.0030 0.0712 0.3256 0.0750 −0.0001 −0.0663 −0.5544 0.0792

Average 2.0795 4.4209 15.0363 1.2494 −1.7710 −6.7778 −23.3543 3.4429

Max 12.0150 55.6759 80.1708 13.7048 −10.9155 −33.9836 −75.3747 13.6615

https://doi.org/10.1371/journal.pone.0176853.t003
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links and its immediate upstream and downstream links. However, it is not generic in that it

sets broad principles for complementary nature of traffic links, and leaves the correlation anal-

ysis of competitive traffic links for later.

This empirical study instead applied a three-dimensional data detrending algorithm and

tested it on a grid-like network topology consisting of both competitive and complementary

traffic links. This methodological approach enabled us to shed more light on the understand-

ing of the traffic phenomena. We added to the body of knowledge on short-term traffic fore-

casting problem by capturing the realistic spatial correlation between traffic links. The key

findings from correlation analysis of 140 freeway traffic links and 54 ramps in the Minneapolis

—St. Paul freeway network are as follows:

• In a network comprising links in parallel and series, both negative and positive correlation

shows up between links.

• The strength of correlation varies by time-of-day and day-of-week.

• The strong negative correlation is observed in rush hours, when congestion affects travel

behavior. This correlation occurs mostly in parallel links, and in far upstream links where

travelers receive information about congestion (for instance from media, variable message

signs, or personal observation of propagating shockwaves) and are able to switch to substi-

tute paths.

• Irrespective of time-of-day and day-of-week, a strong positive correlation is observed

between upstream and downstream sections. This correlation is stronger in uncongested

regimes, as traffic flow passes through the consecutive links in a shorter time and there is no

congestion effect to shift or stall traffic.

This study has room to improve with further research:

• The sub-network used in this study includes a significant number of missing data pertaining

to both traffic links and time-of-day. To extract a more accurate correlation between traffic

links, we need data that represents all traffic demands in the network for a specific time slice.

• We randomly selected a weekday and a weekend day to compare the spatial correlation pat-

terns of the weekend and weekday. Regarding the day-of-week, this study aims to explore

whether there is a significant difference between the correlation patterns of traffic links in

morning rush hour, evening rush hour, and non-rush hour. These time periods are selected

based on the descriptive analysis on traffic flow patterns on Tuesdays and Saturdays of 2015

in the Minneapolis—St. Paul freeway network. Future research may benefit from the meth-

odology introduced in this research and study the spatial correlation patterns of traffic links

for more, if not all, days and times.

• The spatial correlation matrices extracted in this study has the potential to replace the tradi-

tional methods of capturing the spatial correlation in traffic forecasting, including spatial

weight matrices, correlation-coefficient, and lth-order neighbors. One research avenue wor-

thy of exploration in the traffic forecasting context is whether and to what extent this spatial

correlation augments the short-term and long-term traffic forecasting.

We argue that accuracy, robustness, and adaptivity are fundamental for successful imple-

mentation of short-term traffic prediction models in advanced traveler information service.

The proposed algorithm is practical for deployment in any traffic network to achieve persistent

and accurate correlation between traffic links. Spelling out the details of how to integrate these

correlation effects into short-term traffic forecasting models remains a research challenge.
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