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Abstract

The rapid worldwide evolution of LEDs as light sources has brought new challenges, which

means that new methods are needed and new algorithms have to be developed. Since the

majority of LED luminaries are of the multi-source type, established methods for the design

of light engines cannot be used in the design of LED light engines. This is because in the lat-

ter case what is involved is not just the design of a good reflector or projector lens, but the

design of several lenses which have to work together in order to achieve satisfactory results.

Since lenses can also be bought off the shelf from several manufacturers, it should be possi-

ble to combine together different off the shelf lenses in order to design a good light engine.

However, with so many different lenses to choose from, it is almost impossible to find an

optimal combination by hand, which means that some optimization algorithms need to be

applied. In order for them to work properly, it is first necessary to describe the input data (i.e.

spatial light distribution) in a functional form using as few as possible parameters. In this

paper the focus is on the approximation of the input data, and the implementation of the

well-known mathematical procedure for the separation of linear and nonlinear parameters,

which can provide a substantial increase in performance.

Introduction

The rapid worldwide evolution of the LED (Light emitting diode) industry has resulted in the

implementation of LED elements in all kind of luminaries. Their technology means that

energy consumption is much reduced, while at the same time there are endless possibilities of

light engine design. In the case of LEDs lighting systems it is possible to deliver the light to the

environment in a controlled way, although this leads to new problems such as finding the opti-

mal lens or lens combination, the optimal LED to use, the optimal number of LEDs and the

optimal rotation of each lens. The key to discovering a successful design process is the choice

of the secondary optics. Currently there are more or less just two options for designing light

engines. The first option is to have the know-how and the resources to design a specific lens in

order to accomplish the task. However, the cost of resources coupled with the development

and production of optical elements can be enormous. For this reason a lot of manufactures

now make use of the second option, which is to use ready-made off the shelf lenses. These
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lenses are manufactured by a number of specialized companies, which offer different types of

lenses for all the major LED brands. The trick here is to choose the best combination of lenses

in order to get the most efficient system. The developer frequently makes use of a trial and

error method, first choosing a good combination of lenses, and then simulating the system via

Monte Carlo ray-tracing methods. The success of such procedures heavily depends on the

engineer’s intuition and experience, sizeable computation resources are also needed to check

the proposed design by means of simulations. However, analytical models and optimization

tools could be used to speed up the design process, as well as to possibly improve the quality of

solutions. An analytical model which could be used to describe the far field radiation pattern

of a LED was recently proposed in [1, 2]. Later it was observed that the model could also be

applied to LEDs with attached secondary optics [3]. Several optimization algorithms were

designed and tested, showing that the model is accurate and provides an improvement in the

field [4, 5]. In particular, the metaheuristics, such as the multi-start local search algorithm and

genetic algorithms, proved to be excellent pre-processing methods for Newton’s method [6].

The Luminous intensity pattern of LEDs is mathematically described in form Eq (1). T3his

form is a linear combination of nonlinear functions ∑ajφj(α; θ) (see Eqs (7 and 28). Thus, for

the calculation of the RMS error (see Eq (3)) it is more efficient to use the procedure which

involves reduction of the linear parameters, which is well known from [7]. Using this proce-

dure it has been possible to find desired solutions in a fraction of the time needed if usual dis-

crete optimization methods are used. In turn this means that we are no longer confined to a

HPC (High Performance Computing) unit but can run the approximation on a single proces-

sor desktop unit.

Materials and methods

The model

It is well-known that the luminous intensity pattern of LEDs can be represented as a sum of

cosine-power functions

Iðy; a; b; cÞ ¼ Imax

Xn

j¼1

aj cos cjðy � bjÞ ð1Þ

(see in [2, 6]), where θ is the polar angle, K is the number of functions to sum, and aj, bj and cj
are the function coefficients. For brevity, coefficients are written as vectors a = (a1, a2,. . .,an)T,

b = (b1, b2,. . .,bn)T and c = (c1, c2,. . .,cn)T. In the paper, after the separation of the parameters a,

b and c, vector notation α = (b1, b2,. . .,bn, c1, c2,. . .,cn)T is also used. The interval range of the

coefficients is: aj 2 [0, 1], bj 2 [−90,90] and cj 2 [0, 100] for every j = 1,2,. . .,n. In [6], discrete

optimization algorithms work on finite subsets where the possible values are

aj 2 f0; 0:001; 0:002; . . . ; 1g;

bj 2 f� 90; � 89:9; � 89:8; . . . ; 89:9; 90g;

cj 2 f0; 1; 2; :::; 100g:

ð2Þ

For given data (θi, IM(θi)), i = 1,2,. . .,m, (N>> 39n) the optimal parameters minimizing

the function

RMSða;b; cÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xm

i¼1

ðIMðyiÞ � Iðyi; a; b; cÞÞ
2

s

ð3Þ

are determined. In Eq (3), N is the number of measured points in the input data, IM(θi) is the
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measured luminous intensity value at a polar angle θi, and I(θi, a, b, c) the calculated luminous

intensity value at the given polar angle θ, and the given triplet of vectors (a, b, c) from the finite

discrete subset of [0, 1]n × [−90, 90]n × [0, 100]n. The RMS function represents the error of the

approximation named RMSp, and is defined by the equation

RMSbða;b; cÞ ¼
100 �m � RMSða;b; cÞ

Pm
i¼1

IMðyiÞ
½%�: ð4Þ

In order to simplify the problem, it is sufficient to consider the standard least squares prob-

lem

Gða; b; cÞ ¼
Xm

i¼1

IMðyiÞ � Iðyi; a; b; cÞð Þ
2
: ð5Þ

The function G can be used since to minimize the RMS function (3), i.e. finding parameter

values a�, b�, c� for which the value RMS s minimal, is equivalent to minimize the function G.

Due to the form of the function (1), the problem (5) is one of the so-called “separable nonlin-

ear least squares problems”, which were studied already in [7, 8]. In the next subsection we

present the procedure for reducing one third of the parameters in the nonlinear least square

problems where the functions in the linear square problem have a special form.

Nonlinear least square problems whose variables can be separated

Separation of the linear variables. Consider the real given data as

ðti; yiÞ ; i ¼ 1; . . . ;m: ð6Þ

Denote by a and α two independent vectors

a ¼ ða1; . . . ; anÞ
T
2 Rn and α ¼ ða1; . . . ; akÞ

T
2 Rk

and let

Zða;α; tÞ ¼
Xn

j¼1

ajφjðα; tÞ ð7Þ

be nonlinear models, where φj are functions, continuously differentiable with respect to α, and

t is a real variable. If instead of t a vector t = (t1,. . .,tm)T is taken, one should write

ηða;αÞ ¼ ðZða;α; t1Þ; . . . ; Zða;α; tmÞÞ
T

and

φjðαÞ ¼ ðφjðα; t1Þ;φjðα; t2Þ; . . . ;φðα; tmÞÞ
T
:

We also write y = (y1,. . .,ym)T for the given values in Eq (6).

Problem: Find the values of parameters a and α that minimize the nonlinear functional

rða;αÞ ¼ jjy � ηða;αÞjj2 ¼
Xm

i¼1

yi � Zða;α; tiÞð Þ
2
¼ ð8Þ

¼
Xm

i¼1

yi �
Xn

j¼1

ajφjðα; tiÞ

 !2

: ð9Þ
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Let F(α) be the matrix function

FðαÞ ¼ φ
1
ðαÞ;φ

2
ðαÞ; . . . ;φnðαÞ½ � ¼

φ
1
ðα; t1Þ φ

2
ðα; t1Þ . . . φnðα : t1Þ

φ
1
ðα; t2Þ φ

2
ðα; t2Þ . . . φnðα : t2Þ

..

. ..
. . .

. ..
.

φ
1
ðα; tmÞ φ

2
ðα; tmÞ . . . φnðα : tmÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð10Þ

The sum
Xn

j¼1

ajφjðα; tiÞ (see Eq (9)) is the i-th component of the vector

a1φ1ðαÞþa2φ2ðαÞþ . . .þ anφnðαÞ¼

a1φ1
ðα; t1Þ þ a2φ2

ðα; t1Þþ . . .þ anφnðα; t1Þ

a1φ1
ðα; t2Þ þ a2φ2

ðα; t2Þþ . . .þ anφnðα; t2Þ

..

.

a1φ1
ðα; tmÞ þ a2φ2

ðα; tmÞþ . . .þ anφnðα; tmÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð11Þ

Therefore, the functional r is geometrically the length of the vector

y � a1φ1
ðαÞ þ a2φ2

ðαÞ þ . . .þ anφnðαÞð Þ :

For a given vector y the value of r is minimal if and only if the sum (vector) a1φ1(α) +

a2φ2(α) + . . . + anφn(α) is the orthogonal projection of y onto the subspace

Lfφ1ðαÞ;φ2ðαÞ; . . . ;φnðαÞg. For each α, the linear operator

PFðαÞ ¼ FðαÞFþðαÞ

is the orthogonal projection on the linear space spanned by the columns of the matrix F(α)

(see Remark 2), i.e. the linear space Lfφ1ðαÞ;φ2ðαÞ; . . . ;φnðαÞg.
Remark 1 The matrix F+(α) is the generalized inverse or so called Moore-Penrose pseudoin-

verse. For everym × n matrix A, there exists a unique n × mmatrix X, such that

AXA ¼ A ð12Þ

XAX ¼ X ð13Þ

ðAXÞ> ¼ AX ð14Þ

ðXAÞ> ¼ XA: ð15Þ

A+ is defined to be X. The proof can be found in [9].

Remark 2 From the definition of the Moore-Penrose pseudoinverse we obtain

PFðαÞFðαÞ ¼ FðαÞFþðαÞFðαÞ ¼ FðαÞ

and hence

PFðαÞφjðαÞ ¼ φjðαÞ

for every j = 1,. . .,n. Consider that v is a nonzero vector in the orthogonal complement of the sub-
space Lfφ1ðαÞ;φ2ðαÞ; . . . ;φnðαÞg according to the usual scalar product. Such a vector v is
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characterized by the vanishing of the scalar product of the vectors v and φj(α) for every j = 1,. . .,n.

Therefore,

ðFðαÞÞ>v ¼ 0 :

Hence the following is true

ðFþðαÞÞ>ðFðαÞÞ>v ¼ 0

ðFðαÞFþðαÞÞ>v ¼ 0

FðαÞFþðαÞv ¼ 0

PFðαÞv ¼ 0 :

Another linear operator needed here is

P?
FðαÞ ¼ I � PFðαÞ : ð16Þ

Geometrically, this is the projection onto the orthogonal complement of the linear space

spanned by the columns of the matrix F(α). For any given α we have

rðâ;αÞ ¼ min
a

rða;αÞ ¼ jjy � FðαÞFþðαÞyjj2 ¼ jjP?
FðαÞyjj

2

and

âðαÞ � FþðαÞy : ð17Þ

Define the modified functional as

r2ðαÞ ¼ jjP?FðαÞyjj
2
: ð18Þ

Once a critical point (minimizer) α̂ of r2 is found, â can be calculated using Eq (17) on α̂ ,

i.e.

â ¼ Fþðα̂Þy : ð19Þ

Theorem 3 (Golub, Pereyra 1973) Let r(a, α) and r2(α) be defined as above. We assume
that in the open set O � Rk, the matrix F(α) has a constant rank r�min(m, n).

1. If α̂ is a critical point (or a global minimizer for α 2 O) of r2(α), and

â ¼ Fþðα̂Þy ð20Þ

then ðâ; α̂Þ is a critical point of r(a, α) (or a global minimizer for α 2 O) and rðâ; α̂Þ ¼ r2ðα̂Þ.

2. If ðâ; α̂Þ is a global minimizer of r(a, α) for α 2 O, then α̂ is a global minimizer of r2(α) in O

and r2ðα̂Þ ¼ rðâ; α̂Þ. Furthermore, if there is an unique â among the minimizing pairs of
r(a, α), then â must satisfy Eq (20).

For the proof see [8], where the method of decimation of the functional r2 is given after the

theorem. The orthogonal transformation of the matrix F into “trapezoidal” form is used. Since

we use C++ in the computations, in the next paragraph we shall present the method of simpli-

fication of the functional r2 in SVD manner.

Computing in C++, Singular Value Decomposition. In the Armadillo library (a high

quality linear algebra library (matrix maths) for the C++ language, which aims to provide the

ease of use and performance of MATLAB functions in more low level programming. “http://

arma.sourceforge.net/”) there is the command svd for calculating the Singular Value

Improved approximation of spatial light distribution
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Decomposition. For every rectangular m × n matrix F, where m� n, the command svd gives us

the matrices U and V and the vector s. The matrices U and V are orthogonal matrices of dimen-

sion m × m and n × n respectively. Further, s is the vector of the singular values s1, s2,. . .,sn. Let S
be the diagonal matrix S = diag(s1,. . .,sn). We can assume that

s1 � s2 � . . . � sn � 0: ð21Þ

If rank(F) = r, then sr+1 = . . . = sn = 0. If rank(F) = rank(S) = r, then denote by Sr the invert-

ible diagonal matrix

Sr ¼

s1 0 . . . 0

0 s2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . sr

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

Denote by S the m × n matrix defined by

1. if r = n, we write S ¼ S
0

� �
,

2. if r< n, then S ¼
Sr 0
0 0

�
�
�
�

� �

.

Thus,

FðαÞ ¼ UðαÞSðαÞVTðαÞ ð22Þ

(see [10], the alternative representation of SVD). The Moore-Penrose pseudoinverse of the

matrix S is the following n × m matrix

1. if r = n, then Sþ ¼ ½S� 1j0�,

2. if r< n, then Sþ ¼
S � 1
r 0

0 0

�
�
�
�

� �

.

Therefore, the Moore-Penrose pseudoinverse of the matrix F is the matrix

FþðαÞ ¼ VðαÞSþðαÞUTðαÞ : ð23Þ

The more simple form of the matrix of the projection PF can be easily calculated by

PFðαÞ ¼ FðαÞFþðαÞ ¼ UðαÞSðαÞVTðαÞVðαÞSþðαÞUTðαÞ ¼

¼ UðαÞSðαÞSþðαÞUþðαÞ ¼ UðαÞ
Ir 0

0 0

�
�
�
�

� �

UTðαÞ;

where Ir denote the identity matrix of the dimension r × r for r = 1,. . .,n − 1. The orthogonal

projection P?
FðαÞ (see Eq (16)) has the form

P?
FðαÞ ¼ UðαÞ

0 0

0 Im� r

� �
�
�
�

�

UTðαÞ:
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From the given vector y = (y1,. . .,ym)T another vector ~yðαÞ can be defined by

~yðαÞ ¼ UTðαÞy: ð24Þ

The functional r2 (see Eq (18)) can be written as

r2ðαÞ ¼ jjUðαÞ
0 0

0 Im� r

� �
�
�
�

�

UTðαÞyjj2 ¼

¼ jjUðαÞ
0 0

0 Im� r

� �
�
�
�

�

y~ðαÞjj2:

If we write the vector ~y in a block form such as

~yðαÞ ¼
~y ½r�ðαÞ

~y ½m� r�ðαÞ

" #

ð25Þ

and since the orthogonal transformation (in our case U(α)) is isometric, we obtain

r2ðαÞ ¼ jj
0 0

0 Im� r

� �
�
�
�

�

~yðαÞjj2 ¼ jj~y ½m� r�ðαÞjj
2
: ð26Þ

Model
P3

j¼1
aj coscjðθ � bjÞ.

Let

a ¼ ða1; a2; a3Þ
T
2 R3 ; α ¼ ðb1; b2; b3; c1; c2; c3Þ

T
2 R6 and β ¼ ðb; cÞT 2 R2

be independent vectors. Denote by prj the projection

prj : R6 7� ! R2

ðb1; b2; b3; c1; c2; c3Þ
T
7� ! ðbj; cjÞ

T

for j = 1, 2, 3. Let ψ be the function, defined by

c : R2 � R � ! R

ðβ; yÞ 7� ! cos cðy � bÞ :
ð27Þ

To write the function
P3

j¼1
aj cos ðy � bjÞ

cj in the form Eq (7), we take

φ
1
ðα; yiÞ ¼ cðpr1ðαÞ; yiÞ

φ
2
ðα; yiÞ ¼ cðpr

2
ðαÞ; yiÞ

φ
3
ðα; yiÞ ¼ cðpr3ðαÞ; yiÞ ;

or shortly

φjðα; yiÞ ¼ cðprjðαÞ; yiÞ ¼ cos cjðyi � bjÞ ð28Þ
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for j = 1, 2, 3 and i = 1,. . .,m. The matrix F(α) is the m × 3 matrix

FðαÞ ¼

cos c1ðy1 � b1Þ cos c2ðy1 � b2Þ cos c3ðy1 � b3Þ

cos c1ðy2 � b1Þ cos c2ðy2 � b2Þ cos c3ðy2 � b3Þ

..

. ..
. ..

.

cos c1ðym � b1Þ cos c2ðym � b2Þ cos c3ðym � b3Þ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð29Þ

For given α, in C++ we calculate the matrices U, V and the vector of the singular values s by

the command svd. The rank r of the matrix F(α) is equal to the number of nonzero singular

values in s. We calculate the vector ~y as in Eq (24) and solve the least square problems

r2ðαÞ ¼ jj~y ½m� r�ðαÞjj
2
: ð30Þ

As soon as the solution α̂ of the least square problem (30) is found we can calculate â (see

Theorem 3) by â ¼ Fþðα̂Þy.

The algorithms

In previous works [4, 6], the model described above was applied in conjunction with several

custom-built algorithms that are based on local search heuristics and some meta-heuristics.

The implemented algorithms include a steepest descen T algorithm, two iterative improve-

ment algorithms with different neighbourhoods, and two genetic algorithms, a standard one

and a hybrid one in which the best individuals of every generation are optimized with an itera-

tive improvement algorithm. For a more detailed description of the algorithms we refer to [4].

The results of the experiments showed that all of the applied algorithms are capable of provid-

ing satisfactory results in all the tested instances, and differed mainly in the computational

time needed. The average RMS values obtained on real lenses were around RMS = 2%. Hence,

the above-mentioned results proved that the model is accurate, and that sufficiently good

approximations can be found with a variety of algorithms for a sufficiently good description of

lenses.

However, it should be remembered that the model can also be used for data compression

tasks. A zero or very low RMS error is also essential in the foreseen application, in which pre-

manufactured lenses need to be combined into a more complex luminaire with a prescribed

light distribution.

In the model we use a sum of functions that are smooth, and hence the first and second

derivatives can be calculated allowing application of continuous optimization methods in

addition to the general discrete optimization meta-heuristics that were used before. We

decided to use the Newton (also known as the Newton–Raphson) iterative method [11, 12] in

order to find the sought-for solution. It is well known that convergence of the Newton method

may significantly depend on the initial solution. We therefore applied the method in two ways.

First, we used the Newton method as an optimizer which can pinpoint the local minimum of

solutions found by heuristic algorithms. In a sense this implementation of the Newton method

is an extension of the discrete optimization algorithm, which is used to finalize the search to

end in a local minimum. (Note that the local minima may be missed by discrete optimization

algorithms due to the predefined length of the discrete moves.) Secondly, we use the Newton

method as a stand-alone algorithm that will, on initialization, generate a number of random

(initial) solutions that are uniformly scattered over the whole search space. It then uses the

Newton method on a number of the best initial solutions in order to find the local minima. Of
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course, for both implementations to be comparable, the iteration method has to be controlled

so that the overall maximum amount of computation time is roughly the same.

Multi-start IF and IF-R. The multi-start iterative improvement with fixed neighbour-

hood (IF) and IF with reduced parameters IF-R algorithm [4–6] first initializes several initial

solutions. The initial solutions are randomly chosen from the whole search space. Each of the

initial solutions is then optimized using the following steps. At the beginning, the search step

values (the step for numerical differentiation) da = 0.01, db = 1, and dc ¼ Imax
10

are initialized, giv-

ing the 512 neighbours of the initial solution: (a1 ± da, b1 ± db, c1 ± dc, a2 ± da, b2 ± db, c2 ± dc,
a3 ± da, b3 ± db, c3 ± dc). In the case of IF-R we only initialize the step values db = 1 and

dc ¼ Imax
10

, giving 64 neighbours of the initial solution: (b1 ± db, c1 ± dc, b2 ± db, c2 ± dc, b3 ± db,

c3 ± dc). The algorithm then randomly chooses a neighbour, and immediately moves to this

neighbour if its RMS value is better than the current RMS value. If no better neighbour is found

after 1000 trials, it is assumed that no better neighbour exists. In this case the algorithm morphs

the neighbourhood by changing the step according to the formula di+1 = di + d0. More precisely,

dbi+1 = dbi + db0 where db0 is the initial step value and by analogy dci+1 = dci + dc0 where dc0 is

the initial step value.

This is repeated until i = 10. If there still is no better solution, the initial step value is multi-

plied by 0.9 and the search is resumed from the current solution with a finer initial step. The

algorithm stops when the number of generated solutions reaches Tmax.

Newton’s method IF-N. Newton’s method [11, 13, 14] is a well-known numerical optimi-

zation method, which can provide very good results under certain assumptions about the evalu-

ation function and the initial solution. The evaluation function is indirectly minimized by

looking for a solution of a system of nonlinear equations (the first derivatives of the evaluation

function). Newton’s method solves the system of nonlinear equations iteratively by approximat-

ing it, in each step, with a system of linear equations which produce the delta vector. The delta

vector is a part of the iterative scheme xiþ1
k ¼ xi

k � di
k. The Newton method converges when the

delta vector vanishes, d = 0. At this point the evaluation coefficients found are the local minima.

Details are given in [6]. An obvious assumption is that the evaluation function has to be a con-

tinuous non-linear function for which first and second order derivatives are defined. For New-

ton’s method to converge, the initial solution has to be close enough to a local or global

optimum. For this reason the method is very sensitive to the choice of the initial solution.

The datasets

The experimental study made use of two batches consisting of 9 and 3 instances. We selected 9

different asymmetrical lenses which are meant to be used with a CREE XT-E series LED, from

one of the world’s leading lens manufacturer LEDIL from Finland. We acquired the photometric

data from LEDIL’s on-line catalogue [15]. The data was provided in.ies format, which we then

converted to a vector list which is more suitable to use in our algorithms. LEDIL measured the

individual lenses with a polar precision of 1˚ on 25 C panels. Additionally, we also ran the approx-

imation on three LEDIL lenses that were measured in the photometric laboratory at the Faculty

of Electrical Engineering in Ljubljana. These three (Komb1, Komb2 and Komb2nr) lenses from

Fig 1 were measured at higher azimuth resolution, which yielded 13032 measurements and the

same number of vectors to be approximated. The total number of real instances was 12.

Experimental results and discussion

In this section the results obtained by using the three presented algorithms are discussed. All

the algorithms ran for Tmax = 4 million iterations. After every ten thousand iterations we saved
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the results which are presented in the section Supporting Information in S1, S2 and S3 Tables.

The results are presented as the averages over 25 C-panels for each lens. The input data con-

sisted of 12 lenses. The first 9 lenses were obtained from the manufacturers catalogue [15], and

the last three were measured by us.

In S1, S2 and S3 Tables we present the average, minimum, and maximum RMS error after a

varying number of iterations for the IF, IF-N and IF-R algorithms respectively. The types of

lenses are given in the first columns. Experimentally, we also upgraded the IF algorithm with

reduced parameters by the Newton method. Compared to S3 Table, the results of the IF-R

algorithm upgraded by the Newton method are exactly the same. An obvious conclusion is

that, at least in the cases tested, the results provided by the IF-R algorithm are so good that

there is no room for improvement by the Newton method.

From the paper [6], we know that the IF-N algorithm improved the algorithms in [3, 4] by

an average of 60% increased quality (minimized RMS). Here, S1 and S2 Tables show that the

IF-N algorithm improves the classical algorithm IF slightly. However, we are more interested

in a comparison of the results of the RMS errors of the IF-R algorithm with respect to the data

of the IF algorithm (or the IF-N algorithm).

We can immediately see that our new algorithm (IF-R) is, on average, much better than

both the IF and the IF-N algorithms. The errors after 4M iterations are much lower in our new

algorithm with respect to the usual IF algorithm. On the other hand, the errors after 4M itera-

tions of the new algorithm and the IF-N algorithm are comparable.

In order to analyze the results given in S1, S2 and S3 Tables more closely let us consider the

graphs provided below. On the horizontal axis we have the number of iterations, and on the

vertical axis the RMS error. The average convergence curves for the whole lenses are very simi-

lar, so that are not presented here. Instead we chose one lens, the Komb1 (all 25 C-planes) to

present the results and comparisons, so that we can see the characteristic differences between

the C-plane approximations.

Fig 1. Graphical representation of the measured Ledil oy. lens combinations.

https://doi.org/10.1371/journal.pone.0176252.g001
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In Fig 2, the convergence curves of Komb1 from the IF algorithm are given for each C-

plane. It can be seen that the improvement of the errors seems to be insignificant between

3.2M and 4M iterations. It can also be observed that, while the majority of the C-planes follow

the same convergence pattern, there are some that deviate. We could attribute this deviation to

poorly chosen initial solutions, or to specific input data which can cause the search algorithms

to struggle (see C17 and C20 in Fig 2). As the experiment was set up in multi-start mode,

which means that every approximation started 10 times with randomly chosen initial solutions,

and that the presented data is the best of the best it is more likely that the convergence curve

deviation is due to specific input data. However it can be seen that, in the end, no matter which

input was used and how the convergence curve looks like, all the RMS at Tmax are similar.

A comparison of the convergence of the IF-N algorithm and of the IF-R algorithm for the

Komb1 lens is represented in the next figures (Figs 3, 4), where in both graphs the same scale

is used.

We chose the IF-N algorithm because it exhibits almost the same convergence rate as the IF

algorithm, but provides slightly better end results (see Fig 5). This makes it more appropriate

for comparisons with the new algorithm.

Clearly, the convergence of the IF-R algorithm is much faster than that of the IF-N algo-

rithm. In fact it is so fast that the scale used does not illustrate any properties of the new algo-

rithm’s convergence apart from its speed. For this reason we looked at the graph in Fig 4 on a

smaller horizontal scale and got the following graph (Fig 6)

The convergence of the IF-R algorithm is 40 times faster than that of the IF and IF-N algo-

rithms, but the curve slopes (gradients) are still similar, just on a smaller scale. Also, similarly

to the previous algorithms the IF-R algorithm shows only minute errors after 100K iterations.

From this it can be concluded that parameter separation has a huge impact on computation

time but does not alter the algorithm behaviour when searching for the best solution, which is

somewhat expected, as we did not change the algorithm workflow, just the pool of possible

solutions.

Fig 2. Convergence curves of the lens Komb1 for the C-planes of the IF algorithm. The curves in the

graph are the best on each C-panel regardless of the multi-start. In other words C0 can be obtained from

multi-start 5 and C1 from multi-start 9. The criteria for the best approximation is the RMS obtained at Tmax.

https://doi.org/10.1371/journal.pone.0176252.g002
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Next we take out the graphs for the C1 plane from the figures above, and from the data of

the iterations we add the convergence curve of the IF-N algorithm. The convergence curves of

all three algorithms (IF, IF-N and IF-R) for the C1 plane of the Komb1 lens are displayed in

Fig 5. From this it can be seen that the IF-N algorithm does not change the convergence curve

as was implied above, it just improves the RMS values slightly at every step. We again observe

the superiority of the algorithm with reduced parameters, which converges in a fraction of the

time needed for the other two algorithms.

Fig 3. The convergence of the IF-N algorithm.

https://doi.org/10.1371/journal.pone.0176252.g003

Fig 4. The convergence of the IF-R algorithm.

https://doi.org/10.1371/journal.pone.0176252.g004
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Fig 5. Convergence curves of the Komb1 lens for the C-plane 1.

https://doi.org/10.1371/journal.pone.0176252.g005

Fig 6. Convergence of the IF-R algorithm with reduced parameters in 100K iterations.

https://doi.org/10.1371/journal.pone.0176252.g006
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For the last comparison of the algorithms, we showcase a scatter diagram of all the lenses in

Fig 7. This diagram shows the RMS values at Tmax for the best, the worst, and the average over

25 C-panels of each lens from the experiment.

Again there is an obvious superiority of the new algorithm drawn in red, where the differ-

ences between the maximum (worst) RMS and the minimum (best) RMS are the smallest. It

can be seen that the differences in the case of the new algorithm are mostly two times smaller

than in the case of the old algorithms, but they can also be 4 times smaller as in case of the

CA12087 lens.

It can therefore be concluded that the used method of separating the linear and non-linear

parameters, provides a huge performance boost to the developed algorithms, even to the level

where these algorithms could be used in commercial applications, which are meant to be used

on a daily basis by users who are not programmers or mathematicians.

Remark 4 Following the recommendation of one of the reviewers, our results were compared
with the results of the standard optimization solver in Matlab. The standard function lsqcurvefit

for approximation of nonlinear function given by Eq (1) was used. For the initial values, random
solutions (i.e. vectors from [0, 1]3 × [−90, 90]3 × [0, 100]3) were generated, and the measured
data were the measured luminous values IM(θi) at polar angles θi (see section The model). We
ran lsqcurvefit for all 25 C-panels for each of the first 9 lenses. To allow approximately the same
running time (Matlab was run on another computer), we aim to allow approximately the same
number of feasible solutions generated by each of the solvers. Therefore, on each instance (each C
panel of each lens), function lsqcurvefit was restarted 50 times with 40 000 iterations allowed
and precision 1e-6. The best solutions on each instance are memorised. In S4 Table, the RMS
error on best, worst and average C panel are reported (right rows). Roughly speaking, comparison
with the average, minimum, and maximum RMS error obtained IF-R algorithm (left rows) shows
that in most cases, the solutions are of similar quality. More precisely, on lens CA12087,Matlab

Fig 7. Min-Avg-Max scatter diagram.

https://doi.org/10.1371/journal.pone.0176252.g007
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solver provides solutions with significantly lower RMS error (two to three times better), but on the
other hand, on lenses CA13299, CA13300 and CA13805, the IF-R solutions are about 6 times bet-
ter on average! Note that on these three lenses, the Matlab solver was in addition run with 500
restarts, with 400 000 iterations allowed and with precision 1e-10, and in all cases, the solutions
did not improve significantly. On the other hand, note that IF-R finds solutions of the reported
quality in much shorter runs (see Figs 3 and 4 ), and was allowed 4M iterations just to show the
speed up in comparison to the other algorithms tested. This additional experiment thus showed
that the reduction of parameters dramatically improves the convergence speed, and sometimes
also the quality of approximation. An interesting avenue of further research may be to optimize
the implementation and parameter tuning of IF-R, and, on the other hand, understand the prop-
erties of the instances (c.f. CA13299, CA13300 and CA13805) that allowed so diverse solution
qualities.

Supporting information

S1 Table. RMS error values for IF. The Average sub-table presents the average data over 25

C-panels, the Min table the best, and the Max table the worst C-panel.

(PDF)

S2 Table. RMS error values for IF-N. The Average sub-table presents the average data over 25

C-panels, the Min table the best, and the Max table the worst C-panel.

(PDF)

S3 Table. RMS error values for IF-R. The Average sub-table presents the average data over 25

C-panels, the Min table the best, and the Max table the worst C-panel.

(PDF)

S4 Table. RMS error values for IF-R and Matlab. The average, the best and the worst RMS

error of IF-R AND Matlab solver after around 4M iterations.

(PDF)
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Funding acquisition: DK TN JŽ.

Investigation: DK TN JŽ.
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