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Abstract

The investors’ attention has been extensively used to predict the stock market. Different

from existing proxies of the investors’ attention, such as the Google trends, Baidu index (BI),

we argue the collective attention from the stock trading platforms could reflect the investors’

attention more closely. By calculated the increments of the attention volume for each stock

(IAVS) from the stock trading platforms, we investigate the effect of investors’ attention mea-

sured by the IAVS on the movement of the stock market. The experimental results for Chi-

nese Securities Index 100 (CSI100) show that the BI is significantly correlated with the

returns of CSI100 at 1% significance level only in 2014. However, it should be emphasized

that the correlation of the new proposed measure, namely IAVS, is significantly at 1% signifi-

cance level in 2014 and 2015. It shows that the effect of the measure IAVS on the movement

of the stock market is more stable and significant than BI. This study yields important invest

implications and better understanding of collective investors’ attention.

Introduction

The investors’ attention plays an important role in predicting the movement of the stock mar-

ket, which has attracted much attention recently [1–4]. The attention is not only a scarce cog-

nitive resource [5] but also the hard currency of cyberspace [6]. In fact, it is hard for most

investors, especially retail investors, to access the market information timely and accurately.

Therefore, most investors would like to pay more attention to the attracted information to

adjust their investment behavior, leading to the movement of the stock market [7, 8].

The proxies of investors’ attention for predicting the movement of the stock market could

be roughly classified into two categories. The indirect proxies of investors’ attention mainly

include extreme return [9], trading volume [10–14], turnover [15, 16], etc. [17–20], which

have been extensively analyzed by professional investors for many years. On the other hand,

direct proxies of investors’ attention, such as search volume index (SVI) [1, 21–34], social net-

work (Twitter feeds, blogs, forum, Wikipedia etc.) [35–42], news [43–51], etc. have been intro-

duced to predict the movement of the stock market.
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In particular, the massive data sources resulting from human interaction with the Internet

have offered a new perspective on the behavior of market participants besides investors in the

stock market. For example, the SVI has been used to predict the movement of the stock mar-

ket [1, 21–26,30–34]. By introducing the search volume in Google of a sample of Russell 3000

stocks, Da et al. [1] found that the increase in the SVI could successfully predict higher stock

prices in a short term and eventual price reversal. Based on the Google trends or Baidu index,

the similar results of French, Japanese and Chinese stock markets have been found [32–34].

Preis et al. [21] found that the search volume of the Google trends for financial related words

could be used to predict the stock market volatility. Besides the SVI, the sentiment detected

from the social network users also could affect the movement of the stock market [35–40]. By

the inclusion of specific public mood dimensions, Bollena et al. [35] found that the prediction

accuracy of the Dow Jones Industrial Average can be significantly improved. These works

help us to predict the movement of the stock market in the new perspectives. However, in the

data generated from search engine, different users always input the same keywords with dif-

ferent motivations. Even for the exact same motivation, two users always input different key-

words. For the sentiment of the social networks, the sentiment need to be calculated based on

the ontology or domain dictionaries, which could not updated dynamically in terms of the

stock market, leading to biased prediction. In this paper, we argue that the data generated

from the stock trading platforms can reflect the investors’ attention more accurately and

effectively.

Inspired by the idea, by taking into account the increments of the attention volume for each

stock on the stock trading platforms, we present a new measure IAVS to quantify the investors’

attention for predicting the movement of the stock market. The measure IAVS introduced in

this paper refers to the daily increments of the aggregate number of each stock which is chosen

by investors into their watch lists in a stock trading platform. Fig 1 presents an illustration of

investors’ attention of stock market on 2017-03-04. Firstly, we quantify the effect of the inves-

tors’ attention on the returns of CSI100 using the BI and the IAVS to measure investors’ atten-

tion respectively. The results show that the BI is significantly correlated with the returns of

CSI100 at 1% significance level only in 2014. However, the correlation of the new proposed

measure, namely IAVS, is significantly at 1% significance level in 2014 and 2015. Secondly, we

investigate the relationship between the investors’ attention and the trading activities in the

stock market. The results indicate that the measure IAVS is correlated with the turnover of

CSI100 at 5% significance level in 2014. In addition, we test the robustness with other indices

in the stock market, including CSI500 and CSI-ALL, the results show that the IAVS is corre-

lated with the returns of CSI500 and CSI-ALL at 1% significance level in 2014 and the IAVS is

correlated with the returns of CSI-ALL at 5% significance level in 2015. Different from existing

proxy BI of the investors’ attention, the effect of the measure IAVS on the stock market is more

stable and significant.

Theoretical background and hypotheses development

We study the effect of investors’ attention on the stock market with different measures at three

levels in this work. Firstly, we investigate the effect of investors’ attention on the returns of

CSI100, CSI500, CSI-ALL at the same trading day. Secondly, we uncover the impact of inves-

tors’ attention on the returns of CSI100, CSI500, CSI-ALL in the following two trading days.

Finally, we testify the relationship between the investors’ attention and the trading activities in

the stock market at the same trading day. Fig 2 gives the illustration of the hypotheses struc-

tures presented in this paper.

An empirical analysis
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2.1 The effect of investors’ attention on stock index returns at the same

trading day

How does an increase in retail investors’ attention affect the stock index returns? Barber and

Odean [9] argued that individual investors are net buyers of attention-grabbing stocks and

thus an increase in individual investors’ attention results in temporary positive price pressure.

The reason behind their argument goes as follows. When individual investors are buying, they

have to choose from a large set of available alternatives. However, when they are selling, they

can only sell what they own. Within the framework of Barber and Odean [9], a positive inves-

tors’ attention should predict higher stock prices in the short term. This assumption has been

verified in the study of Da et al. [1] with the American stock market. Thus, we propose the fol-

lowing hypotheses:

H1a: Increased investors’ attention measured by the IAVS will lead to higher returns of corre-

sponding stock index at the same trading day.

H1b: Increased investors’ attention measured by the BI will lead to higher returns of corre-

sponding stock index at the same trading day.

Fig 1. Illustration of investors’ attention of the stock market on 2017-03-04. This figure gives an illustration of investors’ attention of stock market column

on 2017-03-04. This figure is intercepted from the stock trading platform named Choice, available online at http://choice.eastmoney.com/. As shown, it

mentions the top stocks chosen by investors into their watch lists on this stock trading platform on 2017-03-04, the increments and the ranking trend of

investors’ attention. In fact, we can get the increments and the ranking trend of investors’ attention of each stock in every trading day in mainland China by

collaborating with the eastmoney.com. Please note that the data publishes at 0 o’clock at the same trading day on the stock trading platform.

https://doi.org/10.1371/journal.pone.0176836.g001

An empirical analysis
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2.2 The impact of investors’ attention on stock index returns in the

following trading days

After the retail investors have made a purchase, professional investors and institutional inves-

tors holding high-attention stocks may be aware of the price premium that is included in their

price, and they may sell the stock for a premium. When the retail investors’ attention is dis-

tracted by other stocks, the price of high-attention stocks may reverse. The results of relative

studies [32–34] confirmed that while an increase in investors’ attention brings higher stock

prices, the price may reverse in a short term with the samples of French, Japanese and Chinese

stock markets. Thus, we propose the following hypotheses:

H2a: Increased investors’ attention measured by the IAVS will impact on the returns of corre-

sponding stock index significantly in the following trading days.

H2b: Increased investors’ attention measured by the BI will impact on the returns of corre-

sponding stock index significantly in the following trading days.

2.3 The relationship between the investors’ attention and trading

activities in stock market

Over recent years, researchers have found that psychological factors including attention appear

to have significant influences on the trading decisions of investors within the financial mar-

kets, and thus, on both returns and trading activities [52–54]. Trading volume and turnover

are two important indicators of the trading activities to describe the liquidity of the stock mar-

ket. Once an investor pay attention to some stocks, he or she would probably put these stocks

into their watch list termed, which will inevitably affect their expectations and behavior of

investment. And the final performance is there will be correlation between the investors’

attention and trading activities in the stock market. Yu and Zhang [49] argued that the stocks

with active performance of trading activities will cause more investors’ attention, thereby

Fig 2. Illustration of the hypotheses structures presented in this paper.

https://doi.org/10.1371/journal.pone.0176836.g002

An empirical analysis
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strengthen the correlation between the investors’ attention and trading activities [33]. Li

argued that the stocks with high trading volume bring more attention in news reports. Thus,

we propose the following hypotheses:

H3a: The investors’ attention measured by the IAVS has associated significantly with the trad-

ing activities of corresponding stock index.

H3b: The investors’ attention measured by the BI has associated significantly with the trading

activities of corresponding stock index.

Data collection and measures for variables

3.1 Data collection and analysis

In this paper, we introduce three databases, including search volume index of Baidu Index
(http://index.baidu.com/) termed BI as benchmark, investors’ attention on stock trading plat-

form (http://choice.eastmoney.com/) termed the IAVS, and stock transaction data from the

stock trading platform (http://choice.eastmoney.com/). The Baidu search engine is the largest

Chinese search engine in the world at present, and eastmoney.com is one of the largest and

most influential financial trading platform in mainland China with approximately 1.6 million

active users daily and more than one hundred million users so far. The BI is generated on

Baidu Index for the keywords of the names and codes of each stock; the measure IAVS is gener-

ated from eastmoney.com for the increments of attention volume of each stock. To match the

BI and the measure IAVS to the respective time series of the stock market we only consider

trading days of the stock markets in this paper.

This work focuses on the three major Chinese stock indices, including CSI100, CSI500, and

CSI-ALL, in the Shanghai Stock Exchange(SSE) and Shenzhen Stock Exchange(SZSE) in

mainland China from January 3, 2014 to December 31, 2015, when is the only period that we

can get the data for CSI100 from Baidu Index due to the service limitations of Baidu Index.

CSI100 consists of the largest 100 stocks in mainland China; CSI500 reflects the overall situa-

tion of small cap companies in Chinese stock markets; CSI-ALL consists of all securities in

mainland China. We use CSI100 to quantify the effect of the investors’ attention on the move-

ment of the stock market and compare the results between the IAVS and BI. Then we use

CSI500 and CSI-ALL to test the robustness of the results based on the IAVS as a measure of the

investors’ attention. Fig 3 gives the illustration of the correlation between the CSI100 returns

and the investors’ attention respectively measured by the BI and the IAVS. We also provide

explanation about the measures of this work in more detail in the rest of this section (The min-

imal data set is included in S1 and S2 Data).

Stationarity tests. To cover various combinations of relationships, we initially study stan-

dard transformations of the original series, i.e. the first differences. For each of the series, we

test their stationarity using the Augmented Dickey-Fuller test (ADF) [55] and the KPSS [56]

test. As both tests have opposite null and alternative hypotheses, they form an ideal pair for the

stationarity vs. unit-root testing [42]. For the BIi,t, we find the original series to be non-station-

ary and to contain the unit-root. Correspondingly, its first differences are stationary. The same

results are found for the Volumei,t, Turnoveri,t, we find the unit-root only for the first differ-

ences transformation of the series mentioned above. For this reason and also for more conve-

nient interpretation, we opt for the first differences series. And the original series IAVSi,t is not

always stationary in different indices, so we opt for the first differences of the series IAVSi,t (see

detailed discussion in S1 Text and S1 Table).

An empirical analysis
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Serial correlation tests. Turning now to the analysis of the serial correlation. At the

beginning, the autocorrelation coefficient, partial autocorrelation coefficient and Q statistic of

the residual series are calculated. If the corresponding p-value of the test is less than 0.05, the

null of no serial correlation is rejected and, therefore, it can be concluded that there might be

serial correlation in the returns [57, 58]. If the residual series of the regression equation has

serial correlation, it is necessary to modify the autocorrelation of the residuals in a correct way.

There is no serial correlation among all the modified regression equations, the estimated

results of which are valid (see detailed discussion in S2 Text, S1, S2, S3 and S4 Figs)

3.2 Independent variables

BIi,t. We construct a time series of daily aggregate search volume of each stock listed in the

index i on Baidu Index as the following way:

BIi;t ¼
Xn

j¼1

ðBInamej;i;t þ BIcodej;i;tÞ; ð1Þ

where BInamej,i,t and BIcodej,i,t are the aggregate search volume through its name or code of

Fig 3. The illustration of the correlation between the CSI100 returns and the investors’ attention measured by the BI and IAVS for the day. The

subplots (a)-(c) show the time series of Z-score of the returns of CSI100, the BI and the measure IAVS respectively, from which one can find that the measure

IAVS correlates with the returns of CSI100 more closely. The Z-score is calculated in the way z = (x − μ)/σ, where x, μ and σ denote the original, mean value

and standard deviation. We only consider trading days of the stock market, so there is no data in weekends and holidays.

https://doi.org/10.1371/journal.pone.0176836.g003

An empirical analysis
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stock j in the list of stock index i on day t via Baidu Index, n is the total number of the stocks

listed in stock index i. We use D_BIi,t indicate the first difference of the series BIi,t.
IAVSi,t. We construct a time series of daily attention increments of stocks in the index i on

the stock trading platform as the following way:

IAVSi;t ¼
Xn

j¼1

IAVSj;i;t; ð2Þ

where IAVSj,i,t is the daily attention increments of stock j which is in the list of stock index i on

day t via the stock trading platform. That is to say if one investor add stock j into his watch list

on day t, the attention increments of stock j will be added by 1 on day t on the stock trading

platform. And n is the total number of stocks listed in index i. Also, we use D_IAVS i,t indicate

the first difference of IAVSi,t.

3.3 Dependent variables

Returni,t. We construct a time series for daily returns of the stock indices without deduction of

charges as the following way:

Returni;t ¼
ðClosing pricei;t � Closing pricei;t� 1Þ

Closing pricei;t� 1

� 100%; ð3Þ

where Closing pricei,t is the closing price of index i on day t, and day t-1 is the trading day

before day t. Also, we use D_Returni,t indicate the first difference of the series Returni,t.
Volume i,t. We use this variable to describe the trading volume of index i on day t. Trading

volume measures the total number of shares or indices transacted for a specified security dur-

ing a specified time period. It includes the total number of indices transacted between a buyer

and seller during a transaction. When indices are more actively traded, their trade volume may

high, and when indices are less actively traded, their trade volume may low. Similarly, we use

D_Volumei,t indicate the first difference of the series Volumei,t.
Turnoveri,t. We use this variable to describe the turnover rate of index i on day t. The turn-

over rate is the percentage of a mutual fund or other investment’s holdings that have been

replaced in a given period. Generally speaking, high turnover rate of index means that the

index has strong liquidity. Similarly, we use D_Turnoveri,t indicate the first difference of the

series Turnoveri,t.
Table 1 gives the variable description used in this paper.

Table 1. Description of variables.

Variable Description

BIi,t The aggregate search volume number of all stocks listed in stock index i

on day t released at 24 o’clock at the same trading day on Baidu Index

IAVSi,t The Increments of the Attention Volume of all Stocks in stock index i

in all investors’ watchlist termed on day t released at 0 o’clock at the

same trading day on stock trading platforms

Returni,t The returns of stock index i on day t without deduction of charges

Volumei,t The trading volume of stock index i on day t

Turnoveri,t The turnover rate of stock index i on day t

https://doi.org/10.1371/journal.pone.0176836.t001

An empirical analysis
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Results

By using Single-Variable Regression Analysis in time series, we test the relationship between

the investors’ attention and the movement of the stock market. The investors’ attention was

measured by two different proxies, the BI and the IAVS, to compare with each other. First, we

estimate the Model I to testify the effect of the BI on the returns of stock index.

Returni;s ¼ b1 þ b2D BIi;t þ εi;s: ðIÞ

Also, we estimate the Model II to testify the effect of the IAVS on the returns of stock index.

Returni;s ¼ b3 þ b4D IAVSi;t þ εi;s; ðIIÞ

where s vary from t to t+1, t+2, that is, we use the variables of investors’ attention on day t to

predict the returns of the very trading day t and the following two trading days day t+1, day

t+2.

Then, we estimate the Model III to testify the relationship between the investors’ atten-

tion measured by the BI and the Trading_Activities. The Trading_Activities i,t includes the

D_Turnoveri,t and D_Volumei,t.

Trading Activitiesi;t ¼ b5 þ b6D BIi;t þ εi;t: ðIIIÞ

Also, we estimate the Model IV to testify the relationship between the investors’ attention

measured by the IAVS and the Trading_Activities. Similarly, the Trading_Activities i,t includes

the D_Turnoveri,t and D_Volumei,t.

Trading Activitiesi;t ¼ b7 þ b8D IAVSi;t þ εi;t: ðIVÞ

4.1 Results for CSI100

The sample in this section includes 73 stocks with no missing data in CSI100 with 485 daily

observations from January 3, 2014 to December 31, 2015. Particularly, we test the impact of

the investors’ attention for day t on the the stock index returns for day t, day t+1, day t+2 in

order to find whether the investors’ attention has prediction effect on the movement of the

stock market in the short term.

Table 2 shows the results of the regression modeling with CSI100. Firstly, the results show

that the coefficients of Returni,t are positive and significant at 1% significance level for

Table 2. Results of the regression modeling with CSI100.

Variables D_BIi,t
(2014)

D_IAVSi,t

(2014)

D_BIi,t
(2015)

D_IAVSi,t

(2015)

Returni,t 0.201**
(0.009)

0.419**
(0.000)

-0.147

(0.138)

0.261**
(0.000)

Returni,t+1 0.533**
(0.000)

-0.360**
(0.000)

-0.058

(0.597)

-0.141*
(0.011)

Returni,t+2 0.181

(0.087)

0.193*
(0.045)

-0.006

(0.783)

0.031

(0.639)

D_Turnoveri,t -0.000

(0.983)

0.234*
(0.026)

-0.032

(0.289)

0.181

(0.087)

Note:

**p < 0.01,

*p < 0.05

https://doi.org/10.1371/journal.pone.0176836.t002

An empirical analysis
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D_IAVS i,t and D_BIi,t in 2014, supporting the hypotheses H1a and H1b, which indicate that the

more investors’ attention of the stocks, the higher returns of the corresponding stock index at

the same trading day. Specifically, the D_IAVS i,t is released at 0 o’clock on day t which is before

the opening time of the stock market on day t. However, the D_BIi,t is generated at 24 o’clock

on day t which is after the closing time of the stock market on day t. So the IAVS may has pre-

diction effect on the movement of stock market at the same trading day.

Secondly, the coefficients of Returni,t+1 are significant at 1% significance level for D_IAVS i,t
and D_BIi,t in 2014, supporting the hypotheses H2a and H2b. Specifically, only the coefficients

of Returni,t+2 are significant at 5% significance level for D_IAVS i,t in 2014, supporting the

hypotheses H2a, which suggest that increased investors’ attention measured by the IAVS will

impact on the returns of corresponding stock index significantly in the following two trading

days.

Thirdly, the coefficients of D_Turnoveri,t are significant at 5% significance level for

D_IAVS i,t in 2014, supporting the hypotheses H3a. Different from the BI, the measure IAVS
has associated significantly with the Turnover of corresponding stock index at the same trading

day. According to the results, we find the effects of investors’ attention with different proxies

on the movement of the stock market in the following trading days are different. A reason may

be the different proxies are generated by different users, the IAVS is generated on stock trading

platform where the users are more professional in investment than the users on search engine

web.

It should be noticed the coefficients of Returni,t are significant at 1% significance level for

D_IAVS i,t in 2015, providing support for H1a. And the coefficients of Returni,t+1 are significant

at 5% significance level for D_IAVS i,t in 2015, providing support for H2a. However, the results

from the BI are not significant in 2015. The possible reason is that the stock market is changed

a lot between 2014 and 2015, and it is in the bullish market in 2014 and volatile market in 2015

in mainland China. From the empirical results, we find the measure IAVS contributes to the

forecasting for the movement of CSI100 persistently no matter how the market changes. Gen-

erally speaking, with the sample in this work, the results from the IAVS outperforms the results

of the BI.

4.2 Results for CSI500 and CSI-ALL

We explore the effect of investors’ attention on the movement of the stock market by using dif-

ferent stock indices, including CSI500 and CSI-ALL, to provide a cross-category robustness

check. The data sets contain 485 daily observations from January 3, 2014 to December 31,

2015.

Empirical analysis based on CSI500

Table 3 shows the results of the Regression Modeling with CSI500. The coefficients between

the independent variables D_IAVS i,t and the variables of the stock index, including Returni,t,
Returni,t+1, Returni,t+2, D_Volumei,t and D_Turnoveri,t for CSI500 are all significant at 5% sig-

nificance level for D_IAVS i,t in 2014, supporting the hypotheses H1a, H2a, H3a. The results

indicate that the more investors’ attention on the stocks of CSI500, the higher returns in the

first three trading days and active trading activities at the same trading day of CSI500 in 2014.

Although the coefficients between the D_IAVS i,t and the movement of the stock index in 2015

are not significant, the direction is the same as its in 2014.

Comparing the results of CSI500 with CSI100, we find that the measure IAVS is more effi-

cient to the stock index with large firms than small firms in volatile market. This results are

different from the argument posited by GM Mian and Sankaraguruswamy(2008) that the

An empirical analysis
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influence of sentiment on the stock price response is especially pronounced for small stocks

[51]. Both results tell us that the investors’ attention is not the same as the sentiment of inves-

tors, and the detail research need to be explored in future studies.

Empirical analysis based on CSI-ALL

Table 4 presents the results of the Regression Modeling with CSI-ALL. The coefficients

between the independent variables D_IAVS i,t and the variables of the stock index, including

Returni,t, Returni,t+1, D_Volumei,t and D_Turnoveri,t for CSI-ALL are all significant at 1% sig-

nificance level for D_IAVS i,t in 2014, providing support for H1a, H2a, H3a. The results indicate

that the more investors’ attention on the stocks of CSI-ALL, the higher returns in the first

three trading days and active trading activities at the same trading day of CSI-ALL in 2014.

In addition, the coefficients between the independent variables D_IAVS i,t and the variables

of the stock index, including Returni,t, D_Volumei,t and D_Turnoveri,t for CSI-ALL are signifi-

cant at 5% significance level for D_IAVS i,t in 2015, supporting the hypotheses H1a, H2a, H3a.

The results indicate that the more investors’ attention on the stocks of CSI-ALL, the higher

returns and active trading activities at the same trading day of CSI-ALL in 2015. Comparing

Table 4. Results of the regression modeling with CSI-ALL.

Variables D_IAVSi,t(2014) D_IAVSi,t(2015)

Returni,t 0.109**
(0.000)

0.090*
(0.019)

Returni,t+1 0.115**
(0.000)

0.006

(0.783)

Returni,t+2 0.107**
(0.000)

-0.015

(0.742)

D_Volumei,t 0.641**
(0.000)

0.256*
(0.010)

D_Turnoveri,t 0.175**
(0.000)

0.089*
(0.020)

Note:

**p < 0.01,

*p < 0.05

https://doi.org/10.1371/journal.pone.0176836.t004

Table 3. Results of the regression modeling with CSI500.

Variables D_IAVSi,t(2014) D_IAVSi,t(2015)

Returni,t 0.118**
(0.009)

0.164

(0.155)

Returni,t+1 0.284*
(0.022)

0.104

(0.370)

Returni,t+2 0.214*
(0.013)

0.102

(0.482)

D_Volumei,t 0.878**
(0.000)

0.076

(0.332)

D_Turnoveri,t 0.146**
(0.000)

0.175

(0.346)

Note:

**p < 0.01,

*p < 0.05

https://doi.org/10.1371/journal.pone.0176836.t003

An empirical analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0176836 May 23, 2017 10 / 16

https://doi.org/10.1371/journal.pone.0176836.t004
https://doi.org/10.1371/journal.pone.0176836.t003
https://doi.org/10.1371/journal.pone.0176836


the results between 2014 and 2015, we find the IAVS is efficient to the movement of CSI-ALL,

although it has experienced a volatile period in Chinese stock market in 2015.

Among the results of CSI-ALL, CSI100 and CSI500, we could find the consistent results in

most cases as follows: (1) the effect of investors’ attention measured by the IAVS on the returns

of the stock index at the same trading day are positive and significant; (2) the relationship

between the investors’ attention measured by the IAVS and the trading activities of the corre-

sponding stock index at the same trading day are positive and significant; (3) the impact of

investors’ attention measured by the IAVS on the movement of the stock index with small

firms are the same as the stock index with all firms.

Conclusion and discussions

To accurately predict the movement of the stock market, different with the traditional mea-

sures of investors’ attention, including the Google trend and Baidu Index, we empirically inves-

tigate the effect of the investors’ attention, namely IAVS generated by investors on the stock

trading platforms on the movement of the stock market. The measure IAVS is updated rapidly,

providing first-hand information to reflect the investors’ attention ahead of other sources.

Thus, the attention volume of each stock provides us with a good context to study how to

quantify the investors’ attention effectively and what are the influences of investors’ attention

on the movement of the stock market.

In this paper, we propose the hypotheses that the investors’ attention will impact on the

returns and the trading activities of corresponding stock index in a short time. By using Sin-

gle-Variable Regression Analysis in time series, we test the relationship between the investors’

attention, measured by two different proxies the BI and IAVS, and the movement of the stock

market. The samples includes CSI100, CSI500 and CSI-ALL with 485 daily observations from

2014 to 2015. The findings in this work show that the results of the measure IAVS generated

from the stock trading platform is more significant and stable than the BI generated from the

search engine. The experimental results mainly show that compared with the BI, the measure

IAVS is significant related to the returns of the corresponding stock indices CSI100 and

CSI-ALL at the same trading days in 2015; the measure IAVS is significant related to the

returns of the corresponding stock index in the first three trading days in the bullish market in

2014; the measure IAVS has associated significantly with the trading activities of correspond-

ing stock index at the same trading day. From the results, we also get the findings that the effect

of the measure IAVS on the movement of the stock market may differ depending on the firm’s

size, which show that the measure IAVS is more significant to the movement of stock index

containing large firms; and the effect of the measure IAVS on the movement of the stock mar-

ket is also influenced by the market environment, which show that the results of the bullish

market in 2014 are more stable than those of the volatile market in 2015 in mainland China.

From a theoretical perspective, our study enriches extant research by focusing on the rela-

tionship between the investors’ attention and the movement of the stock market. Specifically,

we developed the measure IAVS to quantify the investors’ attention, which also can be readily

applied to predict the financial risks or understand the collective investors’ behavior. From a

practical perspective, our findings may help retail investors better predict the stock index

trends, based upon which they can make better investment decisions. Stock price prediction is

an important and challenging problem for studying financial markets, which has been investi-

gated in different ways. Recently, Lin et al. [59] found that the friendship networks and infor-

mation asymmetry play an important role for the P2P lending system. Therefore, how to

construct the trader social network [60] in terms of their trading behavior, and how to con-

struct the stock network in term of the movement of stock pricing [61–63], as well as how to
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measure the effect of the network structure on the prediction performance are open questions,

which would be investigated in our future research direction. Besides the social network struc-

ture, for the online traders, the collective holding behaviors [64, 65] and social influence [66]

would affect their trading decision. More importantly, to identify the mechanism of the online

trading system, predict the movement of stock market, and build the recommendation system

[67], we need to investigate the above questions from the viewpoint of complex systems, which

could bring new insights and knowledge for deeply understanding the evolution mechanism

of the stock market.
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