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Abstract

PRSS3/mesotrypsin is an atypical isoform of trypsin, the upregulation of which has been

implicated in promoting tumor progression. To date there are no mesotrypsin-selective phar-

macological inhibitors which could serve as tools for deciphering the pathological role of this

enzyme, and could potentially form the basis for novel therapeutic strategies targeting

mesotrypsin. A virtual screen of the Natural Product Database (NPD) and Food and Drug

Administration (FDA) approved Drug Database was conducted by high-throughput molecu-

lar docking utilizing crystal structures of mesotrypsin. Twelve high-scoring compounds were

selected for testing based on lowest free energy docking scores, interaction with key meso-

trypsin active site residues, and commercial availability. Diminazene (CID22956468), along

with two similar compounds presenting the bis-benzamidine substructure, was validated as

a competitive inhibitor of mesotrypsin and other human trypsin isoforms. Diminazene is the

most potent small molecule inhibitor of mesotrypsin reported to date with an inhibitory con-

stant (Ki) of 3.6±0.3 μM. Diminazene was subsequently co-crystalized with mesotrypsin and

the crystal structure was solved and refined to 1.25 Å resolution. This high resolution crystal

structure can now offer a foundation for structure-guided efforts to develop novel and poten-

tially more selective mesotrypsin inhibitors based on similar molecular substructures.

Introduction

PRSS3/Mesotrypsin is one of three tryptic digestive enzymes produced and secreted from the

human pancreas. Unlike other trypsin isoforms, it possesses resistance to proteinaceous tryp-

sin inhibitors [1–3]. Additionally, mesotrypsin displays differential activity from the other two

human trypsin isoforms, displaying reduced capability for activating pancreatic zymogens [3],

reduced activation of protease activated receptors (PARs) [4, 5], and elevated proteolytic activ-

ity towards proteinaceous trypsin inhibitors [3, 6–10]. Mesotrypsin represents a minor
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constituent of pancreatic secretions, and is hypothesized to be important in the digestion of

trypsin inhibitors from the diet [3]. PRSS3 expression outside of the digestive tract has also

been described; for example, splice isoform gene products of PRSS3 known as trypsinogen 4

and 5 are found in the brain and epidermis [10–12]. Tissue specific expression of these iso-

forms is driven from distinct promoters, while the active forms of these proteases are of identi-

cal sequence to pancreatic mesotrypsin. In the skin, mesotrypsin has been found to contribute

to epidermal barrier permeability formation, keratinocyte terminal differentiation, and epider-

mal desquamation [12–14] while no function has yet been attributed to the high levels

expressed in the brain.

Mesotrypsin expression has been observed in a number of different cancers including non-

small cell lung cancer (NSCLC) [15], breast [16], esophageal [17], pancreatic [18], prostate

[19], and ovarian cancers [20]. Elevated PRSS3/mesotrypsin expression is associated with poor

prognosis in NSCLC, pancreatic, prostate, and ovarian cancers [15, 18–20]. In prostate cancer

this overexpression is associated with a metastatic phenotype, which is recapitulated in culture

models and mouse xenograft studies [19]. Studies with cell and animal models have likewise

functionally implicated mesotrypsin as a contributor to progression and metastasis of pancre-

atic cancer [18]. Upregulation of mesotrypsin in endothelial cells is associated with cell migra-

tion and angiogenic stimulation by degradation of tissue factor pathway inhibitor-2 (TFPI-2)

[9]. This and other data taken together advocate that targeting mesotrypsin may represent an

effective therapeutic strategy for intervening in cancer progression and metastasis.

Trypsin family members share high sequence identity and homology making selective tar-

geting a challenge. Our group has previously employed structure-based and directed evolution

protein engineering efforts focused on modifying natural serine protease inhibitors to identify

stabilizing mutations which would confer improved affinity towards mesotrypsin while also

slowing the rate of proteolysis [21–23]. Another study used the phage display technique to

identify small peptide inhibitors of mesotrypsin [24]. However, peptide and protein-based

therapeutics face difficulties during drug development due to challenges including poor cellu-

lar uptake, poor solubility and pharmacokinetics, and issues relating to immunogenicity, stor-

age, stability, and formulation [25]. These are areas in which small molecule therapeutics can

offer advantages over peptide or protein-based drugs. Efforts to develop mesotrypsin small

molecule inhibitors have been limited to one study by Karle and associates [26], in which the

compounds had high IC50 values (upper micromolar to millimolar range), potentially limiting

their utility.

To identify better small molecule inhibitors, here we describe a structure guided effort uti-

lizing virtual screening to identify compounds with predicted activity towards mesotrypsin.

Three compounds displaying inhibitory activity towards mesotrypsin were identified, and

evaluated for selectivity among human trypsin isoforms. Additionally, we report a 1.25 Å crys-

tal structure of the top candidate in complex with mesotrypsin, which we anticipate can serve

as a springboard for further future development of mesotrypsin selective compounds.

Results and discussion

Molecular docking identifies candidate molecules with prospective

mesotrypsin inhibitory activity

An ensemble docking-based virtual screening [27] of compounds from the FDA and NPD

databases was conducted using three crystal structures of mesotrypsin (PDB IDs: 3P92 [22],

3P95 [22], and 1H4W [2]). Positive hits were chosen based on low docking scores to mesotryp-

sin and crucial hydrogen bond interactions observed with mesotrypsin binding pocket resi-

dues such as Asp-189, Ser-190, Gln-192, Arg-193, and Gly-216 [22]. The docking scores were
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formulated on the “extra-precision” XP Glide software algorithm which considers factors such

as: lipophilicity, displacement of water, hydrogen bonding and electrostatic interactions, and

metal ion/ligand interactions as favorable interactions, while the desolvation of polar or

charged groups, restriction of motion, and the entropic cost of binding adversely affect dock-

ing score [28, 29]. Twenty-eight top compounds were computationally predicted to exhibit

activity towards mesotrypsin based on the virtual screening; details of selection criteria are

described in Materials and Methods.

Virtual screening and experimental validation identify bis-benzamidine

compounds with mesotrypsin inhibitory activity

From the twenty-eight top compounds identified in the virtual screen, twelve compounds

were found to be readily commercially available and were therefore procured and evaluated

for inhibitory activity towards mesotrypsin (Fig 1, S1 Table). Compounds were tested by an in
vitro activity assay utilizing the colorimetric peptide reporter substrate N-Cbz-Gly-Pro-Arg-

pNA. The assay monitors the rate of para-nitroaniline production after substrate cleavage by

mesotrypsin. Of the twelve compounds tested, ten displayed no inhibitory activity towards

Fig 1. Commercially available compounds from virtual screen of FDA and NPD databases.

https://doi.org/10.1371/journal.pone.0176694.g001
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mesotrypsin into the low millimolar range. Conversely, two compounds, diminazene (CID

22956468) and hydroxystilbamidine (CID 16212515) exhibited inhibitory activity towards

mesotrypsin in the low micromolar range (Fig 2A and 2B).

The two inhibitory compounds are structurally similar bis-benzamidine analogs differing

in the composition of the linker region. Although our virtual screen had not employed any

prior knowledge about trypsin inhibitory compounds, a literature search of these compounds

Fig 2. Mesotrypsin inhibitory activity of select compounds from virtual screening effort. A) Log-Linear plots from the activity

assay for representative compounds that showed no activity towards mesotrypsin. B) Log-Linear plots of mesotrypsin inhibition by

compounds CID22956468 and CID16212515, subsequently identified as diminazene and hydroxystilbamidine, respectively.

https://doi.org/10.1371/journal.pone.0176694.g002

Small molecule inhibitors of mesotrypsin from a structure-based docking screen

PLOS ONE | https://doi.org/10.1371/journal.pone.0176694 May 2, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0176694.g002
https://doi.org/10.1371/journal.pone.0176694


revealed that diminazene and pentamidine, another bis-benzamidine analog, are both trypa-

nocidal drugs with known inhibitory activity towards trypanosome serine oligopeptidase [30],

while also displaying activity against bovine trypsin [30, 31]. Upon obtaining pentamidine, we

assayed the three bis-benzamidine compounds against mesotrypsin over multiple substrate

and compound concentrations to determine the inhibition mode: competitive, non-competi-

tive, or mixed inhibition. All three compounds exhibited a competitive inhibition mode of

binding toward mesotrypsin (shown for diminazene in Fig 3), with inhibition constants (Ki) of

3.66, 5.10, and 10.57 μM for diminazene, pentamidine, and hydroxystilbamidine respectively

(Fig 4).

To assess compound selectivity we determined Ki for the three compounds towards related

human trypsin isoforms trypsin 1 (cationic trypsin) and trypsin 2 (anionic trypsin). All three

compounds displayed the tightest affinity for anionic trypsin, slightly reduced affinity for cat-

ionic trypsin, but presented marginal selectivity among these two isoforms. Diminazene

bound to mesotrypsin most tightly while also being the least selective for the other trypsin iso-

forms (Fig 4), and was in turn selected as the best candidate compound for further investiga-

tion based on this profile.

High resolution crystal structure of diminazene in complex with

mesotrypsin

We set out to crystallize diminazene with mesotrypsin to gain a structural view of this candi-

date compound bound within the mesotrypsin active site. Protein crystals were grown at

room temperature, harvested, and cryoprotected prior to data collection. Data were

collected from one crystal which diffracted to 1.25 Å resolution. The diminazene-mesotrypsin

complex crystallized in the P212121 space group having the unit cell dimensions of a = 40.92,

b = 64.44, c = 80.68 and αβγ = 90˚ (Table 1). The structure was solved using molecular

replacement.

Following refinement, well defined density was observed for the first benzamidine moiety

of diminazene, which was observed to bind within the specificity pocket of mesotrypsin

(Fig 5). Trypsins cleave after basic residues lysine and arginine, and use the charge comple-

mentarity of the specificity pocket to recognize their substrates. This interaction and specificity

is mediated by Asp-189 which lies at the base of the pocket and forms salt bridge interactions

with the ε-amino or guanidinium group of the substrate residue. In the present structure,

nitrogen atoms NAA and NAC of diminazene display hydrogen bonding contacts with Asp-

189 of the specificity pocket. The positioning of diminazene in the specificity pocket closely

recapitulates the position predicted for the ligand by the docking screen, with a ligand RMSD

of 0.614 Å (Fig 6A). The second benzamidine moiety of the diminazene molecule exhibited

diffuse density, which may be attributable to exposure to the solvent channel, permitting mul-

tiple ligand conformations (Fig 5). We anticipate the conformational disorder observed in

diminazene could arise in part from cis-to-trans isomerization of the triazene linker [32, 33].

Diminazene has been previously observed as two distinct conformational isomers bound to

bovine trypsin in PDB IDs: 3GY2, 3GY6 (Fig 6B) [31].

Molecular docking predicts potential diminazene interaction with

distinctive mesotrypsin Arg-193 residue

Mesotrypsin differs from other human trypsin family members at twenty-eight residues; Arg-

193 is one of the most critical because it is located within the active site, at a position where

almost all other trypsin and chymotrypsin family serine protease members possess a highly

conserved glycine residue. This critical residue is a major contributor to mesotrypsin’s

Small molecule inhibitors of mesotrypsin from a structure-based docking screen
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Fig 3. Diminazene (CID 22956468) is a competitive inhibitor of mesotrypsin. A) Global fit for the

competitive inhibition equation to inhibition data and B) Lineweaver-Burk transform reveal competitive mode

of inhibition for diminazene as evidenced by convergence of the Lineweaver-Burk plot on the y-axis. Results

are representative of duplicate independent experiments.

https://doi.org/10.1371/journal.pone.0176694.g003

Small molecule inhibitors of mesotrypsin from a structure-based docking screen

PLOS ONE | https://doi.org/10.1371/journal.pone.0176694 May 2, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0176694.g003
https://doi.org/10.1371/journal.pone.0176694


resistance to inhibition and enhanced proteolytic activity towards protein protease inhibitors

[2, 3, 6, 34]. Although our high resolution crystal structure revealed the second benzamidine

ring of diminazene to be poorly ordered within the mesotrypsin active site, the top ranking

binding pose of this molecule from the virtual screen presented a conformational isomer with

diminazene interaction at Arg-193 (Fig 6). We hypothesize that future compound optimiza-

tions may enhance the interaction with this distinctive active site residue, producing small

molecule inhibitors with improved selectivity toward mesotrypsin versus other trypsins and

related proteases. Derivatization efforts may include rigidifying the compound scaffold, maxi-

mizing stability of conformers that contact Arg-193, and evaluating substitutions of the ami-

dine moiety to optimize polar and electrostatic interactions at the Arg-193 guanidinium

moiety. Scaffold “rigidification” is a known approach to improve potency and specificity of

compounds toward macromolecular targets [35–38], which given the conformational disorder

found in the diminazene co-crystal structure with mesotrypsin, is likely beneficial.

Conclusions

Mesotrypsin has been identified as a facilitator of cancer progression thereby suggesting meso-

trypsin could represent a druggable target, but currently no small molecule inhibitors

Fig 4. Structural comparison and selectivity of validated mesotrypsin inhibitors. †Benzamidine inhibition constant versus trypsin IV

(mesotrypsin) is as reported in [2].

https://doi.org/10.1371/journal.pone.0176694.g004
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demonstrate enough discrimination between trypsin family members. Mesotrypsin displays

unique active site features and conformational dynamics [34] which can in turn influence sub-

strate motions [39]. Diminazene, a bis-benzamidine analog with mesotrypsin inhibitory activ-

ity, presents an attractive starting point for the development of more selective mesotrypsin

inhibitors. This new high resolution crystal structure of mesotrypsin complexed with dimina-

zene could help facilitate derivatization efforts, addressing current pan-inhibition of human

trypsins through rigidification of diminazene to select for a conformation that maximizes

interactions with the non-conserved Arg-193 residue.

Table 1. X-ray data collection and crystal refinement statistics.

mesotrypsin-diminazene

PDB code 5TP0

Data collection

Space group P212121

Cell dimensions

a, b, c (Å) 40.92, 64.44, 80.68

α, β, γ (˚) 90, 90, 90

Resolution (Å) 50–1.25 (1.27–1.25)

Rmerge 0.045 (0.222)

Rmeas 0.047 (0.250)

Rp.i.m 0.013 (0.112)

CC1/2 ND (0.954)

I/σI 52.1 (5.1)

Completeness (%) 98.4 (82.3)

Redundancy 11.1 (4.5)

Refinement

Resolution (Å) 50–1.25

No. reflections 55799

Rwork / Rfree 11.8 / 13.7

No. atoms

Protein 1772

Ligand/ion 42 (1 CA, 4 SO4, 1 DRG)

Water 226

B-factors

Protein 12

Ligand/ion 18

Water 27

Ramachandran statistics

Favored (%) 99

Allowed (%) 1

Outliers (%) 0

R.m.s deviations

Bond lengths (Å) 0.0252

Bond angles (˚) 2.17

Values from highest resolution shell are shown in parentheses.

ND, CC1/2 for full dataset was not reported by HKL-2000.

https://doi.org/10.1371/journal.pone.0176694.t001
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Materials and methods

Virtual screening using Glide

The crystal structures of mesotrypsin (PDB IDs: 3P92 [22], 3P95 [22], and 1H4W [2]) were

downloaded from the Protein Data Bank [40]. The three mesotrypsin structures were further

converted into all-atom, fully prepared receptor model structures by using the Protein Prepa-

ration Wizard module in Maestro (Maestro version 9.2, Schrödinger, LLC). Default settings

were used, except that bovine pancreatic trypsin inhibitor (BPTI) variants were cut to leave

only the Arg-15 ligand residue in 3P92 and 3P95 structures. Next, the docking receptor grid

was created using the Receptor Grid Generation feature (Glide version 5.7, Schrödinger, LLC).

The grid boxes and centers were generated using default settings by identifying the mesotryp-

sin ligands BPTI Arg-15 (for 3P92 and 3P95) and BEN (for 1H4W). Meanwhile, the FDA and

NPD Databases were downloaded from the ZINC database (http://zinc11.docking.org/

vendor0/) and further processed by using Schrodinger’s LigPrep (LigPrep, version 2.5, Schrö-

dinger, LLC).

We used the Virtual Screening Workflow (VSW) in Schrödinger to run the docking screen-

ing of FDA and NPD databases targeted to an ensemble of three receptor grids (3P92, 3P95

and 1H4W). In the VSW procedure, the docking of the compounds in a database into each

receptor grid was hierarchically performed using the Glide program (Glide version 5.7, Schrö-

dinger, LLC) through three accuracy levels: HTVS, SP (Standard Precision) [28] and XP (Extra

Precision)-docking [29] in successive steps. The screening processes outputted six rank lists of

compound leads, each list corresponding to the screening of one database to one receptor grid.

Docked poses of all compounds with docking scores <-10.0 kcal/mol versus one or more

receptor grid using the XP algorithm were visually examined for hydrogen bond interactions

Fig 5. Crystal structure of mesotrypsin in complex with diminazene. Mesotrypsin Arg-193 is shown with carbon atoms in

periwinkle, other mesotrypsin residue carbons are in green, and diminazene is shown with carbon atoms in magenta. Omit

difference map contoured at 2.0σ shown in the right panel displays well-defined electron density for the upper benzamidine group

bound within the specificity pocket. The remainder of the molecule, unmodelled in the deposited coordinate file, is disordered as

portrayed by the diffuse density around the lower benzamidine moiety, revealing that the drug is able to adopt multiple

conformations within the solvent channel.

https://doi.org/10.1371/journal.pone.0176694.g005
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Fig 6. Conformational isomers of diminazene within the trypsin active site. A) Structural overlay of the top

diminazene docking pose (yellow) and crystallographic structure (Mesotrypsin, green; Arg-193, purple; diminazene,

magenta) show good correlation between the predicted and observed ligand positioning in the mesotrypsin specificity

pocket, with a ligand RMSD of 0.614 Å. Atoms of the second benzamidine moiety lacking defined density in the crystal

structure are represented as transparent sticks, and were not used in the RMSD calculation. B) A structural overlay of the

mesotrypsin-diminazene docking pose (mesotrypsin, green; diminazene, yellow) with bovine trypsin (gray) in complex with

diminazene (orange, cyan) from entries 3GY2 and 3GY6 [31] highlights the multiple diminazene binding conformations

possible within the trypsin active site. Catalytic triad residues are shown in red, specificity pocket residue Asp-189 in

salmon, and mesotrypsin Arg-193 shown in green.

https://doi.org/10.1371/journal.pone.0176694.g006
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observed with mesotrypsin binding pocket residues including Asp-189, Ser-190, Gln-192, Arg-

193, and Gly-216. Twenty-eight of the compounds showed four or more direct hydrogen

bonds with the enzyme, and thus were selected for a final list representing all of the hits with

XP docking scores lower than -10 kcal/mol versus one or more of the three receptor grids, and

also possessing four or more hydrogen bonds with mesotrypsin. Among these 28 compounds,

12 were found to be readily commercially available and thus were procured for experimental

validation.

Protein expression and purification

Recombinant human anionic trypsinogen, human cationic trypsinogen and human mesotryp-

sinogen were expressed in E. coli, extracted from inclusion bodies, refolded, purified and acti-

vated with bovine enteropeptidase as described in previous work [6, 22].

Compounds

Milligram quantities of each compound were requested or procured from commercial sources.

Diminazene (CID 22956468), pentamidine (CID 4735), hydroxystilbamidine (CID 16212515),

and CID 6950972 were received from the National Cancer Institute Developmental Therapeu-

tics Program (NCI-DTP) (Rockville, MD). CID 3730 and 25271698 were purchased from

Prestwick Chemical (San Diego, CA), and CIDs 11873314, 5571179, 40824176, 40815108,

6770655, 1548909, 7017981 were purchased from InterBioScreen Ltd (Russia)

Mesotrypsin activity and competitive inhibition assays

Active mesotrypsin was quantified by active site titration as described in [21] using 4-nitrophe-

nyl-4-guanidinobenzoate (NPGB) from Sigma. Concentrations of colorimetric peptide

reporter substrate N-Cbz-Gly-Pro-Arg-pNA (Sigma) for the activity and competitive inhibi-

tion assay were determined by end point assay. Working stocks for compounds were diluted

in dimethylsulfoxide (DMSO) and stored at -20˚C. Compounds were assessed for mesotrypsin

inhibitory activity in reactions carried out in cuvettes at 37˚C in a Varian Cary-100 spectro-

photometer. Reactions consisted of 0.25 nM enzyme, 100 μM reporter substrate, 100 mM Tris-

HCl pH 8.0, 1 mM CaCl2, and a compound concentration range between 50 nM to 500 μM in

the assay. Reactions were followed for approximately three minutes, with the initial rates deter-

mined by the linear increase in absorbance resulting from para-nitroaniline production

(ε410 = 8480 M-1 cm-1). Absorbance versus compound concentration was plotted on a Linear-

Log scale to determine IC50.

The competitive inhibition assay reactions consisted of 0.25 nM enzyme, five reporter sub-

strate concentrations between 10 μM-200 μM, and five inhibitory compound concentrations

between 1–30 μM. Reactions were followed for approximately 3 minutes, and the initial rate

data were globally fitted using Prism (GraphPad Software, San Diego CA) by non-linear

regression based on Eq 1. Results are from duplicate independent experiments.

V ¼
Kcat½E�o½S�

Km 1þ
½I�
Ki

� �
þ ½S�

ð1Þ

Protein crystallization

Mesotrypsin was mixed with 1 mM diminazene at a total protein concentration of 4 mg/mL.

Protein complex solution was mixed 1:1 (v/v) with reservoir solution, and crystallized via the
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hanging drop method over a reservoir solution containing 2 M ammonium sulfate, 0.1 M

HEPES pH 7.5, and 2% PEG-400 at room temperature. Crystals were harvested, cryoprotected,

and flash cooled in liquid N2. X-ray diffraction data were collected at beamline X25 at the

National Synchrotron Light Source, Brookhaven National Laboratory. Data were collected at

100 K from one crystal that diffracted to 1.25 Å. Data were merged and scaled with HKL-2000

[41]. The crystal belonged to the space group P212121, with unit cell dimensions a = 40.92,

b = 64.44, c = 80.68, αβγ = 90˚, and contained 1 copy of the complex in the asymmetric unit.

The structure was solved by molecular replacement using MOLREP in CCP4 [42], using as the

search model the complex of benzamidine with mesotrypsin (also known as brain trypsin IV;

PDB ID 1H4W). Refinement employed alternating cycles of manual rebuilding in WinCOOT

[43, 44] and automated refinement using REFMAC5 [45]. The final stage of refinement

included addition of solvent molecules into peaks greater than 1σ and within acceptable

hydrogen bonding distance from neighboring protein atoms. The quality of the final models

was analyzed using wwPDB validation tools [46]. The coordinates and structure factors have

been submitted to the Worldwide Protein Data Bank under the accession code 5TP0. Structure

figures were generated using PyMOL version 1.7.4 (Schrodinger, LLC).

Supporting information

S1 Table. Structures and docking scores of 12 compounds tested from the FDA and NPD

databases.

(PDF)
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