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Abstract

An increasing amount of species and gene identification studies rely on the use of next gen-

eration sequence analysis of either single isolate or metagenomics samples. Several meth-

ods are available to perform taxonomic annotations and a previous metagenomics

benchmark study has shown that a vast number of false positive species annotations are a

problem unless thresholds or post-processing are applied to differentiate between correct

and false annotations. MGmapper is a package to process raw next generation sequence

data and perform reference based sequence assignment, followed by a post-processing

analysis to produce reliable taxonomy annotation at species and strain level resolution. An

in-vitro bacterial mock community sample comprised of 8 genuses, 11 species and 12

strains was previously used to benchmark metagenomics classification methods. After

applying a post-processing filter, we obtained 100% correct taxonomy assignments at spe-

cies and genus level. A sensitivity and precision at 75% was obtained for strain level annota-

tions. A comparison between MGmapper and Kraken at species level, shows MGmapper

assigns taxonomy at species level using 84.8% of the sequence reads, compared to 70.5%

for Kraken and both methods identified all species with no false positives. Extensive read

count statistics are provided in plain text and excel sheets for both rejected and accepted

taxonomy annotations. The use of custom databases is possible for the command-line ver-

sion of MGmapper, and the complete pipeline is freely available as a bitbucked package

(https://bitbucket.org/genomicepidemiology/mgmapper). A web-version (https://cge.cbs.

dtu.dk/services/MGmapper) provides the basic functionality for analysis of small fastq

datasets.

Introduction

The advances in rapid and efficient DNA sequencing technologies have made it possible to

study microbial communities from a wide variety of environments, such as sediments [1][2],
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water [3], ice [4], and humans [5][6]. Among the known DNA sequencing platforms, Illumina

HiSeq and MiSeq are often preferred for both single genome and metagenomics studies, due

to the large data output and a relatively low cost per base pair. Applying the whole genome

shotgun sequencing technique, all DNA in a biological sample is sequenced and several mil-

lions of short read nucleotide sequences are produced. Metagenomics data from a single

human gut sample is a complex system representing hundreds of organism and even more

diversity is expected when samples originate as a mixture from many individuals e.g. humans

or animals from sewage systems, public transportation sites or animal farms. The interest in

analyzing such datasets may be monitoring of bacterial or viral pathogens, identification of

anti-microbial resistance genes, phage identification or simply obtaining a complete catalogue

of the organisms that are present. Such analysis is not straight-forward, it requires programs

that can perform the mapping of fastq sequence reads to many reference sequence databases

without an extensive memory usage, parsing and validating sequence alignment hits, taxon-

omy annotation with a reduced false positive rate and finally presenting output of the taxon-

omy analysis and also providing files for further downstream analysis (SNP or contig

assembly. MGmapper was made to provide an access for routine analysis of complex datasets,

enabling usage of many whole genome reference sequence databases like bacteria, virus, fungi,

plant, vertebrate-mammals, invertebrates and also enables the usage of gene databases like

anti-microbial resistance genes, 16S rRNA or any custom database based on a set of fasta

sequences. The huge fasta sequence databases like plant (208gb fasta) vertebrate mammals

(316gb fasta) or invertebrates (150gb fasta) can be split into smaller chunks (10gb fasta) thus

the total memory requirement is reduced to 30–40gb memory when running MGmapper.

Also, most tasks are run in parallel for fast execution.

The task to assign each of those nucleotide reads to the genome that they represent is chal-

lenging and the problem of false positive predictions is always an issue to be considered for

alignment based methods where a query sequence is mapped against a large database of tar-

get sequences. As target databases increase in size, the chance of finding hits for random rea-

sons also increases. For decades the Blast program suite [7] has been one of the most

frequently used programs for pairwise alignment of a query sequence against a large database

of target sequences. Blast utilizes a filter in form of an expect value as a threshold, to reduce

the number of false positives. In general methods within the field of taxonomy annotation

rarely use filters or cutoffs, but a recent benchmark study showed the need, as several meth-

ods vastly over predict the number of species present when evaluated on both in vitro and in
silico datasets [8]. The study involved benchmarking of 15 taxonomy annotation methods

where two of them, a filtered version Kraken [9] and CARMA3 [10], correctly identified all

species present in an in vitro dataset, using a read count abundance threshold at 0.1%. Also,

the methods MEGAN4 [11][12] RAPSearch2 [13] performed well with only one false positive

species annotation.

The read count abundance measure is biased as more reads are sequenced from larger

genomes compared to smaller genomic sequences like viruses and plasmids. Thus a normaliza-

tion of read count abundances with the reference sequence size can adjust for a skewed perfor-

mance that favors large reference sequences. In the MGmapper method we have introduced

such a measure to reduce the false positive taxonomy annotations. During whole genome shot-

gun sequencing, all DNA is fragmented and sequenced from one or both ends depending on

whether single-end or paired-end reads are produced. Thus our size normalized read count

abundance (S_Abundance) is divided by 2 in case paired-end reads are used and multiplied by

100 for convenience i.e. 100�ReadCount/Size(bp)�2, where Size is the length of a reference

sequence. Using the normal read count abundance (ReadCount/Reads_in_sample) as in the

work by Peabody et al. [8], a threshold at 0.1% appeared to be the best cut-off to differentiate
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between true and false taxonomy annotations. For the S_Abundance, a threshold of 0.01 was

the best cut-off, based on benchmarking data as used by Peabody et al. One drawback of using

a size normalized abundance as criterion for true positive annotations is that, in case of small

reference sequences, only a few assigned reads are needed to pass the cutoff. Therefore a lower

read-count abundance-threshold could be introduced, although the exact value may be diffi-

cult to assign.

Identifying a specific reference sequence e.g. a bacterial strain or an anti-microbial resis-

tance gene in a pool of highly similar sequences is a challenge for any taxonomy annotation

method. Only a few sequence reads aligned to specific marker regions may enable the differen-

tiation between closely related genes or strains. For this reason the presence of uniquely

mapped sequence reads to one specific target reference sequence is a strong indicator that the

target sequence is actually present in the sample. K-mer based methods like Kraken [9] or

KmerFinder [14] require a 100% identity between a query fragment and a database hit with

the annotation for that fragment. Typically k-mers with a of length of 31bp are used and at

that size a kmer may be assigned to several reference sequences. For the Kmerfinder [14]

method an expectation value is calculated as the number kmers assigned to a specific reference

sequence within a database compared to the number of hits to other reference sequences in

the same database. The Kraken [9] method utilizes another approach based on identifying the

Lowest Common Ancestor (LCA) for each of the kmers originating from a sequence read. A

score is calculated as the fraction of kmers that are rooted to a specific taxa compared to total

number of LCA kmers that are assigned to a fastq read. As Kraken can calculate a score for a

fastq read based on k-mer counts, alignment based methods utilize a sequence alignment score

for the individual reads. Alignment based methods can handle nucleotide variations between a

query read and a reference sequence, and the alignment score is typically used to differentiate

the best alignment from secondary alignments with a lower score. The scoring scheme itself is

based on heuristics arguments as in Blast [7], and BWA-mem [15], where scores for a nucleo-

tide match, mis-match and inserts/deletions (INDELs) are summed to an overall alignment

score. Thus alignment-based methods provide both numbers for uniquely mapped reads and

total number of nucleotide matches, mis-matches and INDELs. Also, in BWA-mem [15] the

edit-distance is the number of changes that are needed to obtain a perfect match between a

sequence read and a reference sequence.

In summary, the normalized read count abundance, a low-read-count value, the number

uniquely mapped reads and the edit-distance are measures used by MGmapper, rather than a

single read count abundance threshold, with the aim to reduce the number of false positive

taxonomy annotations from next generation sequence data.

Materials

Mock bacterial datasets

Two mock bacterial datasets were previously used to benchmark metagenomics classification

methods at genus and species level [8]. An in vitro dataset comprised of single-end reads with

an average length of 223bp can be downloaded from the metagenomics RAST server [16] with

accession id 4545485.3. Also, 4 paired-end in silico datasets were downloaded: 4545483.3

(100bp), 4548385.3 (250bp), 4548991.3 (500bp) and 4548990.3 (100bp). There are a few

changes in species nomenclature and dataset composition compared to the taxonomy that was

presented in the original work by Peabody et al.[8]. For the sake of clarity the updated taxon-

omy annotations for both the in vitro and in silico datasets are given in Table 1.

Both the in vitro and the four in silico datasets were mapped against a bacteria and a

plasmid reference sequence database. Databases were compiled as subset of entries from the
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assembly_summary file available at ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/

assembly_summary.txt. Criteria for sequence selection were defined by these parameters: ver-

sion_status = ‘latest’, genome_rep = ‘Full’ and assembly_level = ’Complete Genome’ or assem-

bly_level = ’Chromosome’. In total the bacteria database is composed of 7451 genomic

sequences (created: Feb 23, 2016), where entries with the word ‘plasmid’ in the fasta header

were compiled into a separate plasmid database composed of 4429 genomic sequences.

Methods

The MGmapper package consists of a pipeline of scripts to process FASTQ files as either single

or paired-end reads to perform sequence mapping and taxonomy annotation against user

defined reference sequence databases. MGmapper utilizes a number of publicly available pro-

grams: Cutadapt [17] for trimming and adaptor removal, BWA-mem [15] and SAMtools [18]

to produce and process the reference based sequence alignments to one of many reference

sequence databases. A short summary of the procedure is described below for paired-end

sequence data, followed by more details outlined in the section “Fastq mapping procedure”.
Initially, a filtering step checks for properly paired reads, followed by trimming and adaptor

removal. The biological relevant reads are obtained by always mapping to a PhiX bacteria

phage and continuing with the subset of reads that do not align to the PhiX genome (com-

monly used as a control in Illumina sequencing runs). Next, sequence reads are mapped to

user defined reference sequences and only properly paired reads are accepted, provided that

both reads pass a lower alignment score threshold and relative alignment length. After map-

ping reads to all reference sequence databases (eg human, bacteria, fungi etc.), some reads may

align to reference sequences in different databases and depending on the mapping mode (best-
mode or fullmode explained further down) the best hit is identified and used to assign taxon-

omy. Taxonomy annotations (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz) are added

via lookup in a pre-made Kyoto Cabinet database (http://fallabs.com/kyotocabinet/) contain-

ing key, value pairs in form of the reference sequence name (the key) and full taxonomy path

from strain to superfamily clades (the value). Finally, a post-processing step (section “post-pro-
cessing”) identifies confident assignments at strain, species, genus or any user defined taxon-

omy clade up to superfamily.

Table 1. Mock bacterial composition of in vitro and in silico datasets.

Genus Species Strain In vitro In silico

Bacillus B.amyloliquefaciens DSM7 x x

Bacillus B.cereus ATCC 14579 x x

Burkholderia B.cenocepacia J2315 x x

Escherichia E.coli K-12 x x

Frankia Frankia.sp. CcI3 x x

Micrococcus M.luteus NCTC 2665 x x

Pseudomonas P.aeruginosa PAO1 x x

Pseudomonas P.aeruginosa UCBPP-PA14 x x

Pseudomonas P.Fluorescens Pf-5 x x

Pseudomonas P.putida KT2440 x x

Rhodobacter R.capsulatus SB 1003 x x

Streptomyces S.coelicolor A3(2) x x

Nocardioides Nocardioides sp. JS614 x

Taxonomy clades are as follows: 12 strains, 11 species and 8 genuses for in vitro data and 13 strains, 12 species and 9 genuses for the in silico dataset.

https://doi.org/10.1371/journal.pone.0176469.t001
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MGmapper can map sequence reads against any nucleotide sequence database i.e. both

genomic and gene sequence databases and for each database the mapping can be performed in

either bestmode or fullmode. In bestmode, reads are assigned to only one reference sequence if

it is the best hit that is observed when mapping to all databases specified for bestmode map-

ping. Best hit is identified based on the highest alignment score. In fullmode reads are assigned

to a reference sequence even if a better hit is seen when mapping to another database. Typically

the fullmode is used to search for sequences (e.g. a gene database), that may be a subset of

another database (e.g. a full genome database). Analyzing a sample for both genomic bacterial

composition and anti-microbial resistance genes is a situation where MGmapper should be

run with the bacterial database specified for bestmode mapping and at the same time specifying

the anti-microbial resistance gene database for fullmode mapping. The reason is that the resis-

tance genes are or may be a subset of the bacterial genomic sequences and we want to assign a

sequence read both a bacteria genome and also a resistance gene. If both databases were speci-

fied for bestmode mapping (bacteria, anti-microbial genes), then a read can only be assigned to

one of the databases and if identical alignment scores are observed, then priority is to the data-

base that was specified first.

Fastq read mapping procedure

The MGmapper pipeline analysis is done in four main steps: I. Pre-processing of raw reads to

remove potential positive control reads, II. Mapping of reads to one or more reference

sequence databases and filtration of alignment hits, III. Identification the best hits, and IV.

Post-processing of taxonomy annotations and preparation of excel and text files with insert-

size distribution, size normalized abundances, read and nucleotide count statistics, depth, and

coverage. A schematic flowchart of the paired-end mapping processing is shown in Fig 1.

I. Pre-processing of raw reads. An optional trimming and filtering of raw reads is per-

formed by use of the Cutadapt [17] program. Users can skip this step if reads are already

trimmed. Default setting is that reads are initially trimmed before searching for adaptor

sequences (equivalent to the Cutadapt option—q). In addition, a read is discarded unless a

minimum of 30 nucleotides remains after trimming. Trimmed reads are next paired up and

singleton reads are removed when using the paired-end version of MGmapper. To this follows

another cleaning process where reads from potential PhiX Control v3 adapter-ligated libraries

are removed via BWA-mem [15] and SAMtools [18], as they may originate from a control for

Illumina sequencing runs (http://www.illumina.com/products/phix_control_v3.html). The

outcome is a cleaned set of reads that are believed to originate from the biological sample of

interest. The number of reads in this set (noPhiX dataset) is set to 100% and used for calcula-

tion of R_abundance, a read count abundance measure.

II. Mapping of reads to reference sequence databases and alignment based filtering.

FASTQ reads are first extracted from the noPhiX set and mapped to one or several reference

databases via ‘bwa mem—t procs—M database’ marking shorter splits as secondary hits, which

are then removed when piping to ‘samtools view -F 256 -Sb -f2’ in paired-end mode or ‘sam-
tools view -F 260 –Sb’ in single-end mode i.e. keeping properly paired reads or mapped reads,

respectively. Next, reads with insufficient alignment qualities are removed based on user-

defined minimum alignment score (MAS) and minimum fraction of nucleotides being

assigned with an ‘M’ state in the CIGAR format, where an ‘M’ indicates a match or mismatch.

The user-defined threshold for fraction of matches+mismatches (FMM) is in relation to the

full length of a read. In paired-end mapping both reads are removed if just one of them does

not fulfill the filtering criteria. Default settings in the MGmapper programs are MAS = 30 and

FMM = 0.8. At this step properly paired read may align to more than one reference sequences,

MGmapper: Annotation of metagenomics sequence reads
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located in different reference sequence databases. In bestmode a read pair can only be assigned

to one reference sequence (section “Identification of the best hit”).

III. Identification of the best hit. Having paired-end sequences, both the forward and

the reverse fastq reads are aligned to a reference sequence, each with an associated alignment

score. The sum of alignment scores (SAS) is used as a measure to identify the best hit for a

read-pair. Typically, all input query reads are mapped to multiple reference sequence databases

e.g. bacteria, virus, fungi, human and others. Thus a read-pair may map to multiple reference

sequences from different databases and in bestmode the taxonomy annotation is only assigned

to one best hit, namely the one with the highest SAS score.

Fig 1. A schematic flowchart for processing of paired-end sequences with MGmapper. MGmapper processes fastq reads in four

steps. These consist of: (I) Trimming and mapping reads against a phiX bacteriophage to remove potential positive control reads. (II)

Mapping to specified reference databases, post-processing of BWA-mem alignments to remove reads with low alignment score or

insufficient alignment coverage. (III) Identification of best hits in bestmode: Assignment of a read-pairs to only one specific reference

sequence based on the highest sum of alignment scores. In fullmode, assigned a read-pair to a reference sequence even if a higher

alignment score is found when mapping to another reference sequence database. This will provide best target match, considering only the

sequences present in one particular reference database. (IV) Compilation of abundance statistics, read and nucleotide counts, depth,

coverage, and summary reports.

https://doi.org/10.1371/journal.pone.0176469.g001
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For single-end reads mapped to several databases, the best hit is the one with the highest

alignment score. In cases where a read or read-pair achieves identical alignment scores to ref-

erence sequences from different databases, the priority is given to the order by which the data-

bases are specified by the user, and thus a read or read-pair can still be associated to one single

reference sequence.

IV. Output and post-processing of results. The fastq reads are mapped to multiple user-

defined reference sequence databases. A tab-separated file is produced for each database

including reference sequence hits with read count statistics provided at strain level. A strain is

named according to the header name originating from the fasta file that was used to make the

database. The tab-separated file is composed of 14+16 columns of read count statistics and

annotations, where the latter are taxid and taxonomy clade name for 8 clades, i.e. strain, spe-

cies, genus, family, order, class, order and superfamily.

The first 14 columns are described below in Table 2.

The tab-separated files contains the unprocessed results as obtained by the BWA-mem [15]

mapping and Samtools mpileup [18]. As false positive annotations are likely to be present, a

subset of confident mapping results is obtained at a specified clade level (strain, species

. . .superfamily) via a post-processing procedure described in the section below.

Post-processing. A combination of four criteria (I-IV) is used to identify a positive taxon-

omy annotation. Identifiers highlighted in italics are also described in Table 2.

I. Minimum ReadCount of 10

II. Mismatch ratio < 0.01, defined as Mismatches/Nucloetides.

III. S_Abundance, the size normalized abundance > 0.01.

IV. Unique read count fraction > 0.5%, defined as ReadCount uniq/ReadCount.

Table 2. Read count statistics and reference sequence information.

Column identifier Description

Database Name of reference sequence database

Ref. seq Name of reference sequence or clade name

S_Abundance(10^2) Size normalized read count abundance

R_Abundance(%) Read count abundance

Size(bp) Size of reference sequence

Seq_count Number of sequences in the clade (always 1 at strain level)

Nucleotides Total number of nucleotides mapped to reference sequence

Covered positions Number of nucleotide positions covered by the reads

Coverage Covered positions/size of ref sequence

Depth Nucleotides/size of ref sequence

ReadCount Number of reads mapped a ref seq or clade

ReadCount uniq Number of uniquely mapped reads a ref seq or clade

Mismatches Number of nucleotide mismatches also known as edit-distance

Description Description from fasta header or clade name

The size normalized abundance is calculated as S_Abundance = ‘ReadCount x 100/Size’ for single-end

reads and ‘ReadCount x100/(2 x Size)’ for paired-end reads. R_Abundance(%) is the number of reads

mapped to a taxonomy clade in relation to number of reads after trimming and cleaning versus PhiX

genome.

https://doi.org/10.1371/journal.pone.0176469.t002
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At strain level all four criteria are imposed. At species level, the criteria IV is used in a pre-

cycle, to identify the lowest S_Abundance for the selected species. The new S_Abundance

threshold is used in a second round where criteria IV are omitted. At genus level or higher

only criteria I, II and III are used.

Taxid values are used to identify strains belonging to the same species or species belonging

to the same genus etc. All identifiers as shown in Table 2, are summed at clade levels higher

than strain i.e. the S_Abundance value for a species is the sum of all strain S_Abundance val-

ues. It is likewise for R_Abundance, Size, Seq_Count, Nucleotides, Covered positions, Cover-

age Depth, ReadCount, ReadCount uniq and Mismatches.

Results

Benchmarking of MGmapper at strain, species and genus level against the in vitro and the four

in silico datasets is shown in Tables 3 and 4. Excel sheets are provided as supplementary infor-

mation in S1–S10 Files, at strain and species level for both annotations that passes the post-

processing criteria and for those that are rejected. Also, plasmids sequence annotations are

provided in the supplementary excel sheets.

A summary of mapping the in vitro and in silico datasets are shown in Tables 3 and 4,

respectively.

For both the in vitro data and the four in silico datasets, MGmapper identifies all species

correctly with no false positive predictions.

The work by Peabody et al. [8] benchmarked several methods at species level using a read

count abundance > 0.1% for the in vitro data and the in silico dataset (although only for the

250bp dataset).

When benchmarked against the in vitro dataset, the methods that correctly identified all

species with no false positives were a filtered version of Kraken [9] and CARMA3 [10]. For the

in silico dataset (250bp), six methods performed with no errors i.e. CLARK, Kraken, Kraken

filtered, MEGAN4 BLASTN, MetaCV and RITA.

In Table 3 we showed that MGmapper was able to identify all species and genuses present

in the in vitro dataset without any false positives. Peabody et al., reported that a filtered version

of Kraken the same result. Both MGmapper and the filtered version of Kraken need to reject

sequence reads in order to report only reliable annotations. In Tables 5 and 6 MGmapper and

Kraken have been benchmarked on the percentage of reads that are assigned to each of the

genusus and species present in the in vitro dataset. The Kraken data was prepared by filtering

the read assignments, using a threshold in kraken-filter (version 0.10.6-unreleased-20160118)

of 0.2. Next, setting a fair read count abundance threshold for Kraken is not straightforward.

We chose to set it at 1.1% such that all species were correctly identified by the Kraken method

with no false positives. Also, at genus level a threshold was set at 2.2% to identify all 8 genuses

with no false positives. The filters for MGmapper were those described in section ‘Post-pro-

cessing’. Using these filters the read count abundances are shown in Tables 5 and 6 at genus

Table 3. Benchmarking of the in vitro data mapped against a bacteria reference sequence database.

Clade level TP FN FP

Strain 9 3 3

Species 11 0 0

Genus 8 0 0

The columns TP, FN and FP refer to the true positive, false negative and false positive taxonomy

annotations for strain, species and genus, respectively.

https://doi.org/10.1371/journal.pone.0176469.t003
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and species level, respectively. The comparison shows that there is a high degree of similarity

between the reported abundances for the individual species and genuses. Also, it shows that

fewer reads are mis-classified by MGmapper where a higher total fraction of reads that have

been correctly assigned at genus and species clade levels. A strain level comparison was not

possible as taxid numbers that are now obsolete and only provided at species level and above.

Discussion

The intention behind the development of the MGmapper pipeline is to simplify the processing

of next generation sequences from biological samples, and to enable users an easy access to an

NGS analysis without necessarily understanding all the computational details of the process.

Also, setting up threshold values to provide reliable taxonomy annotations by reducing the

number of false positives.

In its present form MGmapper follows a mapping protocols against reference sequence

databases, and provide BAM files, text and Excel summary files. These contain read-count sta-

tistics for those reference sequences that passed a post-processing procedure, but also for those

annotated reference sequences that did not meet the criteria set up in the post-processing, thus

enabling a user to see discarded mapping results and possibly redo the post-processing if other

threshold settings are preferred. Thus no time consuming fastq mapping needs to be re-done,

just the fast post-processing that finishes in seconds.

One of the challenging issues that arise when short sequence reads are mapped against a set

of reference sequences is that a read, or a pair of reads, may map equally well to more than one

reference in a sequence database i.e. multiple hits with identical alignment scores. When this

happens, the reference sequence assignment reported by BWA-mem [15] is arbitrary, as there

is not yet any procedure available to unravel the multiple hit ambiguity. However, the fact that

there are a number of reads that can be uniquely assigned to one single reference sequence, is a

strong indicator that a reported strain or species is actually the one present in the sample.

Benchmarking against an in vitro dataset, we obtained a sensitivity and precision at 75% for

taxonomy annotations at strain level resolution. At higher clade level annotations we identified

all species and genuses with no false positives.

Table 4. Benchmarking of the in silico data mapped against a bacteria reference sequence database.

Clade level TP FN FP Dataset id

Strain 11 2 0 A

Species 12 0 0 -

Genus 9 0 0 -

Strain 11 2 0 B

Species 12 0 0 -

Genus 9 0 0 -

Strain 12 1 0 C

Species 12 0 0 -

Genus 9 0 0 -

Strain 12 1 0 D

Species 12 0 0 -

Genus 9 0 0 -

The columns TP, FN and FP refer to the true positive, false negative and false positive taxonomy

annotations for strain, species and genus, respectively. The column ‘Dataset id’ referees to the four datasets

A, B, C and D with read lengths of 100bp, 250bp, 500bp and 1000bp, respectively.

https://doi.org/10.1371/journal.pone.0176469.t004
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The four in silico datasets proved easier to annotate correctly compared to the in vitro data-

set. Only two false negatives were observed at strain level for the 100bp and 250bp datasets and

one false negative for the 500bp and 1000bp datasets. At higher clade level annotations, i.e.,

species and genus, we obtained 100% correct taxonomy annotation. As the most challenging

sample was the in vitro dataset, we used that in a benchmark analysis to the well performing

Kraken method [9]. Overall the MGmapper method correctly assigned 84.82% of the reads at

species level, compared to the Kraken method that assigned 70.45% of the reads correctly. At

genus level the percentages were 90.75% and 87.21% for MGmapper and Kraken, respectively.

Benchmarking of metagenomics taxonomy classification methods is a challenging effort as

programs produce different output and the benchmarking can be done in terms of correctly

annotated reads or collapsed into strain/species annotations, run time and memory usage. We

chose to compare to the extensive work by Peabody et al. [8], where methods were bench-

marked to correctly identify species taxonomy. One of the main results from that study was

that all methods, evaluated on an in vitro dataset, vastly over predicted the number of species

present in a sample unless a post-processing was performed. In this work we have shown that

Table 5. Read count benchmark at genus level.

Genus Read count abundance MGmapper (%) Read count abundance Kraken (%)

Pseudomonas 34.82 34.98

Bacillus 11.22 11.21

Burkholderia 8.05 7.05

Micrococcus 7.68 7.74

Escherichia 7.53 2.48

Frankia 7.31 7.37

Streptomyces 7.24 7.29

Rhodobacter 6.91 6.96

Total 90.76 87.21

‘Read count abundance’ is reported as the percentage of reads that were assigned to each of the 8 genuses present in the in vitro dataset for the two

methods; MGmapper and Kraken. Last row ‘Total’ is the overall percentage sum of reads that were assigned to genuses present in the sample.

https://doi.org/10.1371/journal.pone.0176469.t005

Table 6. Read count benchmark at species level.

Species Read count Abundance MGmapper (%) Read count Abundance Kraken (%)

Pseudomonas aeruginosa 15.93 15.93

Pseudomonas protegens 10.81 10.76

Pseudomonas putida 7.95 7.44

Micrococcus luteus 7.68 7.74

Escherichia coli 7.52 2.37

Frankia sp. CcI3 7.31 7.36

Rhodobacter capsulatus 6.91 6.96

Burkholderia cenocepacia 6.17 4.19

Bacillus amyloliquefaciens 5.75 1.96

Streptomyces coelicolor 5.38 4.40

Bacillus cereus 3.40 1.34

Total 84.82 70.45

‘Read count abundance’ is reported as the percentage of reads that were assigned to each of the 11 species present in the in vitro dataset for the two

methods; MGmapper and Kraken. Last row ‘Total’ is the overall percentage sum of reads that were assigned to the species present in the sample.

https://doi.org/10.1371/journal.pone.0176469.t006
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our mapping results together with the post-processing procedure provide 100% correct taxon-

omy annotations at species and genus level and even at strain level resolution we have trust-

worthy annotations with sensitivity and precision at 75% when using a combination of up to

four criteria to filter the initial mapping results. However, those datasets have limited complex-

ity and for real metagenomics data we can expect much more diversity compared to the 11

and 12 species that are present in the in vitro and in silico datasets. Metagenomic samples from

soil, human gut, sewage or public sites like metro stations, will likely contain a highly diverse

set of organisms and also many closely related strains. Reference based sequence alignment

methods allow for nucleotide mis-matches between a query read and a reference sequence and

the mis-match threshold can be adjusted to assign sequence reads with a remote identity. For

practical purposes, a threshold at 10–15% nucleotide mis-matches may be used. A specific

organism assigned to be present in a sample may be a representative sequence for closely

related sequences with nucleotide variations (SNPs or INDEls). Also Kmer based methods are

challenged by highly diverse metagenomics data as they rely on perfect matches between a

query fragment and a database hit.

The mapping procedure is the most time-consuming task when running MGmapper. Small

datasets that only needs to be mapped against a bacteria, plasmid, fungi or virus databases will

finish within minutes up to an hour, whereas mapping millions of fastq reads against many big

reference sequence databases like plant (208gb fasta), vertebrate mammals (316gb fasta), inver-

tebrates (150gb fasta) and nt (125gb fasta) will finish days (3–7) even when run in parallel on

16 processors. The in vitro and in silico datasets used in this study were both run against a bac-

teria and a plasmid database using 8 cores. The runtime for each of the datasets was 7 min

using Computerome—the Danish National Supercomputer for Life Sciences (https://

computerome.dtu.dk/).

In future golden benchmark dataset would be most welcome and initiatives like CAMI

(Critical Assessment of Metagenome Interpretation) may be a useful platform for benchmark

comparison of metagenomics classification tools.
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