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Abstract

Advances in omics technologies have led to the discovery of genetic markers, or single

nucleotide polymorphisms (SNPs), that are associated with particular diseases or complex

traits. Although there have been significant improvements in the approaches used to ana-

lyse associations of SNPs with disease, further optimised and rapid techniques are needed

to keep up with the rate of SNP discovery, which has exacerbated the ‘missing heritability’

problem. Here, we have devised a novel, integrated, heuristic-based, hybrid analytical

computational pipeline, for rapidly detecting novel or key genetic variants that are associ-

ated with diseases or complex traits. Our pipeline is particularly useful in genetic association

studies where the genotyped SNP data are highly dimensional, and the complex trait pheno-

type involved is continuous. In particular, the pipeline is more efficient for investigating small

sets of genotyped SNPs defined in high dimensional spaces that may be associated with

continuous phenotypes, rather than for the investigation of whole genome variants. The

pipeline, which employs a consensus approach based on the random forest, was able to

rapidly identify previously unseen key SNPs, that are significantly associated with the plate-

let response phenotype, which was used as our complex trait case study. Several of these

SNPs, such as rs6141803 of COMMD7 and rs41316468 in PKT2B, have independently

confirmed associations with cardiovascular diseases (CVDs) according to other unrelated

studies, suggesting that our pipeline is robust in identifying key genetic variants. Our new

pipeline provides an important step towards addressing the problem of ‘missing heritability’

through enhanced detection of key genetic variants (SNPs) that are associated with continu-

ous complex traits/disease phenotypes.

PLOS ONE | https://doi.org/10.1371/journal.pone.0175957 April 25, 2017 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Salehe BR, Jones CI, Di Fatta G, McGuffin

LJ (2017) RAPIDSNPs: A new computational

pipeline for rapidly identifying key genetic variants

reveals previously unidentified SNPs that are

significantly associated with individual platelet

responses. PLoS ONE 12(4): e0175957. https://

doi.org/10.1371/journal.pone.0175957

Editor: Gualtiero I. Colombo, Centro Cardiologico

Monzino, ITALY

Received: September 14, 2016

Accepted: April 3, 2017

Published: April 25, 2017

Copyright: © 2017 Salehe et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0175957
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175957&domain=pdf&date_stamp=2017-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175957&domain=pdf&date_stamp=2017-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175957&domain=pdf&date_stamp=2017-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175957&domain=pdf&date_stamp=2017-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175957&domain=pdf&date_stamp=2017-04-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0175957&domain=pdf&date_stamp=2017-04-25
https://doi.org/10.1371/journal.pone.0175957
https://doi.org/10.1371/journal.pone.0175957
http://creativecommons.org/licenses/by/4.0/


Introduction

Genetic association studies (GASs) allow scientists to study and analyse SNPs associated with

complex traits or diseases. The traditional approach for genetic association (GA) analysis is to

analyse one SNP at a time. However, multiple SNP analysis approaches have recently received

much attention, and different strategies have been designed and adopted [1]. For instance, the

widely used standard multiple SNP analysis approach is the forward stepwise method [2].

Other approaches include variants of penalised regression methods [3,4] and a compendium

of the burden tests methods for analysing and detecting rare variants [5–9]. Besides these

improvements, approaches that are computational and bioinformatics-based, are likely to

complement the biostatistical methods and further improve crucial SNPs identification, and

hence, further addressing missing heritability [10–12]. Here, we describe a novel, integrated,

heuristic-based, hybrid analytical computational pipeline, for rapidly detecting novel or key

genetic variants that are associated with complex traits continuous phenotype. The pipeline

combines the power of random forests (RF) [13] and regularised regression methods, using

ridge and least absolute shrinkage and selection operator (lasso) [14,15] for the analysis of

SNPs in GASs, in addition to the stepwise method. The pipeline has been also coupled with a

feature selection method known as Boruta [16] for further improving the key SNPs identifica-

tion. In brief, this pipeline describes a consensus model based on the RF for identifying key

genetic variants (SNPs) for further biological interpretation or predictive purposes.

This pipeline is able to select key SNPs associated with continuous phenotypic responses,

and has been applied to analyse the effect of multiple SNPs and loci associated with platelet

responses. The pipeline has identified several novel genetic variants significantly associated

with platelet responses that were previously unidentified when only the standard stepwise

method was used [17], yet it is also generally applicable for studying other continuous

phenotypes.

Platelets are small anucleate cells packed with complex signalling machinery that enables

them to react rapidly to damage in a blood vessel to prevent blood loss. During platelet func-

tioning, several molecules (agonists) are involved in activating platelets, leading to platelet

aggregation and thrombus formation [18,19], and culminates in the formation of a plug on the

damaged blood vessel, which has been associated with CVD pathophysiology [20,21]. The

platelet response to agonists is genetically regulated and highly variable among individuals,

and over recent decades considerable success has been achieved in illuminating the genetic

determinants that underpin platelet responses [17,22–24]. Despite this success, further under-

standing of the unaccounted genetic variability of the SNPs associated with platelet responses

is required [25].

Using our approach, we analysed the genotyped SNPs data obtained from a previous func-

tional genomic study that focused on understanding the genetic association underlying the

platelet responses to agonists [17]. The analytical method deployed in the previous study was

based on the forward stepwise method, which is argued to be statistically sub-optimal [26] and

tends to omit key genetic variants, particularly those with strong linkage disequilibrium [27].

In the previous study, four platelet responses were involved: 1. P-selectin exposure (a marker

of degranulation) in response to adenosine diphosphate (ADP) agonist (denoted by PA), 2.

Fibrinogen binding in response to ADP (FA), 3. P-selectin in response to the GPVI specific

agonist cross-linked collagen-related peptide (CRP-XL) (PC), and 4. Fibrinogen binding in

response to CRP-XL (FC).

Here, we critically evaluate our new approach against the previous method using the same

data [28]. Furthermore, we show that using our pipeline enhances our ability to identify key

significant SNPs that are associated with platelet responses while also assessing the confidence
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level. Additionally, we tested the pipeline with the age covariate and we demonstrate that it has

promising potential in accounting for further heritability of platelet responses and other con-

tinuous phenotypes.

Materials and methods

The genetic association (GA) data were acquired from the bloodomics project [28], compris-

ing 1430 SNPs (chosen from genomic regions in the vicinity or within candidate genes

involved in the platelet responses or signalling pathways) for 462 individuals with descriptions

of their effects on four platelet signalling pathways or platelet responses (i.e. PA, PC, FA, and

FC). The data are therefore highly dimensional with the number of all SNPs ‘p’ greater than

the number of observations ‘n’ (i.e. p> n). The platelet responses of our interest are quantita-

tive and are normally distributed continuous trait phenotypes with n(1,0). These were mea-

sured in a previous study by flow cytometry [28], through the expression level of the two

released molecules, i.e. fibrinogen (F) and P-selectin (P), after the platelet has been activated

by agonists ADP (A) and CRP-XL (C). The SNPs’ genotypes were represented using the

dummy variables 1, 2, and 3 corresponding to major homozygous, heterozygous, and minor

homozygous respectively.

The computational pipeline

The use of RF as an efficient tool for dealing with high dimensional data in the biomedical and

life science has been elucidated in a previous review [23]. Our approach is a two staged analysis

involving RF based on the work of Schwarz et al. [24], which is a standard for SNP discovery,

as further explained by Goldstein et al. [25]. The detailed description of the pipeline is given

below.

Using this dataset, we iteratively trained the random forests (RF) models, which were used

to select the useful k SNPs from p. In this case, each iteration based on the ntree (the number

of trees used in generating RF model), an RF regression model was trained for each of the

four platelet responses in the dataset using all p SNPs. Then, the top 40 (k) among the overall

ranked SNPs were selected using the permutation variable importance (VI) feature score mea-

sure [13]. We used an approximation of
ffiffiffipp as a cut-off value for selecting the top ranked k

SNPs in each of the four platelet responses. The k SNPs were used as a baseline for further

selecting key significant SNPs in the pipeline.

For each iteration, the RF model was retrained using the k SNPs to examine whether the

model has improved. The performance improvement was observed with the increase in the

value of ntree, starting from 500 up to 3000 trees (i.e. 500, 1000, 2000, 3000 for iterations 1, 2,

3, and 4 respectively) where the models exhibited a stable performance. The relative increase

of ntree was shown to significantly increase the performance, and proven to enhance the

selection of the relevant variables [29]. The performance of the RF models was evaluated using

Eq 1.

R2 ¼ 1 �

P
ðPobserved � PpredictedÞ

2

P
ðPobserved �

�PobservedÞ
2

ð1Þ

where:

R2 is the root mean squared, Pobserved and Ppredicted are observed and predicted platelet

responses respectively for each of the FA, PA, FC, and PC. �Pobserved is the mean platelet

responses for each of the FA, PA, FC, and PC.
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For each iteration, the k SNPs were further passed through the designed layer of an ensem-

ble of (regularised) regression methods, which were used to find highly significant SNPs asso-

ciated with platelet responses. Our rationale for devising this layer was to potentially increase

the likelihood of identifying many significant SNPs based on the varying performances of the

individual methods [30]. An additional aim in applying this layer was to increase the power of

detecting significant SNPs that are likely to be missed by any of the other methods.

In our implementation of this layer, we used ridge and lasso, in additional to the stepwise

forward methods. The stepwise forward method was initially used to examine the number of

SNPs that would have been selected relative to the previous study [17] using the same data. We

included lasso to retain potentially sparse interactions among the genetic variants [31]. Ridge

regression was applied to take into account potential multicollinearity among SNPs, particu-

larly those with strong linkage disequilibrium (LD) [32].

We collated and tested the SNPs resulting from each model generated from the different

selected regression methods to find those that were significantly associated with FA, FC, PA,

and PC platelet responses. The significant SNPs from each method were parametrically tested

and selected based on the cut-off p-value of< = 0.01.

Table 1 demonstrates the effect of relatively increasing the RF’s ntree parameter on the vari-

ance of k SNPs and significance of regression models.

For each iteration, the RF model performance was evaluated based on the increase of % var-

iance when the model was run using p SNPs and selected k important SNPs. This was further

followed up by passing the k SNPs into the multiple regression methods, where the confidence

of each model was subsequently evaluated and its significant SNPs were examined. This was

repeated until the models showed convergence. Note, the % variance is a negative number

(-0.67) in the first iteration, i.e. ntree = 500. The negative number indicates that the prediction

is very poor due to incorporating all SNPs (p) in the full model, a situation where many bad

variables (SNPs) might be included [33,34].

Thus, from Table 1, the increase in the variance explained by the RF, and confidence of

the intermediate regression models might be an indicative feature of the importance of the

selected k and highly significant SNPs respectively. A similar pattern is observed when the

pipeline is validated using the simulated data (see the section titled ‘Validation of the pipeline’).

This further supports the work of Paul et al. [35] and Strobl et al. [29] who showed that the

variables selected using the VI measures are likely to be statistically significant, and the

increase in the value of ntree plays a significant role in the selection of the relevant variables

respectively. The k SNPs from the optimal or converged RF model (i.e. final iteration when the

ntree = 3000) were thus used to find the most significant and key SNPs in the final consensus

approach.

Furthermore, for each iteration, the k SNPs were alternatively passed through Boruta method

[16] layer, which is an RF-based method normally used to select all relevant important features.

The Boruta method has previously shown the relative robustness in selecting potentially

Table 1. The evaluation performance of the models in the pipeline.

Random Forests (RF) Run RF+Stepwise RF+Ridge regression RF+Lasso

#Iterations Number of trees

(ntree)

% Variance all

(p) SNPs

% Variance k

SNPs

Model significance (r-

squared & p-values)

Model significance (%

Variance)

Model significance (r-

squared & p-values)

1 500 -0.67 8.58 0.088 & 4.965e-09 14.7 0.096 & 1.83e-09

2 1000 0.43 13.7 0.11 & 4.771e-11 17.83 0.10 & 8.1e-10

3 2000 0.23 16.66 0.111 & 5.4e-11 18.77 0.138 & 7.108e-13

4 3000 0.51 17.94 0.13 & 1.49e-12 17.5 0.16 & 6.61e-15

https://doi.org/10.1371/journal.pone.0175957.t001
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important genes [36]. In our approach, the Boruta method was applied to enhance the consen-

sus identification of the most significant SNPs, by independently examining the significant

SNPs relative to those selected by the regression methods layer, in addition to identifying new

ones. The Boruta method finds k0 relevant (important) SNPs from k. The significance (or the

importance) of SNPs in the Boruta method is measured using the Z-score.

Once we had determined the optimal state for the pipeline (i.e. in the final iteration where

ntree = 3000), we extracted and compared the SNPs from each method in the regression layer

and the Boruta method to discover which of those were found to be the most significant by

consensus, thereby confidently identifying them to be key genetic variants (Fig 1).

Based on the examined significant SNPs in different intermediate models in each iteration

(i.e. ntree) of the pipeline, a confidence level was then assigned during the final iteration to ver-

ify that the selected key significant SNPs were not false positives. The confidence level also

allowed us to ensure that true key significant SNPs (true positives) were not rejected, due to

either being selected by a single method or being completely missed out in the final iteration

when the pipeline converges. In order to assign a confidence score, a plot was created showing

the frequency of the selected significant SNPs in the intermediate models in every iteration

(see the Results and discussion section). The higher the frequency of appearance in the inter-

mediate models, the greater the confidence score, or higher likelihood of being true key signifi-

cant SNPs (true positives), i.e. during the observed convergence, if the same SNP appears in

different intermediate models and in several iterations, then it is more likely to be a true posi-

tive. The confidence level of the selected significant SNP was then determined by taking the

ratio of the frequency of appearance of a SNP (pm) in the intermediate models in all iterations

(i.e. ntree = 500, ntree = 1000, ntree = 2000, and ntree = 3000) to the normalised total number

of the models multiplied by total number of iterations. (Eq 2)

Confidence for SNP ðPmÞ ¼
frequency of SNP ðPmÞ in the models in all iterations
total number of models � total number of iterations

ð2Þ

From Eq 2, a minimum threshold confidence level can be set, for instance, any score greater

than 0.5 is more likely to be a true positive significant SNP.

Initial implementation of the pipeline

Random forest. We used the randomForest [37] package in the R language [38] to run

the RF layer.

Regression methods. The regression methods that were applied in the pipeline, are based

on the standard linear regression model given by Eq 3:

Y ¼ Xbþ ε ð3Þ

where:

Y is the response phenotype of concern (i.e. platelet responses PA, FA, PC, and FC for indi-

viduals), which is (n x 1) vector of dependent variables; X is a (n x p) design matrix, in this case

are the SNPs genotype-coded with 1 for major homozygous, 2 for heterozygous, and 3 for

minor homozygous; β is a (p x 1) vector of regression coefficients βj, j = (1,. . .,p); and ε is an

assumed vector of normally distributed random errors with mean 0 and variance (σ2). So our

model is a relationship between the continuous phenotype Y (i.e. platelet responses) deter-

mined by weighted SNPs Xp of n individuals.

Stepwise forward regression. We applied the stepwise regression with forward selection

method, after filtering the SNPs using RF. Generally, the forward stepwise selection method

starts with a null model and allows one SNP at a time to enter the model, based on which SNP

RAPIDSNPs for key SNPs identification
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Fig 1. Flowchart showing the general methodological approach underpinning the pipeline. In high dimensional genetic data of n

samples with p genotyped SNPs, the number of SNPs was first reduced from p to k by means of the RF layer. The selected k SNPs were

further reduced by means of two alternative methods, the ensemble of three regression methods and the Boruta method. The most significant

SNPs (key SNPs) are those that were selected by majority of the methods, i.e. in consensus, during the final iteration.

https://doi.org/10.1371/journal.pone.0175957.g001
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is most correlated with each of the platelet responses, i.e. the addition of the SNP in the model

depends on the SNP that gives the highest significant improvement in fit [2]. The selected

SNPs in the stepwise model were tested for significance using the Wald test. We implemented

the stepwise regression using package LEAPS [39] in R.

Shrinkage methods. Shrinkage methods [30] use a regularisation strategy to further

penalise SNPs from k SNPs from the RF layer, assuming that the underlying RF functioning

might possibly select SNPs that are not significant. This further simplified and enhanced the

selection of highly significant SNPs. We applied the shrinkage methods using the ridge regres-

sion and lasso with R packages ‘ridge’ [40] and ‘glmnet’ [41] respectively. In applying the

glmnet package, the family option is set to “gaussian” as the response phenotypes (platelet

responses) are quantitative and assumed to follow the Gaussian distribution.

(1) Ridge Regression (RR) Model

Based on the model given by Eq 3 above, we sought estimates of regression coefficients that

would determine the SNPs with higher effects to our phenotype (Y). The coefficients could be

determined using the ordinary least square method (OLS), which is the standard approach

and is given by Eq 4.

b̂ ¼ ðX0XÞ� 1XY ð4Þ

However, this equation does not work particularly in the context of genetic data where col-

linearity is common among SNPs due to the high LD [27]. The ridge regression [14] was

applied to ensure that potential collinear SNPs were kept in the models, particularly those in

the strong LD. RR shrinks regression parameters by penalising their size and reducing towards

zero using the computed ridge shrinkage parameter (lambda). The optimal shrinkage parame-

ter helps to identify the regions where the model parameters are stable and controls the classi-

cal trade-off between the high bias and variances, which commonly occur when there are large

number of parameters and collinearity among SNPs. Thus, Eq 5 shows the RR model for esti-

mating the regression coefficient.

b̂ ¼ ðX 0X þ lIÞ� 1XY ð5Þ

where, the lambda (λ) is a ridge parameter, which determines the degree of shrinkage. I is

a p x p identity matrix. Adding the term λI in the model, reduces the coefficient estimates

towards each other, potential collinearity among SNPs, and eliminates the possibility of matrix

X0X being singular. The parameter λ is selected between 0 and1 values. If λ = 0 then the RR

model is turned to be ordinary least square (OLS) solution, and if λ =1 then the model would

behave as if no parameters have been estimated, and the solution would be the mean of the

response variable, i.e. �Y ¼ b0.

We used an automatic lambda selection method for an optimal lambda selection [42], and

the Wald test for testing the significant SNPs from the RR.

(2) Lasso

We also applied lasso [15] to the selected k SNPs from the RF model to possibly retain

sparse interactions among the SNPs [31]. The lasso model is given by:

b̂ lasso ¼
argmin

b

XN

i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

þ l
Xp

j¼1

jbjj ð6Þ

where:

yi is the vector of particular response phenotype (among PA, FA, FC, or PC) for observation

i; X is a design matrix of SNPs and b̂ lasso are the lasso coefficient estimates of the SNPs; the
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lambda term is the weight given for the regularisation term (L1 norm), which sparsely picks

the SNPs entering the model, when the tuning parameter is very small or exactly zero.

The SNPs coefficients from the lasso models were extracted based on the selection of the

smallest optimal lambda (or tuning parameter) value using 10-fold cross validation [43]. The

lasso models generated the sparse matrix of SNPs coefficients estimates. The SNPs with relative

large coefficient estimates from the sparse matrix were selected and tested in a stepwise man-

ner using the partial F-test [44] to determine the individual SNP’s significance level in the

model.

Boruta method. Boruta is an all-relevant feature selection method, which provides an

improved mechanism for selecting an important feature or variable from the RF using a Z-

score. It is a wrapper algorithm, which ranks the features from the RF through an improved Z-

score. The applied Z-score within Boruta provides the statistical significance, and hence the

relevance of the selected important variable or feature [16]. The Boruta was used with the aim

to add more weight to the consensus selection of the key SNPs in addition to the regression

layer.

Boruta was run using Boruta package in R [16]. In running Boruta, the maximum number

of iterations (maxRun) was set to 100.

The performance of the pipeline with the inclusion of covariates

The pipeline is specifically designed for analysing predetermined, genotyped SNPs to identify

the most significant SNPs (key SNPs) that are associated with continuous complex trait pheno-

types and would have been likely to be missed by other approaches such as stepwise. The

pipeline was initially applied to alternatively analyse the combined effect of the SNPs and

benchmarks the results against those obtained from the stepwise forward approach [17],

which did not need to take into account the covariates, such as age, gender, height, weight, eth-

nicity, aspirin taking, medication, smoker, contraceptive pill, because they were already treated

separately during the data pre-processing stage of the Bloodomics project [28].

Nevertheless, we have re-tested our pipeline to demonstrate the incorporation of an exam-

ple key covariate for CVD: age. The approaches for handling covariates in determining the

effect of SNPs on the phenotype using RF have been well elucidated by Nonyane and Foulkes

[45]. In running the pipeline, the age was included as a numeric type and potential predictor

together with SNPs under the additive model.

Table 2 shows the performance of the RF models when the pipeline is run with age as a

covariate in identifying the most significant SNPs associated with PA platelet response.

From Table 2, there are an observed marginal increases in the variation explained by the RF

models when age is included as a covariate. The residuals plots are shown in the S1 and S2

Figs. The significance of the regresion models due to the covariate in the intermediate regres-

sion models are shown in the S6 Table. Few intermediate models have higher significance in

the early iterations when age is included as a covariate comparing than when it is excluded.

Table 2. The performance of the RF with and without age as a covariate in determining the PA platelet response.

Random Forests (RF)–SNPs without age incorporated as a covariate RF—SNPs with age incorporated as a covariate

#Iterations Number of trees (ntree) % Variance all (p) SNPs % Variance k SNPs % Variance all (p) SNPs % Variance k SNPs

1 500 -0.16 11.85 0.17 13.95

2 1000 -0.5 14.29 -0.69 14.46

3 2000 -0.06 16.86 0.15 18.54

4 3000 0.33 15.92 0.12 16.36

https://doi.org/10.1371/journal.pone.0175957.t002
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Validation of the pipeline

To validate the pipeline, we randomly simulated 460 subjects containing 1400 artificially geno-

typed SNPs with their associated continuous phenotype (See S2 Text, for R code to reproduce the

data). The simulated phenotype is a univariate normal distribution with n(0,1). The genotypes of

these artificial SNPs follow the standard representation consisting of 1, 2, and 3, which represents

major homozygous, heterozygous and minor homozygous respectively. This simulated data set

was applied to the pipeline. The RF and the multiple regression models using k SNPs were

observed to improve as ntree was increased in each iteration starting from 500, 1000, 2000, until

3000 trees, where the variance and confidence of the models started to converge (Table 3).

The models’ patterns observed using the artificial SNP data are shown to reflect those

observed with the real SNP data (Table 1), even though the convergence in this case, seems to

be in the third iteration when the ntree was 2000.

Results and discussion

Firstly, our new approach has identified several significant SNPs that are associated with all

platelet responses and are consistent with the previous study [17], and Tables A and B in S1

File. Importantly, we have also discovered numerous additional SNPs that are significantly

associated with platelet responses and were not previously identified, or previously found to be

insignificantly associated with platelet responses using the forward stepwise method. Tables 4

and 5, and Tables in S1 and S2 Tables, show the overall significant and key SNPs identified by

our pipeline and the previous method that are associated with PA, FA, FC, and PC platelet

responses respectively. From the results, we can establish a consensus approach for the

identification of key SNPs, which are those identified as significant by the three out of four

approaches within the pipeline.

In Fig 2A–2D we provide Venn diagrams of the overall significant and key SNPs identified

by the multiple regression methods layer within the pipeline. These diagrams provide an alter-

native way of observing the key SNPs lying within the intersection regions.

Using the Boruta method [16] layer, we found that several of the identified significant SNPs

that were associated with all four platelet responses, were also closely similar to those identified

by the regression methods layer (Fig 3A–3D).

This further improved the consensus selection of the most significant SNPs associated with

the platelet responses and strengthens our confidence in their association with each platelet

response phenotype, which may strongly imply that further experimental investigation of

these SNPs is warranted. Moreover, using Boruta as an additional layer in the pipeline further

enhances the discovery of significantly associated SNPs that may be missed by other methods

in the pipeline.

For verifying the selected significant key SNPs in the final iteration are true positives, we

applied the confidence level mechanism based on Eq 2 above. We initially visualise the

Table 3. The evaluation performance of the pipeline for the simulated SNPs.

Random Forests (RF) Run RF+Stepwise RF+Ridge regression RF+Lasso

#Iterations Number of trees

(ntree)

% Variance all

(p) SNPs

% Variance k

SNPs

Model significance (r-

squared & p-values)

Model significance (%

Variance)

Model significance (r-

squared & p-values)

1 500 1.14 11.84 0.12 & 7.342e-12 24.36 0.14 & 2.482e-13

2 1000 1.71 16.36 0.14 & 1.042e-13 27.51 0.20 & 2.2e-16

3 2000 2.55 21.31 0.15 & 1.082e-14 28.97 0.22 & 2.2e-16

4 3000 1.6 19.34 0.13 & 1.604e-12 28.2 0.19 & 2.2e-16

https://doi.org/10.1371/journal.pone.0175957.t003
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identified significant SNPs in all iterations using the frequency plot. For instance, to assess the

confidence of PA associated significant key SNPs, the plot showing the frequency of all signifi-

cant SNPs in all iterations is initially created (Fig 4). S3 Table shows the frequency of each

selected SNP in each iteration.

Therefore, from the data in Fig 4 and applying Eq 2, the SNP rs6141803 has appeared in the

intermediate models 13 times in all iterations. The total number of models (methods) within

the pipeline are 4. The total number of iterations are 4, i.e. four different RF run ntree sizes

(ntree = 500, ntree = 1000, ntree = 2000, and ntree = 3000), thus, the confidence level of SNP

would be 13/4�4 = 0.8125. This confidence score exceeds 0.5, and therefore, the selected SNP is

more likely to be a true positive. Applying Eq 2 to data in Fig 4, and Table 3, we have identified

with high confidence 7 key SNPs (rs1527480, rs3212391, rs3730051, rs6141803, rs6442896,

rs6442895, and rs8033381) that are significantly associated with PA platelet responses.

Table 4. Consensus identification of the most significant SNPs associated with PA platelet response.

Stepwise (Jones et al

2009)

RF with

Stepwise

RF with Ridge

regression

RF with

LASSO

RF with Boruta

(P = 0.01)

Consensus (3/

4)

Platelet response type PA PA PA PA PA PA

SNPs ID Gene/

Location

rs17229705 VAV3 ✔ (0.0009) × × × ×
rs3788337 GNAZ ✔ (0.0009) × × × ×
rs5227 PTGS2 ✔ (0.01) × × × ×
rs1778614 ITPR1 ✔ (0.003) × × × ×
rs246406 ITGA2 ✔ (0.002) × × × ×
rs11631474 MAP2K5 ✔ (0.007) × × × ×
rs851007 MAPK14 ✔ (0.003) × × × ×
rs6141803 COMMD7 × ✔ (0.0033) × ✔ (0.0006) ✔ ✔
rs6442896 ITPR1 × (0.049) ✔ (0.0006) ✔(0.0002) ✔(0.0021) ✔ ✔
rs3730051 AKT2 × (0.031) ✔ (0.0002) ✔ (0.0031) ✔ (0.0002) × ✔
rs1527480 CD36 × (0.449) ✔ (0.0021) ✔(0.0008) ✔ (0.0036) ✔ ✔
rs8033381 CSK × (0.792) ✔ (0.0018) ✔ (0.0082) ✔ (0.0038) × ✔
rs10061730 ITGA2 × (0.517) × × ✔ (0.0005) ×
rs2292867 ITGB3 ×(0.039) × ✔ (0.017) ✔ (0.0080) ×
rs2300065 SKP1 × ✔(0.0138) ✔(0.0164) ×
rs3212391 ITGA2 × ✔ (0.0002) × × ✔
rs6433658 ITPR1 × × × × ✔
rs6442895 ITPR1 ×(0.029) × × × ✔
rs17041401 ITPR1 ✔(0.003) × × × ✔
rs3212386 ITGA2 ×(0.378) × × × ✔
rs33443 ITGA2 ×(0.547) × × × ✔
rs26682 ITGA2 ×(0.126) × × × ✔
rs3212418 ITGA2 ✔(0.013) × × × ✔
rs11742558 ITGA2 ×(0.713) × × × ✔
rs7568033 NFE2L2 × × × × ✔

We select the consensus SNP if it has been identified by at least three methods, which means it has higher significance and hence is more likely to be a key

genetic variant.

× indicates either the SNP was not identified by the method or previously identified as insignificant

✔ indicates the SNP was identified by the method.

Numbers inside the brackets after✔ or × indicate p values of the SNPs calculated using Wald test, or partial F-test.

https://doi.org/10.1371/journal.pone.0175957.t004
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Similarly, the FA platelet response associated SNPs are observed in the frequency plot in the

Fig 5, prior to applying Eq 2 to determine the confidence scores. S4 Table shows the frequency

of significant SNPs that were selected in every iteration.

From the data in Fig 5, the rs11637556 SNP in MAPK1 has a confidence level of 16/4�4 = 1,

(the highest confidence level for an FA platelet response associated SNP). Moreover. we have

identified 7 key SNPs that are confidently associated with FA platelet responses (rs10499858,

rs11637556, rs1388622, rs10974955, rs1038639, rs1491978, and rs2071676).

Validation of the pipeline

Several of the artificially simulated genotyped SNPs were identified consistently across the

methods in the final iteration and were significantly associated with the simulated continuous

Table 5. Consensus identification of the most significant SNPs associated with FA platelet response.

Stepwise (Jones et al

2009)

RF with

Stepwise

RF with Ridge

regression

RF with

LASSO

RF with Boruta

(P = 0.01)

Consensus (3/

4)

Platelet response type FA FA FA FA FA FA

SNPs ID Gene/

Location

rs11637556 MAP2K1 ✔ (0.005) ✔ (0.0007) ✔ (0.0083) ✔ (0.0008) ✔ ✔
rs10429491 JAK2 ✔ (0.0006) × × × ×
rs3729931 RAF1 ✔ (0.0001) × × × ×
rs41305896 ITGA2 ✔ (0.001) × × × ×
rs350916 MAP2K2 ✔ (0.001) × × × ×
rs17786144 ITPR1 ✔ (0.002) × × × ×
rs11264579 PEAR1 ✔ (0.004) × × × ×
rs41304345 MADD ✔ (0.003) × × × ×
rs1388622 P2RY12 × (0.058) ✔ (0.0001) × × ✔
rs2071676 CA9 × ✔ (0.0122) ✔(0.0058) ✔(0.0098) ✔ ✔
rs1491978 P2RY12 × (0.092) × × ✔(0.0003) ✔
rs1537593 CD36 × (0.731) × × ✔(0.0058) ✔
rs9895150 ITGB3 × (0.177) × ✔(0.0193) ✔(0.0141) ×
rs1038639 ITPR1 × (0.138) × ✔(0.0019) ✔(0.0006) ✔ ✔
rs10499858 CD36 × (0.129) ✔ (0.0012) × × ✔
rs7034539 JAK2 × (0.061) ✔ (0.0053) ✔(0.0058) ✔(0.0077) × ✔
rs3742633 PRKCH × (0.985) ✔ (0.0172) × ✔(0.0075) ×
rs41282607 MAPK1 × (0.2) ✔(0.0113) ✔(0.0034) ✔(0.0087) ✔ ✔
rs41305272 MAP2K5 × (0.955) × ✔(0.0127) ✔(0.01) ✔ ✔
rs7180408 GTF2A2 × × ✔(0.0191) × ×
rs3736101 MADD ✔(0.015) × × ✔(0.0076) ×
rs304076 ITPR1 × (0.395) × × ✔(0.0083) ×
rs17204437 P2Y12 × (0.499) × × ✔(0.001) ✔
rs6787801 P2Y12 × (0.448) × × × ✔
rs3173798 CD36 × (0.085) × × × ✔

We select the consensus SNP if it has been identified by at least three methods, which means it has higher significance and hence is more likely to be a key

genetic variant.

× indicates either the SNP was not identified by the method or previously identified as insignificant.

✔ indicates the SNP was identified by the method.

Numbers inside the brackets after✔ or × indicate p values of the SNPs calculated using Wald test, or partial F-test.

https://doi.org/10.1371/journal.pone.0175957.t005
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Fig 2. Venn diagrams for identifying significant and key SNPs associated with the all four platelet responses, which were identified

by the regression layer in the pipeline. The identified significant SNPs that are associated with (A) PA (p-selectin in response to adensine

diphsphate), (B) FA (fibrinogen binding in response to adenosine diphsphate), (C) FC (fibrinogen binding in response to collagen-related

peptide), and (D) PC (p-selectin release in response to collagen-related peptide) platelet responses. The newly detected SNPs, or those

reported as insignificant in the previous study are shown in bold. The key SNPs are found in the intersection regions and are detected by a

consensus of the three methods.

https://doi.org/10.1371/journal.pone.0175957.g002
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Fig 3. The Boruta method plot showing SNPs that are associated with four platelet responses. These are SNPs associated with (A)

FC (fibrinogen binding in response to collagen-related peptide), (B) PC (p-selectin release in response to collagen-related peptide), (C) FA

(fibrinogen binding in response to adensine diphsphate), and (D) PA (p-selectin in response to adensine diphsphate) platelet responses.

The green, yellow and red boxplots are the confirmed important, tentative, and rejected SNPs respectively. The confirmed important SNPs

are the significant SNPs associated with platelet responses. The selected significant SNPs here add more weight to the already identified

SNPs from other methods, which may improve the consensus identification of the key SNPs and highlight other significant SNPs

potentially missed by other methods in the pipeline.

https://doi.org/10.1371/journal.pone.0175957.g003
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phenotype. Fig 6 shows the visualisation of the artificially simulated key SNPs, which were

identified by the regression based methods.

Furthermore, using the Boruta method, we identified several simulated artificial SNPs to be

matched with those with key effect identfied in the regression based methods and thus, adding

Fig 4. The frequency of the selected significant SNPs, which are associated with PA platelet

responses in all iterations within the intermediate models. It can be seen clearly that some SNPs have

relatively low or high frequencies, which mean they are more likely to be false or true positive key significant

SNPs respectively. In our case, the maximum frequency is 16, which means the SNP appears in the four

models in each of the four iterations.

https://doi.org/10.1371/journal.pone.0175957.g004

Fig 5. The frequency of the selected significant SNPs, which are associated with FA platelet response

in all iterations within the intermediate models. A similar SNPs selection pattern as observed in Fig 4. Few

SNPs are shown to be highly significant. For instance, rs11637556 in MAPK1 has been selected in each

iteration.

https://doi.org/10.1371/journal.pone.0175957.g005
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more weight to the consensus selection of the key SNPs. Fig 7 shows the Boruta plot for the

selected artificial simulated SNPs.

Table 6 shows the selected key and significant artificial simulated genotyped SNPs in a con-

sensus manner.

For the identified significant simulated artificial SNPs, we plotted their frequency (Fig 8)

and applied Eq 2 to determine true positive key SNPs. S5 Table shows the frequency of signifi-

cant simulated artificial SNPs, which were selected in every iteration.

Fig 6. The visualisation of the selected key significant artificially simulated SNPs (intersection regions). Xm represents the identifier of the

simulated genotyped SNP m. Several simulated SNPs were consistently identified to be significant by the multiple methods as occurred in the actual

SNPs data set.

https://doi.org/10.1371/journal.pone.0175957.g006
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For instance, applying Eq 2 to the simulated significant SNP X56, the confidence level will

be 0.6875, which has surpassed the minimum threshold confidence level and hence, is more

likely to be a a true positive key SNP. In total we identified 8 artificially simulated SNPs that

are confidently associated with the simulated phenotype.

Therefore, the similarity in the performance of the pipeline and its pattern of the results

using both the real and simulated genotyped SNPs data sets, indicates that the pipeline is more

likely to be robust when applied to other continuous phenotypes.

Effects of age as an example covariate and the selection of key SNPs

We have found that in most cases, the key SNPs which were significantly identfied to be associ-

ated with the platelet responses when the pipeline is run age incorporated as a covariate are the

same as those when age is not incorporated. For instance, for PA platelet response, most of the

SNPs were identical to those selected when age is not included, signifying that the age might

have a less significant effect when it is combined with SNPs in explaining the PA variation. S7

Table, shows the frequencies of the SNPs selection in the intermediate models associated with

Fig 7. The confirmed selected artificially simulated key SNPs by the Boruta. Xm represents the identifier of the simulated genotyped SNP m. It

can be seen clearly that most of the selected SNPs in the regression layer have been also selected by Boruta, which further enhanced key SNPs

selection.

https://doi.org/10.1371/journal.pone.0175957.g007
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the PA platelet response in each iteration, when age is included as a covariate. S3 Fig, shows

the plot, which illustrates the most frequent selected significant SNPs that are associated

with PA for all iterations of the pipeline. All of the selected key SNPs are the same, except

rs8033381, which was not selected under the presence of age as a covariate.

Table 6. The selected consensus artificial SNPs from the simulated data set.

Artificial SNPs ID SNP’s significance in the models

RF with Stepwise RF with Ridge regression RF with LASSO RF with Boruta (P = 0.01) Consensus (3/4)

X1306 ✔(4.15e-05) ✔(0.0003) ✔(1.73e-05) ✔ ✔
X92 ✔(0.0004) ✔(0.003) ✔(0.0014) × ✔
X1112 ✔(0.0017) ✔(0.00204) ✔(0.0013) ✔ ✔
X808 ✔(0.0013) × ✔(0.0073) ×
X859 ✔(0.0034) ✔(0.0061) ✔(0.001) × ✔
X263 ✔(0.0021) ✔(0.0151) ✔(0.0061) ✔ ✔
X829 × ✔(0.0065) ✔(0.009) ×
X1203 × ✔(0.0171) × ✔
X242 × ✔(0.0075) ✔(0.003) ✔ ✔
X56 × ✔(0.0135) ✔(0.0071) ✔ ✔
X1051 × ✔(0.0122) ✔(0.005) ×
X877 × ✔(0.0151) × ×
X512 × ✔(0.0019) ✔(0.0131) ×
X847 × × ✔(0.01) ×
X760 × × × ✔

Xm represents an identifier of the genotyped SNP m in the simulated data set. Several of the significant SNPs associated with phenotype were selected

across the methods meaning that they are key significant SNPs associated with complex phenotype.

× indicates either the SNP was not identified by the method.✔ indicates the SNP was identified by the method. Numbers inside the brackets after✔ indicate

p values of the SNPs calculated using Wald test, or partial F-test.

https://doi.org/10.1371/journal.pone.0175957.t006

Fig 8. The frequency plot showing the overall selected significant artificially simulated SNPs in the

intermediate models in all four iterations. The highly ‘enriched’ simulated SNPs can be easily identified.

https://doi.org/10.1371/journal.pone.0175957.g008
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Furthermore, for the FA platelet response, nearly all the SNPs, which were identiftied to be

significantly associated with FA when age is excluded are the same with those under the inclu-

sion of age. However, in some stages of the pipeline run, age appears to have a likely associa-

tion with FA platelet response, but in addition to other key SNPs. The plot in S4 Fig, with its

related table in S8 Table, shows the different SNPs that are selected in every iteration;age is

selected in the fourth iteration by the stepwise method with a p-value of 0.016.

We separately tested age with the key SNPs (rs11637556, rs1388622, and rs2071676) and

found that it has a likely significance with FA (p-value = 0.05) along with rs1388622 and

rs11637556 of P2RY12 and MAP2K1 respectively. Moreover, in almost every iteration of the

RF, age was among the top ranked predictors, in addition to other SNPs, S5 Fig.

Advantages to our approach

There are several advantages to our new combined approach. Firstly, the RF layer plays a cru-

cial role in ensuring that potentially highly important SNPs are selected and passed through to

the regression ensemble and Boruta layers. This use of the RF as an initial filtering stage is a

well described standard approach for SNP discovery and plays a crucial role in selecting poten-

tially highly important SNPs, using the appropriate ntree and VI parameters [29,46,47]. The

selection bias introduced by the VI measure with the ranking approach has been shown to

mainly affect predictors with different categories and scale of measurements [48], which is not

the case in our study. In addition, the use of the VI measure with a ranking approach is still

regarded as a useful strategy for selecting important SNPs for downstream analyses [49,50].

Secondly, it is possible to rapidly identify the key genetic variants, or markers, using a con-

sensus of multiple alternate methods. Additionally, by introducing the multiple alternate

methods layers, the likelihood of identifying other significant SNPs that might have been

missed in one or more of the methods increases. This combination of methods in an integrated

manner is a good approach for reducing false positives as multiple methods might be pointing

to the same SNPs [51]. This potentially increases the chance of keeping functional SNPs associ-

ated with the phenotype, minimising the risk of ‘missing heritability’ [10], which is one of the

thorny issues in GASs [11]. Moreover, based on this approach, the identified true complex

trait associated key SNPs are more likely to be indicating the significantly overexpressed loci,

which are likely to be proper candidates for follow-up experiments.

Furthermore, our pipeline is computationally adaptable and scalable to different implemen-

tations, particularly in the regression methods ensemble layer. It is possible to increase the

number of (regularised) regression methods for optimising the detection of the key SNPs

through consensus identification.

Furthermore, the computational speed of the pipeline means that is practical to implement

as an additional tool. For the data set we used, the time taken to run the entire pipeline was

229.77012 secs on a modest quad core system running Ubuntu 14.04. Our pipeline does not

necessarily aim to replace existing methods such as EMMAX [52] and PLINK [53], rather it

may be used to supplement and further enhance the identification of key SNPs associated with

continuous response phenotypes, with little additional computational overhead.

In addition, the pipeline may have an observed advantage over existing RF based methods

in terms of its ability to identify other true trait associated SNPs. For instance, Boruta is the RF

based method for relevant feature selection. We compared the SNPs that were obtained after

running the pipeline with those from the Boruta method and found that the pipeline has the

potential edge in identifying key SNPs, which might be missed by using only Boruta. For

example, in the case of the PA associated significant SNPs, we found that the pipeline is able to
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identify rs3730051 in the AKT2 locus as a key SNP, which was not recognised as a relevant

important feature by the Boruta.

Limitations/Caveats of the approach

The limitations of our approach are discussed below.

Sample size of the SNPs data. Furthermore, our pipeline is likely to be most suitable for

genetic association studies with relatively small SNP datasets [54], and it appears to perform

well when applied to the platelet responses data. However, this approach has not yet been

tested or applied to genome-wide scale data e.g. with several million SNPs for association map-

ping. In such cases, the subspace SNPs selection methods could be initially employed [55,56],

for selecting a subspace of informative SNPs and minimising the computational cost in gener-

ating trees, prior to using our approach.

Missing genotypes. Data with missing genotypes could be handled prior processing using

different approaches [57–59]. For example, random imputation might be an option, which

replaces the missing genotypes with the most frequent genotype based on the distribution of

the SNPs genotypes (1, 2, or 3) across cases. For large numbers of missing genotypes, several

established methods and tools, such as IMPUTE [60,61], Beagle [62] and PLINK could be

used.

Long range LD and rare variants. The pipeline is solely generic in use for the identifica-

tion of key significant SNPs within candidate genes associated with continuous phenotypic

traits. For examining whether the identified SNPs are in long range LD [63], the pipeline could

be supplemented with other methods or tools such as GLIDERS [64] and GWAS3D [65]. Fur-

thermore, the pipeline has not been tested whether it is able to detect the rare variants. Instead,

other approaches such as those proposed by Hoffmann et al. [8], sequence kernel association

test (SKAT) [66], and kernel-based adaptive cluster (KBAC) [9] might be used accordingly for

detection of rare variants.

The newly identified SNPs and their biological and clinical significance

Our approach was able to discover numerous and previously undetected SNPs, which are sig-

nificantly associated with the platelet response phenotype. Several of these SNPs have also

been highlighted in other independent studies as being implicated in CVDs. The following

examples underpin our results and serve to further strengthen our confidence in the ability of

our approach to identify key genetic variants.

For example, the identified intergenic SNP rs6141803 in COMMD7, which is associated

with PA was also identified in another platelet functional study [22] to be a likely risk factor

for myocardial infarction. In addition, two P2Y12 SNPs rs1491978 and rs1388622, which were

previously found to be insignificant, have been identified by our new pipeline to be signifi-

cantly associated with FA. Interestingly, P2Y12 is the main receptor of ADP in platelets and a

target of antiplatelet drugs prescribed to CVD patients [67]. P2Y12 has been widely studied

in order to understand its associated risks and devise better treatment strategies for CVDs

[67–69], suggesting that these SNPs in this gene also have potential biological and clinical

significance.

Moreover, our pipeline identified significant non-synonymous key SNP rs2071676 in CA9,

which is associated with FA and was previously unidentified. The CA9 product (CA IX) is one

of the isoforms of the carbonic anhydrases which have been linked with several disease prob-

lems [70] in addition to the platelet and CVD [71]. Moreover, several CA9 polymorphisms

have been identified to be associated with oncological problems [72,73]. Thus, it might be
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worth pursuing the effects of the rs2071676 SNP that may underlie CA9 with its product and

platelet functions.

Furthermore, for the FC and PC platelet responses, the pipeline identified several common

variants that are known to play key distinctive roles in the CRP-XL activated platelet responses.

These variants include many of the previously identified GP6 SNPs, such as rs41306982, non-

synonymous rs1654439, rs1613662 and others in addition to rs3557 in FCERIG. Additionally,

this study has identified SNPs rs748281, and rs41316468 in PTK2B to be significantly associ-

ated with FC and PC respectively which were previously unidentified. The PTK2B gene has

also been implicated with blood pressure and hypertension [74], which further may suggest

that these SNPs may be potential biomarkers for future studies involving platelets and CVDs,

further underscoring the ability of our approach in identifying key SNPs.

Conclusion

We have developed a robust computational tool for rapid discovery of key bio-markers associ-

ated with complex phenotypes. Here we have applied the approach to reveal previously

unidentified SNPs associated with platelet response phenotypes that have been independently

implicated in CVDs. This strongly suggests that our approach is robust in identifying key

genetic variants or SNPs that are likely to be missed by following only the standard single

method. Thus, our approach has strong potential to become a useful additional tool for rapid

discovery of key important biomarkers prior to performing complex analyses in GASs. More-

over, it may be generally applied in other disease contexts for the discovery of multiple genetic

variations that may better account for the heritability of continuous phenotypes.

R scripts codes used to run these analyses are in the S1 Text. The data supporting the find-

ings are in S1 Dataset.
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