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Abstract

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live

in a multicellular assembly. If this is the case, one would expect that mutation in cancer dis-

rupts functional mechanisms that suppress cell-level traits detrimental to multicellularity.

Such mechanisms should have evolved with or after the emergence of multicellularity. This

leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in

genes that are younger than the emergence of multicellularity (1000 million years [MY]); and

2) genes that are frequently mutated in cancer and whose mutations are functionally impor-

tant for the emergence of the cancer phenotype evolved within the past 1000 million years,

and thus would exhibit an age distribution that is skewed to younger genes. In order to inves-

tigate these hypotheses we estimated the evolutionary ages of all human genes and then

studied the probability of mutation and their biological function in relation to their age and

genomic location for both normal germline and cancer contexts. We observed that under a

model of uniform random mutation across the genome, controlled for gene size, genes less

than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes,

defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we

used functional enrichment analysis to explain this unexpected result we discovered that

COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell

cycle control. The non-mutated genes in these pathways are orthologous to those underly-

ing stress-induced mutation in bacteria, which results in the clustering of single nucleotide

variations. COSMIC genes were less common in regions where the probability of observing

mutational clusters is high, although they are approximately 2-fold more likely to harbor

mutational clusters compared to other human genes. Our results suggest this ancient muta-

tional response to stress that evolved among prokaryotes was co-opted to maintain diversity

in the germline and immune system, while the original phenotype is restored in cancer.

Reversion to a stress-induced mutational response is a hallmark of cancer that allows for

effectively searching “protected” genome space where genes causally implicated in cancer
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are located and underlies the high adaptive potential and concomitant therapeutic resis-

tance that is characteristic of cancer.

Introduction

A defining quality of life is its phenotypic plasticity, generated through the ability to regulate

gene expression and other cellular functions in response to environmental factors, critical

properties that enable organisms to respond to a wide variety of environmental challenges in a

coordinated and systematic way [1–4]. Yet when confronted with persistent unfavorable con-

ditions, primitive life forms could exhibit more dramatic and evolutionarily deep-rooted

responses. In these circumstances, a population of microorganisms is likely to face extinction

unless an appropriate adaptation is promptly deployed. A prime example of an adaptive strat-

egy is for cells to elevate their rate of genetic mutation in order to increase the probability of

discovering a solution to their burden. Mechanisms such as slipped-strand mispairing, poly-

merase slippage, gene amplification, deregulation of mismatch repair, and recombination

between imprecise homologies underlie the generation of genetic alterations at high frequen-

cies under specific conditions [5–7]. These genotypic alterations can promote phenotypic het-

erogeneity and adaptive potential in clonal populations of cells, even during stationary growth

phases, a process that has been termed “adaptive mutation” [7–14]. Such mechanisms allow

for heightened exploration of the phenotypic landscape during conditions of stress, leading to

higher rates of effective evolution; a condition well illustrated with the popular proverb:

“necessity is the mother of invention”.

Cancer is a disease of bodies, and therefore of multicellular organisms, yet many of the hall-

marks of cancer [15,16] suggest an atavistic reversion to an ancestral single-celled phenotype.

For cancer cells, the body is no longer a larger functioning organism to which they belong and

support, but a complex host ecosystem that they adapt to in order to survive and thrive. From

a theoretical standpoint, the emergence of multicellularity represents an increase in the com-

plexity of life in which cells became cooperative aggregates because of the balance between cel-

lular conflict and collective fitness. This transition requires the evolution of both cooperation-

promoting and conflict-reducing adaptations [17]. While the mechanisms for adaptive muta-

tion are essential for the survival of single celled organisms exposed to stress, somatic cells in

multicellular organisms typically reside in stable homeostatic conditions and are thus “pro-

tected” from the drastic changes in the environment that demand engaging in such heritable

responses. Furthermore, the integrity of the multicellular structure demands global genetic

coherence and strong inhibition of independent somatic cell evolution, although phenotypic

plasticity, sometimes heritable, is required in order to maintain function in the face of organ-

ism level stresses that place large, differential demands on organs [18,19]. It is well known that

genes associated with cancer have phylogenetic origins associated with the emergence of

multicellularity [20–23]. For example, the genomic analysis by Domazet-Lošo and Tautz [21]

based on four different cancer gene datasets demonstrated that the origin of gatekeeper onco-

genes coincides with a pronounced phylostratigraphic peak at the onset of Metazoa. It there-

fore seems plausible that a source of stress capable of breaking the homeostatic equilibrium in

the milieu could trigger an ancestral adaptive mutation program in a somatic cell, inducing

genetic instability that could result in cancer if not suppressed by other mechanisms. In this

context cancer can be understood as a relaxation of the genetic constraints evolved to maintain

Stress-induced mutation in cancer
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the complex structure of multi-cellularity, resulting in a relaxation of constraints that suppress

individual somatic cell evolution[20–24].

Here we present evidence demonstrating that cancer manifests as an atavistic recapitulation

of pre-metazoan [24] mechanisms of stress-induced mutation in somatic cells, explaining its

capacity to evolve resistance to therapy. The mechanistic roots of this behavior are retained

over evolutionary time scales because they are critical to the successful function of the germline

and immune system. In addition to generating base-line diversity in both the innate and adap-

tive immune system, normal germline mutational patterns maintain diversity in recently

evolved gene families governing functions such as toxin detection and detoxification. In cancer

the controlled restriction of this phenomenon to the germline and immune system is dis-

rupted, allowing somatic cells to effectively search ancient genome space for solutions to the

stress-induced pressures they are experiencing. We propose stressed-induced mutation as a

hallmark of cancer reflected by genomic instability.

Methods

Gene ageing

Gene homologies represent the evolutionary history of gene families. Accordingly, an ortholog

of a human gene found in any other species can be assumed to have diverged from a common

ancestor. Thus, by grouping orthologous genes into gene families, the age of the human gene

can be identified by the divergence time of the last common ancestor of all the species con-

tained within the gene family.

Given that this approach is contingent on the definition of homology, more accurate gene

family builds will lead to better estimations of gene ages. We looked at three pertinent homol-

ogy databases to identify the one with the most coverage across all kingdoms of life and the

most robust human gene families. We considered Ensembl Compara / Ensembl Pan-Taxo-

nomic Compara [25,26] (release 22, containing 19,756 genes), NCBI HomoloGene [27]

(18,304 genes) and HOGENOM [28] (17,086 genes from the nucleotide database). We chose

these databases because they cover many species across all taxonomic groups and use both pro-

tein and genetic sequence comparisons with sophisticated phylogenetic reconciliation meth-

ods to predict evolutionary trees across the whole set of protein-coding genes and non-coding

RNA (ncRNA) genes [26]. Based on our analysis (see S1 Text for details) we selected the

Ensembl Compara/Ensembl Pan-Taxonomic Compara database as the best option for generat-

ing gene families in our ageing method.

We then determined gene ages as the maximum phylogenetic divergence time between

humans and all the species represented in each corresponding gene family according to the

TimeTree database [29]. The age of a common ancestor in an evolutionary tree is always older

than the divergence time between all the species branching out from it, therefore this measure

provides an estimate of the minimum expected age of the gene.

Cancer gene list

Sanger’s Catalogue Of Somatic Mutations In Cancer (COSMIC) is a comprehensive resource

of somatic mutations in human cancer [30,31]. We studied 458 genes with mutations that have

been causally implicated in cancer (Cancer Gene Census), and categorized each as dominant,

recessive, or both according to COSMIC annotations. This classification is based on whether a

single allele (dominant) or multiple alleles (recessive) must be mutated in order to observe a

cancer phenotype.

Stress-induced mutation in cancer
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Genomic analysis

We obtained variants called from whole genome sequence (WGS) samples from the Interna-

tional Cancer Genomics Consortium (ICGC) data portal [32] (release 19) for a total of 764

samples from a variety of tissues, including: pancreas (262), prostate (198), ovarian (115), bone

(97), skin (59), blood (26), brain (4) and 3 samples with unknown tissue of origin (see Table C

in S1 Text for a list of references per project and S4 Table for a list of specific donors and sam-

ples). We also obtained normal tissue variants data from the Complete Genomics Indices data-

base in the 1000 Genome Project [33] (release 20130502, see S4 Table for list of donors). In

this case, we mined 129 WGS trio samples to identify private variations (i.e. present in the

donor but not in either parent). We parsed this data to identify the genomic locations of both

double strand break (DSB) events comprising complex multi-base variations, section dele-

tions/insertions and other DNA rearrangements and single nucleotide variants (SNV) repre-

senting deletions, insertions, and substitutions of one or two bases. Alterations in regions

containing single-, di-, and tri-nucleotide repeats where strand slippage could account for

larger rearrangements were also classified as SNVs.

A priori, we removed all events occurring in regions known to be involved in somatic

hypermutation [34,35] to avoid biasing the clustering analysis. A group of SNVs were deter-

mined to be in a cluster if the distance between two SNVs was less than 25 kb, the cluster had

at least 3 SNVs, and the probability of finding such a grouping of SNVs by chance was less

than 1% [35]. Hotspotting of clusters was determined by evaluating the number cluster centers

observed inside intervals of 1 kb across each chromosome. The expected value of events in the

interval was given by the total number of events divided by the number of intervals in the chro-

mosome. Using a binomial test we determined if the observed number of events was larger,

smaller, or close to the statistically expected value based on a uniform distribution of events,

defining the interval as a hot, cold, or null region, respectively. Odds ratios were computed

using a Fisher’s Exact test as implemented in the fisher.test function in R.

Functional enrichment analysis

We used the Functional Enrichment clustering tool of DAVID [36,37] to determine cellular

functions over-represented in various gene lists. This tool evaluates gene sets for enrichment

across multiple ontologies and then groups the resulting enriched functions into clusters

defined by maximizing the overlap of gene membership within the enriched functions. We

designated genes by their Ensembl ID and enrichment using all human genes as the back-

ground list for comparison unless otherwise specified. The default ontologies and stringency

settings were used for all analyses. We reported functional enrichment if the Benjamini-Hock-

enburg [38] corrected p-value was less than 0.05 for 3 or more categories within a cluster.

Results

Mutational frequency of human genes as a function of evolutionary age

The atavistic model of cancer presumes that the cancer phenotype is to some degree an evolu-

tionarily conserved ‘genetic subroutine’ that is suppressed by multicellularity but becomes re-

activated through oncogenic progression [24,39]. There are two related, but distinct hypothe-

ses that result from this model: 1) Somatic mutation will avoid regions of the genome with

deep-evolutionary roots, and thus occur in genes that are younger than the emergence of

multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer

and whose mutations trigger the cancer subroutine evolved between 500–1000 MYA or with

Stress-induced mutation in cancer
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the evolution of complex multicellularity (<500 MYA), and thus would exhibit an age distri-

bution that is skewed to younger genes.

We tested the first hypothesis by establishing the evolutionary ages of 19,756 human genes

by assigning them to gene families according to the Ensembl Compara homology database.

We then defined the age of the human member of the gene family as the maximum phyloge-

netic divergence time between humans and the species represented in the corresponding gene

family. Next we examined mutational frequencies as a function of the evolutionary age of each

gene in both normal tissue (“normal”) and cancer. In normal tissue, we analyzed the private

SNVs from 129 individuals derived from 1000 Genomes Project whole genome sequencing

trio data [33]. Under the null model of uniform, random mutation, the frequency of mutation

for a given gene is dependent on the length of the gene such that we expect longer genes to

accumulate more mutations. When we look strictly at mutational frequency relative to evolu-

tionary age, genes less than 500 MY old were mutated less frequently compared to other age

groups (Table A in S1 Text, S2A Fig). Interestingly, when we considered the length of genes

relative to their evolutionary ages, genes younger than 500 MY were shorter on average com-

pared to all other age groups (S2C Fig). We controlled for this observation by determining the

expected number of mutations per base-pair and then calculated the ratio of observed to

expected number of mutations in each gene, generating a fold-change enrichment score.

Fig 1A and S2D Fig demonstrate that for their size, genes younger than 500 MY were more

likely to be mutated. In addition mutations in genes were 10% less frequent than mutations

outside of genes.

We then addressed whether a similar pattern exists in cancer. We looked at 764 samples

from of the ICGC (release 19) that had whole genome sequencing with calls for both simple

somatic mutations and structural mutations. Under the same null model assumption, genes in

cancer cells had 15% less mutation compared to non-gene regions of the genome. Thus cancer

recapitulates the pattern seen in normal tissue: mutation occurs predominantly outside of

Fig 1. Younger genes are mutated more frequently in both normal and cancer. The Enrichment Ratio is the observed rate of

mutation of a gene (in mutations per base-pair) over the expected value according to the null hypothesis of uniform random mutations.

We categorized genes in three main age groups, corresponding to post-metazoan (less than 500 MY), metazoan (between 500 and

1000 MY) and pre-metazoan (more than 1000 MY) ages and produced the distribution of Enrichment Ratio for each group. Genes

younger than 500 MY old are mutated significantly more frequently in both normal (A) and cancer (B). Also, the frequency of mutation

declines as the age of the gene increases. P-values in each case are taken as the maximum between the p-value given by a Tukey’s

range test between the three groups and a pair-wise t-test comparison.

https://doi.org/10.1371/journal.pone.0176258.g001
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genes, and mutation that occurs within genes is more frequent in genes younger than 500 MY

(Table A in S1 Text, S2E Fig).

We also examined the patterns of mutation in cancer relative to what was observed in the

normal tissue, which is equivalent to a non-uniform but random distribution in the genome,

as shown in Fig 2. We observed that relative to normal, the overabundance of mutation in

genes<500 MY becomes even more prominent, while genes older than 1000 MY are typically

not over-mutated. The mean age of over-mutated genes is significantly lower than the mean

age of all the genes, hence confirming the first hypothesis. Looking in greater detail at the

<500 MY age group, we found that cancer indeed appears to profoundly dysregulate muta-

tional processes in genes younger than 500 MY. A greater number of genes in this age group

Fig 2. Cancer displays a distinct mutational pattern relative to normal based on the evolutionary age of genes. For each human

gene, the expected number of mutations is obtained based on the normal mutation pattern: frequency of normal mutations times the total

number of cancer mutations recorded in the data set. According to this, the Enrichment Ratio (ER) is calculated as the ratio of observed

cancer mutations and the number of expected mutations in the gene. Over-mutated genes have ER > 1.5; under mutated genes have ER

< -1.5. Numbers in legend indicate the size of each gene set. Cross marks (X) on bars tips indicate the enrichment in that category is

statistically significant at p < 0.01 according to a bootstrap test taking random samples from the set of all human genes (BSQ < 1%, see

Table 1). Boxplots in lower panel show distribution quartiles; black vertical lines are medians, yellow diamonds are means and black dots

are outliers.

https://doi.org/10.1371/journal.pone.0176258.g002
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have either more or less than the expected number of mutations (S3 Fig). These results suggest

somatic mutation in cancer is preferentially occurring in evolutionarily young genes. But does

this mean that genes that drive cancer are evolutionarily young?

To test the second hypothesis that genes that are both frequently and causally mutated in

cancer are evolutionarily younger than the emergence of multicellularity as a whole (<1000

MY), we evaluated the evolutionary ages of genes demonstrated to be causally mutated in can-

cer as compiled by COSMIC in the Cancer Gene Census [31]. In contrast to the model predic-

tion, the general properties of the age distribution of the COSMIC genes did not differ

significantly from those of all other human genes (Fig 3A), e.g. as a sample it is representative

of the age distribution of all human genes. However, it is clear that there are sub-grouping dif-

ferences between the two distributions (Table 1). The COSMIC list is enriched with genes hav-

ing ages that correspond to the development of multicellularity (500–1000 MY), as has been

reported previously [20,21], and supports the idea that cancer is at least partially driven by dis-

ruption of functions that evolved to achieve multicellular organization. It must be mentioned

that this result is also true for the list of genes implicated in single-gene Mendelian disorders

(drawn from the Online Mendelian Inheritance in Man OMIM, Fig 3B), suggesting that this is

not a feature peculiar to cancer, except perhaps the overrepresentation of genes that evolved

with early multicellularity (1000–1500 MY). Interestingly, even though young genes are more

likely to be mutated in cancer and normal tissues, both the COSMIC and the OMIM lists are

depleted in genes with ages younger than 500 million years (Fig 3).

COSMIC contains 458 genes with different mutational modes of action: those that yield

dominant phenotypes and therefore require a single mutant allele (343), and those that give

Fig 3. Genes causally implicated in cancer are under-represented among young (<500 MY) genes. (A) Age distribution of

dominant (green) and recessive (orange) genes from COSMIC Cancer Gene Census. Grey bars represent the age distribution of all

human genes in ENSEMBL, and blue the age distribution of all COSMIC genes. Numbers in legend are the sizes of each gene set. Cross

marks (X) on bars tips indicate the enrichment in that category is statistically significant according to Gene Enrichment Score method and

a bootstrap test (BSQ < 1%, see Table 1). Accordingly, the second hypothesis predicts that the blue bars should skew to the left with

enrichment in both <500 MY and 500–1000 MY. This is not observed. The under-representation of very young genes (less than 500 MY)

and the over representation of dominant genes between 500 and 1500 MY are statistically significant. The distinct right skew of the

recessive set is also statistically significant (t-test for the difference of the mean with all other sets has p<0.01). This implies that

recessive genes are older than expected from random sampling. (B) Similar age distributions for single-gene Mendelian disorders, from

the Online Mendelian Inheritance in Man database (OMIM). The general pattern in gene age distributions between dominant and

recessive phenotypes observed in cancer, particularly the recessive gene skewness towards old ages and the under-representation of

very young genes, is replicated in these gene sets. No notable overrepresentation of dominant genes at moderate ages is detected in

this case. The enrichment of cancer genes in such age range is likely associated to breakdown of regulation functions that evolved during

the emergence of multicellularity.

https://doi.org/10.1371/journal.pone.0176258.g003
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recessive phenotypes (101), requiring that all alleles within the cell be altered. Twelve genes in

this list have no clearly defined molecular genetics. It should be noted that the set of dominant

genes overlap to a large degree with oncogenes (260 out of 264 genes considered oncogenes

[30,40] are dominant), while tumor suppressor genes overlap with recessive genes (70 out of

72 tumor suppressor genes are recessive). However, more than a quarter (122) of the genes in

the Cancer Gene Census cannot be classified as either oncogenes or tumor suppressors,

although they can still be classified according to their phenotypic expression (dominant or

recessive). We observed that the genes with recessive mutations were significantly older rela-

tive to all human genes (Fig 3A, Table 1), while genes with dominant mutations were overrep-

resented at ages that correspond with the emergence of multicellularity. In this respect, cancer

resembles single-gene Mendelian disorders (Fig 3B), which also display a difference in the ages

of genes with dominant or recessive phenotypes.

Ancient recessive genes are enriched for DNA repair and cell cycle

control

The paradox of cancer-causing genes being under-represented in the age bin with the highest

frequency of mutation suggests there may be an underlying mechanism that explains the shift

in mutational frequency revealed by determining the functions of the dominant versus reces-

sive genes. Functional annotation and enrichment analysis of COSMIC genes using DAVID

[36,37] with all human genes as the background list revealed that COSMIC genes with domi-

nant mutations were enriched for transcription factors and transcriptional regulation, immune

system development, receptor tyrosine kinases and signal transduction, “stem”-ness and mor-

phogenesis. COSMIC genes with recessive phenotypes were enriched for functions related to

DNA repair and cell cycle control (Fig 4); genes with ages older than 950 million years drove

such enrichment. The result is so striking that it persists irrespective of the background list

used for comparison (recessive cancer genes, all cancer genes, or all human genes). The genes

with recessive phenotypes involved in DNA repair focused particularly on double-strand

break (DSB) repair and nucleotide excision repair mechanisms. Looking at the evolutionary

history of the genes involved in these processes we noted that the non-mutated genes in the

same DNA repair pathways, such as REV1, REV3L, POLK, POLH, POLI, POLD1, DMC1, and

POLDIP2, are orthologous to genes in bacteria that underlie the adaptive mutation response

to stress [7,10,42,43] (see S5 Table for full list of human orthologs). The initiation of the SOS

response following the sensing of a double strand break leads to an increase in the rate of both

single base-pair mutations and gene amplification events near the DSB as the bacteria switch

from high-fidelity replication and repair to error-prone repair. This made us wonder if a simi-

lar mechanism was implicated in the patterns of mutations observed cancer.

Cancers exhibit a molecular signature of stress-induced mutagenesis

In bacteria, the process of adaptive mutation results in a molecular fingerprint in the form of a

cluster of SNVs around each DSB[44]. If cancer involves an analogous process, might we find

a similar signature? SNV clusters have indeed been reported in cancer[35], but reports thus far

fail to consider evolutionary history or genomic distribution relative to a model of uniform,

random mutation. This is important because the presence or absence of clusters may be con-

strained by the interplay between genomic evolution and selection at both organismal and cel-

lular levels.

To address these shortcomings, we used whole genome sequencing data (ICGC release 19)

that showed evidence for DSBs. We then evaluated whether or not SNVs clustered in each

sample. Out of 764 tumor samples from seven different sites (pancreas, prostate, bone, ovary,

Stress-induced mutation in cancer
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skin, blood, and brain), 668 (87.4%) had evidence of SNV clustering. These clusters do not

necessarily represent kataegis, defined as 6 or more mutations with inter-mutational distance

of 1kb or less [45], but our definition of clustering would catch kataegis events. To evaluate

whether the clustering is a peculiarity of somatic mutation in cancer or represents a fundamen-

tal process underlying mutation generally, we performed the same analysis on the normal data

from 1000 Genomes as a control. Surprisingly, all of the normal samples also had evidence of

clustering of SNVs.

We observed a distinctive difference in the non-random spatial distribution of clusters

across the genome in both normal and cancer (Fig 5, S4–S6 Figs), suggestive of “hotspotting”

of clusters when considered across samples, e.g. regions of the genome where clusters are

more likely to occur (see Methods). We identified regions of cluster hotspotting across samples

and examined the evolutionary history of those regions looking at both the ages of the genes in

the regions as well as whether or not the regions overlapped evolutionary re-used breakpoint

regions (EBR) or amniote homologous synteny blocks (HSB) [46]. EBRs are regions of the

genome that have been repeatedly subject to structural rearrangement during amniote evolu-

tion. In contrast, HSBs are regions that exhibit not only significant sequence identity, but gene

Table 1. Enrichment score for gene age bins of 500 million years for both COSMIC and OMIM genes.

Age Factor (MY) COSMIC COSMIC Dominant COSMIC Recessive

Scorea p-valuea BSQb Score p-value BSQ Score p-value BSQ

< 500 0.49 9.26x10-5 0.02% 0.56 0.0126 0.02% 0.27 0.00196 0.02%

500–1000 1.32 2.49x10-16 0.02% 1.44 4.38x10-17 0.02% 1.02 0.118 81.32%

1000–1500 1.31 1.05x10-5 0.14% 1.29 2.17x10-4 0.88% 1.32 0.0625 9.96%

1500–2000 0.71 0.298 6.94% 0.59 0.15 2.08% 1.23 0.495 39.48%

2000–2500 0.97 0.907 81.60% 0.93 1 67.42% 0.96 0.931 81.44%

2500–3000 0.93 1 64.70% 0.72 0.438 15.66% 1.4 0.365 23.02%

3000–3500 NA NA NA NA NA NA NA NA NA

> 3500 0.72 0.298 5.40% 0.34 0.00145 0.02% 1.82 0.0395 2.14%

Age Factor (MY) OMIM OMIM Dominant OMIM Recessive

Score p-value BSQ Score p-value BSQ Score p-value BSQ

< 500 0.38 2.90x10-4 0.02% 0.51 0.177 0.30% 0.26 7.51x10-4 0.02%

500–1000 1.32 5.46x10-8 0.12% 1.28 7.54x10-4 4.34% 1.36 4.72x10-5 0.54%

1000–1500 0.91 0.781 44.86% 0.92 0.781 60.84% 0.9 0.781 52.28%

1500–2000 1.18 0.566 39.40% 1.33 0.566 27.66% 1.04 0.781 71.66%

2000–2500 1.18 0.566 37.76% 1.19 0.689 44.62% 1.17 0.689 46.78%

2500–3000 0.95 1 77.96% 0.84 1 57.98% 1.04 0.781 71.64%

3000–3500 NA NA NA NA NA NA NA NA NA

> 3500 1.4 0.126 6.40% 1.12 0.781 56.66% 1.65 0.0873 3.86%

Score indicates the enrichment (> 1) or depletion (< 1) of genes in the age category. Scores that are statistically different from 1 as determined by either the

p-value or BSQ are bolded.
a Enrichment and p-values were computed as indicated in Zeeberg, et al. [41] where the enrichment score is the proportion of genes within the list from the

category divided by the proportion of all human genes that fall into the category. P-values were computer by Fisher’s exact test and then adjusted for

multiple comparisons using the method of Benjamini-Hochenberg as implemented in the p.adjust function of the stats package in R. Scores in bold are have

p-values less than 0.05.
b Bootstrap quantile (BSQ) score: for a given gene set, 10,000 random samples of the same size are taken without replacement from the parental list of

19,756 aged human genes and distribution of ages is calculated for each one. The BSQ score for an age group is the percentile quantile in which the actual

observed frequency value falls for the corresponding age group in the sampling ensemble. Hence, any BSQ value of less than 1% indicates that the

observation is highly unlikely by random sampling.

https://doi.org/10.1371/journal.pone.0176258.t001
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order, across species, and thus represent regions of conserved sequence that have moved as an

intact block through genomic evolution. Based on this, we would predict that genes in EBRs

would be younger than those in HSBs. Previous work demonstrated that SNPs are more preva-

lent in EBRs than in HSBs [46]. Therefore, we might expect that cluster hotspots would co-

localize with EBRs, be less likely in HSBs, and to be enriched in COSMIC genes.

If human genes are classified as either “metazoan” (less than 1000 MY old) or “pre-meta-

zoan” (older than 1000 MY) we found that the set of pre-metazoan genes overlapped with

HSBs and were excluded from EBRs as it might be expected (Table 2). Metazoan genes had the

opposite pattern, being excluded from HSBs and enriched in EBRs. Genes on the COSMIC list

were preferentially located in HSBs and excluded from EBRs.

When considering mutations in normal samples, clustering hotspots co-localized with EBRs

and were excluded from HSBs, independently of whether the analysis included all SNV clusters

or only those that overlapped genes (Table 3). It is very interesting that COSMIC genes were

excluded from hotspot regions in normal samples (Table 4), although genes in that list were

slightly more likely to have clusters compared to other genes (odds ratio OR = 1.389, 95% confi-

dence interval CI = 1.124–1.724, p-value = 0.00192). This suggests that cancer is driven by per-

turbations in parts of the genome that are only slightly more prone to mutation under normal

circumstances. Additionally, cluster hotspots in normal samples overlapped younger genes

(1157 MY in hotspots versus 1380 MY outside of hotspots, t-test = -9.8927, df = 2825.4,

Fig 4. Functional enrichment network of recessive COSMIC cancer genes highlights DNA repair and cell cycle

control. Each node in this network represents a group of functionally related genes as returned in DAVID (gene ontology,

orthology, functional annotations, etc.). The size of the node represents the number of genes in it. Links between nodes

represent gene overlaps between groups, with the width representing the number of genes. Node colors indicate the

general functional categories defined in the legend revealing an additional layer of clustering of gene groups. The number

in the node indicates the group label as given in S2 Table. Further details of these enrichments for each node are

elaborated in S2 Table. For convenience, only nodes with p < 0.002 and FDR < 0.05 are plotted.

https://doi.org/10.1371/journal.pone.0176258.g004
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p-value< 2.2x10-16). The genes showing evidence of SNV cluster hotspotting were enriched in

olfactory receptors, glycoproteins, C-type lectins, oxioreductase functions, steroid metabolism/

cytochrome P450 function, serine proteases, oxygen binding, and chromoproteins.

For mutations observed in cancer samples, clustering hotspots typically overlapped with

younger genes (mean gene age in hotspots was 1035 MY old versus 1360 MY old for genes

Fig 5. The genomic distribution of SNV clustering differs between normal and cancer. Circos plot showing distribution of SNV

clustering for chromosomes 1, 3, 13 and 17. Tracks from inside out are: blue, evolutionarily re-used breakpoint regions (EBR); green,

amniote homologous synteny regions (mHSB); orange, hot spots of CM clusters in normal; and red, hot spots of CM clusters in cancer.

Outside text track are symbols for COSMIC genes in their corresponding genomic locations. Dominant genes are in black fonts and

recessive genes are in red font.

https://doi.org/10.1371/journal.pone.0176258.g005
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outside of hotspots, t = -10.412, df = 1007.8, p<2.2.x10-16). Unlike the normal data, the overlap

of hotspots with either HSBs or EBRs depended on the clusters included in the analysis.

Genome-wide, hotspots were excluded from HSBs, but among clusters that overlapped genes,

there was no exclusion or enrichment (Table 5). When we considered only clusters that over-

lap genes, the hotspots were more prevalent in EBRs. However, hotspots were preferentially

excluded from EBRs when we analyzed all clusters across the genome. As with normal data,

COSMIC genes were excluded from cluster hotspots in cancer (Table 4). However, COSMIC

Table 2. Association of gene age and COSMIC gene status with evolutionarily important regions for genome rearrangement.

Gene set Overlap with Odds Ratio 95% Confidence Interval p-value

Metazoan genes (< 1000 MY) HSB 0.6886 0.6503–0.7290 <2.2x10-16

EBR 1.096 1.024–1.1.174 8.342 x 10−3

Pre-metazoan genes (> 1000 MY) HSB 1.452 1.372–1.538 <2.2x10-16

EBR 0.9124 0.8521–0.9769 8.342 x 10−3

COSMIC genes HSB 1.7240 1.409–2.118 3.859 x 10−8

EBR 0.7689 0.5965–0.9814 0.03454

Odds Ratios of >1 indicate enrichment, while odds ratios <1 indicated depletion. HSB, homologous synteny region; EBR, evolutionarily re-used breakpoint

region.

https://doi.org/10.1371/journal.pone.0176258.t002

Table 3. Co-localization of cluster hotspots with evolutionarily important regions for genome rearrangement in normal peripheral blood.

Normal Hotspots in Odds Ratio 95% Confidence Interval p-value

Whole Genome: HSB 0.3053 0.3012–0.3093 <2.2x10-16

EBR 1.135 1.119–1.152 <2.2x10-16

Overlapping Genes: HSB 0.3256 0.3183–0.3331 <2.2x10-16

EBR 1.757 1.715–1.800 <2.2x10-16

The comparison was run looking at private SNVs (determined from trio comparison) clustering across the entire genome as well as clustering that only

overlapped genes. HSB, homologous synteny region; EBR, evolutionarily re-used breakpoint region.

https://doi.org/10.1371/journal.pone.0176258.t003

Table 4. Overlap of COSMIC genes with cluster hotspots (i.e. clustering of clusters) in both normal peripheral blood and tumors based on clusters

that overlap genes.

Category Odds Ratio 95% Confidence Interval p-value

Normal 0.7666 0.7189–0.8172 <2.2x10-16

Cancer 0.3246 0.2897–0.4034 <2.2x10-16

https://doi.org/10.1371/journal.pone.0176258.t004

Table 5. Co-localization of cluster hotspots with evolutionarily important regions for genome rearrangement in cancer genomes.

Cancer Hotspots in Odds Ratio 95% Confidence Interval p-value

Whole Genome: HSB 0.5443 0.532–0.5569 <2.2x10-16

EBR 0.8291 0.8078–0.851 <2.2x10-16

Overlapping Genes: HSB 0.9598 0.9164–1.005 0.08166

EBR 1.4354 1.370–1.504 <2.2x10-16

The comparison was run looking at all clusters as well as only those clusters that overlap genes. HSB, homologous synteny region; EBR, evolutionarily re-

used breakpoint region.

https://doi.org/10.1371/journal.pone.0176258.t005
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genes were more likely to contain clusters by almost 2-fold (OR = 1.873, 95% CI: 1.546–2.272,

p-value = 4.386x10-11) compared to other genes. This suggests that cluster hotspots are driven

by constraints placed on the genome by evolution, and the mechanism of clustering allows

mutation to occur in genomic space that is usually off-limits evolutionarily. The functional

enrichment of genes that overlap clusters in hotspots was also different in cancer. Hotspots in

cancer co-localized with genes that are enriched for extracellular glycoproteins, G-protein cou-

pled receptors especially olfactory receptors, cell-cell adhesion, molecular species intrinsic to

the plasma membrane, Ig- and EGF-like domains, ligand gated ion channels, membrane attack

complex component/perforin, complement 9, cadherin, Sushi domains, potassium channels,

Kazal proteinase inhibitors, fibronectin III, glycosylation, glycoproteins, the machinery to

hydrolize and excrete proteins, and finally MHCI and MHCII.

Interestingly, the hotspot enrichment of young genes was even more evident when we com-

pared the age distribution of mutated genes for both normal and cancer data (Fig 6). In this

case we observed that younger genes are profoundly over-represented in the set of genes that

overlap hotspots despite the fact that that same group of genes is significantly under-repre-

sented for general mutations. In combination with the fact that young genes are markedly

shorter, these observations suggest that the pattern of mutations in young genes is targeted,

possibly under some form of control, and strongly subjected to whatever mechanism generates

cluster hotspots in the genome.

Discussion

Our work highlights the deep evolutionary roots of cancer and the importance of the evolu-

tionary history of the genome in mutational processes driving oncogenesis. Previous studies of

cancer gene ages rely on sparse phylogenetic trees [20,21], and therefore lack the power to

resolve older genetic history. Our investigation is able to probe earlier epochs. Our study

Fig 6. Mutational pattern in young genes is characterized by hot-spotting. (A) Age distribution of all genes mutated in normal

samples data (blue), genes that have neutral level of mutation, as expected from a uniform random distribution (green) and genes in

hotspots (orange). Grey bars represent the age distribution of all human genes. Numbers in legend are the sizes of each gene set. Cross

marks (X) indicate the enrichment in that category is statistically significant according to a bootstrap test (BSQ < 1%, see Table 1).

Boxplots in lower panel show distribution quartiles; black vertical lines are medians, yellow diamonds are means and black dots are

outliers. (B) Equivalent plots for cancer data (ICGC release 19). In both plots when we observe the age distribution of genes involved in

hotspots (orange), a very large proportion of them are very young (less than 500 MY). This suggests that the mutational activity that

produces hot-spotting in the genome is preferentially hitting younger genes in spite of the fact that they are generally under-represented

in the sets of all observed mutations.

https://doi.org/10.1371/journal.pone.0176258.g006
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confirmed the earlier observation of an abundance of genes considered causal in cancer at ages

that span the evolution of multicellularity, but it also revealed that many cancer-causing genes

are much older than previously appreciated. Our analysis shows there is a complex interplay

between the evolutionary history of the genome and the somatic processes shaping the muta-

tional landscape of cancer. We demonstrated that mutational processes in both normal and

cancer cells are more common in evolutionarily young genes and regions of the genome

repeatedly used for structural rearrangement. Mutation was generally excluded from regions

of the genome that have been conserved both in sequence and linear order over large stretches

of DNA through evolutionary time, where genes considered casual in cancer are likely to be

located. Thus, our data demonstrate there are regions of the genome that appear to be hotspots

for mutation and other regions that seem to be protected, probably through a combination of

differential repair mechanisms and protection against mutations. Hotspot regions are more

likely to overlap genes that are evolutionarily young. The genomic instability seen in cancer

has to operate against this pre-existing background, i.e. it is constrained by the evolutionary

history of the genome. On the face of it, we might therefore expect mutational hotspots in can-

cer to a) affect genes known to be frequently and causally mutated in cancer and b) for causally

mutated genes to be evolutionarily young. Intriguingly, our analysis refuted both these predic-

tions: genes that are frequently mutated and causal in cancer are both older and excluded from

these hotspots, although they show a 2-fold enrichment in mutational clustering compared to

other genes. Why?

The answer would seem to lie in the inherent conflict between different levels of selection

that operate in a multicellular organism, where, particularly during development, there is

selection both at the cellular level and at the organismal level. Many of the genes that are causal

in cancer have significant roles in development [47–51]. Selection at the organism level will

remove mutations that might be tolerated at the cell level but cannot be tolerated by the organ-

ism as a whole, effectively protecting the affected genes from hotspotting over time. But since

cells are more likely to survive if mutations happen in a coordinated mutational burst [52],

these genes are not necessarily protected from the mechanisms of cluster formation, and the

resulting mutational clusters can be recovered if the selection pressure moves from both

organismal and cellular levels to only the cellular level. If cancer is a reversion to single-cell

behavior, then the selective pressure on cancer cells move closer to a state dominated by cellu-

lar level selection. It is no surprise then, if in response to an insult or stress, a cancer cell adopts

a survival strategy that might ultimately prove detrimental to the organism. One such strategy

is to reactivate the ancient prokaryotic process of stress-induced mutagenesis, which relies on

low-fidelity breakage-induced replication to generate coordinated clusters of mutational

events that effectively increase the chances of adapting to the stressful environment through

evolution. Activating such a mechanism might also increase the chances of succesful mutation

in genomic regions where the probability of mutation is low because of the evolutionary con-

straints of the genome. These are the regions where many genes important in oncogenesis

reside.

The functional annotation of old recessive cancer genes led to the hypothesis that stress-

induced mutation plays a role in genomic instability in cancer and the mutational clusters seen

in cancer represent the molecular signature of a conserved stress-induced mutagenesis

response. The genes in humans that are orthologous to the error-prone polymerases that

mechanistically drive the stress-induced mutation response in bacteria have become special-

ized DNA polymerases for translesion synthesis (TLS) employed during replication by-pass of

DNA damage [42]. These polymerases recognize specific types of DNA damage and faithfully

replicate the damaged DNA (for example incorporating a C when encountering O-methyl-

guanine) but exhibit orders of magnitude less fidelity against undamaged DNA [42]. Thus, for
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DNA damage incurred or persisting into S-phase, these so-called error-prone DNA polymer-

ases will be employed during replication leading to an overall up-tick in single base mutations.

In normal cells, the tightly controlled regulation of DNA repair with cell cycle prevents the

propagation of the vast majority of these TLS mutations into the next cell division by halting

the cell cycle and allowing time for mismatch recognition and repair, or in extreme cases, gen-

erating an apoptotic response, at least in somatic cell lineages.

In bacteria the stress-induced mutation response leaves behind a molecular signature that

can be detected in the form of SNV clusters around DSBs [44]. We observed analogous clusters

in the whole genome sequences of human tumors as well as in normal peripheral blood, the

latter reflecting the de novo mutations arising during meiosis or early embryonic development.

These clusters are not randomly distributed across the genome, with a distribution that differs

according to whether they come from normal or cancer samples, further supporting that idea

that cancer is mutating a different subset of genomic space compared to normal tissue. The

data from normal samples imply that there may be a developmental regulation of mutational

bursts outside of the well-recognized somatic hyper-mutation processes in the immune sys-

tem. This is supported by recent work on the rate and timing of mutations in the germline

[53]. Additionally, recent work by Francioli et al suggests that there is a role of TLS in the gen-

eration of de novo mutations in the germline [54]. In their study, they observed that clusters of

mutations were enriched in C> G transversions but not in the sequence contexts recognized

by APOBEC relative to non-clustered mutations. They postulate that they are the result of

error-prone TLS [54].

In cancer, the role of TLS in the generation of genomic instability has been recognized but

attributed to oncogene-induced replication-stress, not the induction of a programmed muta-

tional response [55]. The abrogation of the link between DNA damage and cell cycle by elimi-

nating efficient activation of cell cycle checkpoints or altering the function of some but not all

DNA repair pathways, leads to persistent DNA damage, TLS employment, and an increase in

TLS introduced errors that survive to the next round of replication. Recent work in yeast on

mutagenic breakage-induced replication demonstrated both a reliance on TLS as well as a

resulting mutation pattern that resembles the phenomenon of kataegis seen in cancer [56,57],

suggesting an additional mechanism by which TLS could be involved in the generation of

mutational clusters. The decrease in DNA repair capacity of the cancer cell per unit time may

also play into the role of APOBEC in generating clusters of mutations in cancer [35,58]

through increasing the amount of single-single strand DNA substrates available in the genome.

However, only roughly half of the clusters identified by Roberts, et al. had a sequence context

suggestive of APOBEC or AID activity [35]. Additionally, TLS is thought to play a role in the

C> G transversions in APOBEC driven clusters through by-pass of abasic sites as a result

UNG driven repair of the resulting uracil.

Altogether our results on the age of the recessive genes, the homology to the proteins

involved in stress-induced mutation in bacteria to non-mutated genes in DNA repair and cell

cycle pathways in humans, and the observation of the molecular signature of stress-induced

mutation in human tumors are strong evidence for the restoration of a stress-induced muta-

tional response in somatic cells. Our analysis supports the idea that the stress induced muta-

tional program remains functional but has become cell-lineage constrained. Based on our

analysis we propose that, in multi-cellular organisms, the restriction of mutational processes

that promote evolution in the germline and the immune system was brought about by re-wir-

ing the input for the mutational response to be a developmental signal, rather than a cellular

stress signal. This in turn suggests epigenetic control. A variety of conditions, such as chronic

inflammation, may lead to microenvironments where the epigenetic regulation that keeps the

mutational program under developmental and lineage control are altered, allowing somatic
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cells inappropriate access to a stress-induced mutational response. Thus, we propose stressed-

induced mutation as a hallmark of cancer reflected by genomic instability.

Our results have important implications for the clinical management of cancer. There is

already evidence that TLS polymerase expression contributes to both intrinsic and acquired

resistance to genotoxic therapies [59–67]. However, the mechanism of stress-induced muta-

genesis would predict a role for TLS activity in resistance to a wide range of therapies, includ-

ing targeted therapies. The current paradigm for understanding therapeutic resistance

contends that intracellular heterogeneity leads to multiple, clonal subpopulations with a priori
different susceptibilities to treatment. Treatment creates a bottleneck resulting in clonal selec-

tion. This selection is inferred from the observation that mutational events that have become

fixed in the population may dramatically alter their frequency following treatment [68–70].

The surviving clones then re-establish their diversity after the fact because of ongoing instabil-

ity. Resistance to therapy arises either because it existed a priori and survives the clonal sweep

or it develops as the population re-diversifies at the cellular level. However, the phenotype of

stress-induced mutation would predict that the bottleneck itself is the primary driver of inter-

cellular genomic diversity leading to the acquisition of resistance. Furthermore, both clonal

selection and regeneration of intercellular diversity occur simultaneously. If we accept that

tumor formation occurs over years in most cases, then the rapid and almost universal acquisi-

tion of resistance to inhibitors of the BRAF V600E mutation is suggestive that this is indeed

occurring [71]. The rapidity with which resistance to an effective therapy is acquired would

likely depend on how robustly a given tumor has activated the stress-induced mutation pro-

gram. Treatment dynamics are likely to be very important in minimizing the impact of stress-

induced mutation on tumor progression, with both the intensity and duration of exposure

playing a role. We hypothesize that there is a threshold effect of stress induction below which

tumor cell fitness is compromised but elevated mutation is not induced. Thus, lower doses

given more frequently may be more effective at controlling cancer progression in the long run.

This is supported by a recent study showing that intermittent dosing of patient-derived xeno-

grafts of BRAF V600E mutant melanoma results in a failure to reach lethal drug resistance,

even when the cumulative dose meets or exceeds that received on a continuous dosing regimen

where all tumors acquired lethal drug resistance [72]. Similarly, in newly diagnosed multiple

myeloma, patient outcomes were the same or better with lower toxicities on a regimen of

Lenalidomide plus low-dose dexamethasone [73]. In preclinical models of breast cancer, adap-

tive therapeutic treatment, where an initial large dose of paclitaxel is used to drive the tumor

growth rate to plateau followed by regular doses that were then adjusted based on the change

in tumor size, led to long term stabilization of tumor growth and increased survival [74]. This

suggests a fundamental switch in treatment paradigm from maximum tolerable dose to mini-

mum efficacious dose and the use of metronomic or adaptive therapy strategies, and from

‘cure’ to management of cancer as a chronic disease.

In conclusion, our analysis suggests that the observed phenotype of evolvability in cancer is

driven by re-activation of an evolutionarily ancient stress-induced mutational response.

Understanding the parameters of this response will be key to maximizing the effectiveness of

cancer treatment.
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S1 Fig. Distributions of ages for Ensembl/Compara, HOGENOM and NCBI HomoloGene

homologies. HomoloGene fails to reveal tree nodes corresponding to events of early evolution
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(older than 1500 MY), in turn giving a relative over-representation of resent events (less than

500 MY). The evolutionary time spanned by HomoloGene is later than the evolution of multi-

cellularity.

(TIFF)

S2 Fig. Genes younger than 500 MY are more frequently mutated after controlling for

gene length. Frequency of Gene Mutation according to gene age. The distribution of values of

mutation frequencies for each age group is estimated and shown as vertical violin and

box plots. Horizontal lines are the median; circle is the mean and black dots are distribution

outliers in each case. Vertical axis is in log scale. Corresponding plots are shown for both nor-

mal (A) and cancer data (B). In both cases it is evident that genes the first age bin (age < 500

MY) are typically mutated less frequently than the rest. (C) Distribution of gene lengths

according to age group membership. Young genes are typically shorter than other genes. Fre-

quency of gene mutation normalized by gene length for both normal (D) and cancer data (E)

shows that young genes are more likely to be mutated. Groups were compared via ANOVA fol-

lowed by Tukey’s Post-Hoc test to determining which relationships were driving the partition-

ing of variation. In normal (D), the<500 MY age bin is more frequently mutated compared to

all other age bins (for all pair-wise comparisons, p<2.2x10-16). In cancer (E), the<500 MY age

bin is more frequently mutated compared to all other age bins (for all pair-wise comparisons,

p<2.2x10-16). Additionally, the 500–1000 MY age bin was more frequently mutated compared

to 1000–1500 MY (p = 10−7), 1500–2000 MY (p = 3.2x10-6), and 2000–2500 MY (p = 3.6x10-4).

(TIF)

S3 Fig. Cancer displays a distinct mutational pattern relative to normal based on the evolu-

tionary age of genes. For each human gene, the expected number of mutations is obtained

according to the normal mutation pattern: frequency of normal mutations times the total num-

ber of cancer mutations. The Enrichment Ratio (ER) is the ratio of observed cancer mutations

and the number of expected mutations in the gene. We define six different gene categories

according to the level of enrichment and produce age distributions. Unexpected mutated genes

are those genes that are never normally mutated but are mutated in cancer; Severely over-

mutated genes are those with over 10 times more mutations in cancer than normal (ER>10);

Moderately over-mutated genes are mutated 1.5 to 10 times more in cancer than normal

(10>ER>1.5); Unaffected genes have more or less the same number of mutations in cancer

than normal (1.5>ER>0.67); Moderately under-mutated genes are mutated up to ten times less

than normal (0.67>ER>0.1); and Severely under-mutated genes are mutated more over 10

times less than normal, including a few genes that normally mutate but are never found mutated

in cancer. Numbers in legend are the sizes of each gene set. Cross marks (X) on bars tips indi-

cate the enrichment in that category is statistically significant according to a bootstrap test.

(TIFF)

S4 Fig. Circos plot showing distribution of SNV clustering by chromosome. Chromosomes

1 to 8.

(TIF)

S5 Fig. Circos plot showing distribution of SNV clustering by chromosome. Chromosomes

9 to 16.

(TIF)

S6 Fig. Circos plot showing distribution of SNV clustering by chromosome. Chromosomes

17 to 22 and X.

(TIF)
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S1 Table. Evolution of biological functions as determined by gene function enrichment.

(XLSX)

S2 Table. Details for functional enrichment network of recessive COSMIC cancer genes.

The network plot for the enrichment is shown in Fig 4. Each node in the network represents a

group of functionally related genes as returned in DAVID (gene ontogeny, orthology, func-

tional annotations, pathways, etc.). An additional level of clustering is represented by node col-

ors defined in this table, revealing general functional associations of gene groups. Enrichment

scores for each of these categories are shown.

(XLSX)

S3 Table. Human orthologs to E. coli genes involved in stress-induced mutation. Human

orthologs of E. coli genes identified by Al Mamun, et al. [43].

(XLSX)

S4 Table. List of donors used in analysis for both ICGC and 1000 genomes data.

(XLSX)
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