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Abstract

Along the past years, mobile robots have proliferated both in domestic and in industrial envi-

ronments to solve some tasks such as cleaning, assistance, or material transportation. One

of their advantages is the ability to operate in wide areas without the necessity of introducing

changes into the existing infrastructure. Thanks to the sensors they may be equipped with

and their processing systems, mobile robots constitute a versatile alternative to solve a wide

range of applications. When designing the control system of a mobile robot so that it carries

out a task autonomously in an unknown environment, it is expected to take decisions about

its localization in the environment and about the trajectory that it has to follow in order to

arrive to the target points. More concisely, the robot has to find a relatively good solution to

two crucial problems: building a model of the environment, and estimating the position of

the robot within this model. In this work, we propose a framework to solve these problems

using only visual information. The mobile robot is equipped with a catadioptric vision sensor

that provides omnidirectional images from the environment. First, the robot goes along the

trajectories to include in the model and uses the visual information captured to build this

model. After that, the robot is able to estimate its position and orientation with respect to the

trajectory. Among the possible approaches to solve these problems, global appearance

techniques are used in this work. They have emerged recently as a robust and efficient alter-

native compared to landmark extraction techniques. A global description method based on

Radon Transform is used to design mapping and localization algorithms and a set of images

captured by a mobile robot in a real environment, under realistic operation conditions, is

used to test the performance of these algorithms.

1. Introduction

Map building and localization are two problems that have attracted significant attention in the

field of mobile robots in recent years. The development of really autonomous mobile robots
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requires finding a relatively accurate and robust solution to these problems. Nowadays, omni-

directional vision systems have become a popular alternative to extract information from the

environment, due to the big quantity of information they provide the robot with, since they

have a 360 deg field of view in the horizontal plane. The images captured by these systems are

named omnidirectional images. There are several configurations that permit obtaining such

omnidirectional images [1]. Among them, catadioptric systems use external mirrors to widen

the field of view of the camera. Some researchers have made use of the projection model of

such systems to control the robot motion, as in [2] and [3], where a general catadioptric cam-

era model is used to solve efficiently the problem of visual servoing of mobile robots.

In the present work, the only source of information used is a catadioptric vision system

mounted on the robot. It is composed of a single-view camera pointing towards a convex

hyperbolic mirror, with their axes aligned. This system provides omnidirectional images from

the environment, as they contain information on a field of view of 360 deg around the mirror

axis. Apart from this large field of view, catadioptric vision systems also permit carrying out

other high level tasks, such as people detection and recognition, object identification, etc.

However, using such highly dimensional data requires an effort to previously extract some rel-

evant information from the scenes. This information must be useful to build a robust map and

to estimate the position of the robot within this map.

Visual map building and localization can be addressed using two main frameworks, depend-

ing on how this most relevant information is extracted from the scenes and described. The first

one consists in detecting some outstanding local features (i.e. landmarks) and describing them

using an algorithm that provides some invariance to robot movements [4–7]. This approach

has usually been used to create metric maps, which contains the position of some relevant fea-

tures with respect to a coordinate system and permits estimating the position of the robot with

geometrical accuracy, up to a specific error [8,9]. Despite its accuracy, these approaches present

some drawbacks; the models tend to be complex and not easily understandable by a human

operator and the necessary computational cost to extract, describe and track the local features

along a set of images tends to be quite high. The second method consists in describing each

scene as a whole, building a unique descriptor per image that contains information on its global

appearance [10–12]. It often leads to models that can be handled more intuitively. However,

such descriptors do not contain any metric information so they have been used traditionally to

build topological maps, which contain information about some key locations of the environ-

ment and the connectivity relationships between them [13,14]. Despite their simplicity and

compactness, this kind of models has proved to be adequate for mobile robot localization and

navigation in controlled environments and the algorithms tend to present a reasonably low

computational cost. Usually metric and topological models are combined in hybrid approaches,

which try to arrive to a balance between the degree of detail and compactness of the map and

the computational cost of the localization process [15]. A complete survey on robot mapping

can be found in [16]. This survey shows how methods based on local features have reached a rel-

ative maturity; however, methods based on global appearance are worth a deeper study as there

are many key aspects that have not been completely addressed. The present work focuses on the

study of some of these aspects, as addressed in the following paragraphs.

On the one hand, many authors have considered sets of images captured on dense grid lay-

outs to build complete models of the environment when using global appearance-methods

[17,18]. However, the most common and straightforward way of capturing the set of images in

a real application consists in tele-operating the robot or using any exploration algorithm [19]

to define a free-of-obstacles trajectory that covers all the area to map. The robot would capture

a set of omnidirectional images along this route and this visual information could be used

to build a model or map of the environment. Solving the localization problem with such
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trajectory-like model and global appearance descriptors supposes a challenge, taking it into

account the lack of metric information of such descriptors. The main contribution of this

paper is related to this question. Some methods to describe the global appearance of omnidi-

rectional scenes are presented and used to build a trajectory-like model of the environment

and to estimate the position and orientation of the robot. The problem of visual control using

such models is also addressed.

On the other hand, when a mobile robot has to move within a social environment, the

scenes may be partially occluded by people and other robots that may be present in the envi-

ronment [20]. The global appearance of the scenes may change substantially under these cir-

cumstances so the performance of the algorithms should be tested taking such phenomenon

into account, as it will be present in most real applications.

In this work, some methods to describe the global appearance of omnidirectional images

are presented and their performance to solve the robot localization problem is tested. These

methods are based on the mathematical Radon Transform [21] and have been tested using our

own trajectory-like set of omnidirectional images, captured in a real unstructured environ-

ment under real working conditions, and considering the eventual presence of severe noise

and/or occlusions. The only source of information we will use to build a model of the environ-

ment and localize the robot are the omnidirectional images captured by a catadioptric vision

system mounted on the robot.

The remainder of the paper is structured as follows. First, the methods we propose to

describe the global appearance of scenes are outlined in section 2. After that, section 3 presents

the approach to carry out robot localization and the experiments to validate this approach.

Then, the problem of visual control is addressed in section 4, through an algorithm that per-

mits deducing on which side of a route map the robot is, and the results of the experiments are

shown. To finish, the experiments and contributions are discussed in section 5 and the conclu-

sions and future works are addressed in section 6.

2. Global appearance descriptor of omnidirectional scenes

The key point of global appearance descriptors is the algorithm used to extract the most rele-

vant information from each scene. This information must be useful to build a compact model

of the environment that permits a subsequent estimation of the robot position. Some descrip-

tion algorithms can be found in the literature on this topic, based mainly on the Discrete Fou-

rier Transform [22], on Principal Components Analysis [23], on the orientation of the edges

in the scene [24,25] and on other relevant outstanding features, such as colour [26]. Previous

works have shown how such descriptors may be used efficiently to build a model of the envi-

ronment and to estimate the position and the orientation of the robot [14]. However, they

tend to fail in real situations, when the robot has to cope with noise in the scenes and, mainly,

when partial occlusions are present. Also, their performance in localization with respect to a

trajectory-like model should be tested.

This section outlines some methods to describe the global appearance of omnidirectional

images. Two families of methods are proposed to be studied: methods based on the Radon

Transform and methods based on the Discrete Fourier Transform. With these methods, some

feasible algorithms to create a model of the environment and to estimate the position of the

robot will be proposed and evaluated along the next sections.

2.1. The Radon Transform

The Radon Transform (RT) consists in describing a function in terms of its line-integral pro-

jections. A line cl can be parameterised with respect to its arc length z as cl≔ (x(z),y(z)) = ((z �
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sinϕ + s � cosϕ),(−z � cosϕ + s � sinϕ)) where s is the distance from cl to the origin and ϕ is the

angle between the normal vector to cl and the x-axis. Taking this parametrisation into account,

the RT of an image f(x,y) can be obtained with the next expression:

Rff ðx; yÞg ¼ rimð�; sÞ ¼
R þ1
� 1

f ðxðzÞ; yðzÞÞdz

¼
R þ1
� 1

f ðz � sin� þ s � cos�; � z � cos�þ s � sin�Þdz ð1Þ

Where the coordinates of the new function are (ϕ,s) which can be considered as coordinates

on the space of all lines in R2. This way, a new 2D function is obtained through the integration

of the original function f(x,y) along some sets of parallel lines with distance s among each

of them and the origin and with different orientations ϕ. The size of the new descriptor is

rim 2 R
Mx�My , where Mx is the number of orientations considered � ¼ f�1; �2; . . . ; �Mxg and

My is the number of parallel lines on each set.

The RT is invertible, and the inverse operation reconstructs a function from its line-integral

projections. Taking its mathematical interpretation into account, the RT has been traditionally

important in computer vision, in those situations where the original object f(x,y) is unknown

and must be reconstructed from its line integral projections [27]. The most usual examples are

medical imaging applications, such as computer axial tomography scan and magnetic reso-

nance imaging. Apart from it, the RT has also been used in shape description and segmenta-

tion tasks [28].

The RT presents some interesting properties [29]. Symmetry and shift are especially impor-

tant from the point of view of omnidirectional image description. Taking them into account, it

is possible to obtain global appearance descriptors that permit estimating both the position

and the orientation of the mobile robot. Fig 1(A) shows a sample omnidirectional image

fj 2 R
Nx�Nx , with Nx = 402 pixels and Fig 1(B) the RT of this image. To obtain this transform

the distance between each pair of contiguous parallel lines in each set is equal to 1 pixel (i.e.

s = 1,2,3,. . .,Nx pixels in Eq 1) and the orientation of these sets is chosen to cover the whole

image (ϕ = 0,1,2,. . .,359 deg in Eq 1). The result is always an anti-symmetric matrix; thus the

top half can be removed without loss of information. Fig 1(C) shows then the final descriptor

of the original image rj 2 R
360�0:5Nx .

Fig 1. Radon Transform of an omnidirectional image. (a) sample omnidirectional image fj 2 R
Nx�Nx , (b) Radon Transform of the sample image and

(c) final RT descriptor of the sample image rj 2 R
360�0:5Nx .

https://doi.org/10.1371/journal.pone.0175938.g001
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On the other hand, the shift property is shown in Fig 2. This figure shows three omnidirec-

tional images captured by the robot from the same floor position and with different orienta-

tions around the vertical axis. The figure shows clearly the effect of orientation on the Radon

Transform. If the robot rotates Δθ deg on the ground plane, the new descriptor presents the

same information as the original descriptor but a shift of columns equal to d = Δθ �Mx/360,

with Δθ measured in deg.

Taking these facts into account, the RT descriptor contains information both on the global

appearance of the environment and on the robot orientation. Starting from an omnidirectional

image fj 2 R
Nx�Nx a global descriptor rj 2 R

360�0:5Nx can be built by calculating its Radon Trans-

form and retaining the bottom half. The subsequent sections study the use of this descriptor to

estimate both the position and the orientation of the robot.

2.2. The Fourier Signature

The Discrete Fourier Transform (DFT) is a classical method that has been used by many

researchers to extract the most relevant information from scenes. It permits expressing the

information in the frequency domain and presents several interesting properties in image

description [14]. Some authors have made use of different algorithms based on the DFT to

solve a wide range of tasks. For example, the Fractional Fourier Transform has proved to be

effective in the implementation of computer-aided diagnosis systems, using brain magnetic

resonance images [30] or mammographic images [31]. Also, the Fourier Signature, has shown

efficiency to carry out mapping and localization tasks using panoramic images [22].

In this work, we make use of the Fourier Signature (FS), described first in [22]. It is defined

as the matrix composed of the one-dimensional DFT of each row in the original image. It con-

tains useful information on the global appearance of the scene and, when applied to panoramic

scenes, it presents rotational invariance (i.e. it contains the same information independently

on the robot orientation on the ground plane).

When the FS of a panoramic image fjðx; yÞ 2 R
Nx�Ny is calculated, a new matrix Fjðu; yÞ 2

CNx�Ny is obtained (u is the frequency variable, measured in cycles/pixel), where the main infor-

mation of the original image is concentrated in the low frequency components of each row

(so only the k first columns can be retained, having a compression effect). This new matrix

djðu; yÞ 2 C
Nx�k can be decomposed into a magnitudes matrix Aj(u,y) = |dj(u,y)| and an argu-

ments matrix Fj(u,y). Based on the shift property of the DFT, when two panoramic images

have been captured from the same position but having the robot different orientation, both

images have the same magnitudes matrix and the arguments matrices permit obtaining the rel-

ative robot orientation [14]. This property allows us to use first the magnitudes matrix to esti-

mate the position of the robot (as it presents rotational invariance) and then, the arguments

matrix to estimate the relative orientation of the robot.

3. Creating a visual model of the environment and estimating the

position of the robot

This section focuses on the problem of map creation and localization. The mobile robot is

equipped with a catadioptric vision system on its top, which provides it with omnidirectional

images from the environment. This is the only source of information that will be used both to

build a model of the environment and to estimate the position of the robot (nor odometry nei-

ther laser or other sensory data will be used). This way, the final model will be a topological

model since it will contain information of some localizations or nodes (represented as omnidi-

rectional scenes) along with their connectivity relations (but no metric data). In the next
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PLOS ONE | https://doi.org/10.1371/journal.pone.0175938 May 2, 2017 5 / 25

https://doi.org/10.1371/journal.pone.0175938


Fig 2. Shift property. The change of orientation of the robot on the ground plane has a shift effect on the columns of the

RT descriptor.

https://doi.org/10.1371/journal.pone.0175938.g002
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subsections, first, the methods developed to create a visual model and to estimate the position

of the robot are presented and then, the experiments carried out to validate the approach are

detailed.

3.1. Topological mapping and absolute localization methods

In this work we propose solving the mapping and localization problem in two consecutive

steps: first a topological model is built and then, this model is used to estimate the current

(unknown) position and orientation of the robot in an absolute way (i.e. no information on

the previous position of the robot is used to estimate its current position).

First, to build a model, some visual information from the environment is necessary. During

this learning phase, the robot has to traverse a trajectory that covers the entire environment to

map (either in a teleoperated way or autonomously, according to any exploration algorithm).

Along it, the robot captures a set of omnidirectional images I = {f1,f2,. . .,fn} where fj 2 R
Nx�Nx .

To build the model, this set of images is transformed into a set of descriptors, one per original

scene. As a result, the nodes of the map will be a set of descriptors D = {d1,d2,. . .,dn} where, in

general, dj 2 C
Mx�My . No metric information is included in this model. Each descriptor dj must

contain enough information to permit estimating the position and orientation of the robot

with robustness and computational efficiency. Otherwise, the model would not be useful.

Second, once the map is built, the robot must be able to estimate its current (unknown)

position with respect to this model. The absolute localization problem assumes the robot has

no information on its previous position. This way, it has to compare the visual information it

currently captures with all the information previously stored in the model. The localization is

addressed in this paper as an image retrieval problem [32]; the robot captures an image from

an unknown position and the objective consists in detecting which of the images previously

stored in the map is the most similar one.

With this aim, the robot captures a new test image at time instant t, ft, describes it to obtain

dt and compares it with all the nodes of the map. As a result, the position and the orientation

of the robot must be estimated. With this aim, the distance between dt and the nodes of the

map D = {d1,d2,. . .,dn} is calculated, obtaining the distances vector lt ¼ flt1; lt2; . . . ; ltng where

lt j ¼ distfdt; djg according to any distance measure. The node that presents the minimum dis-

tance dnn
t =t ¼ argminjltj (nearest neighbour) is considered the corresponding position of the

robot. Afterwards, comparing dnn
t with dt, the robot orientation must be estimated.

Taking the properties of the Radon Transform into account, three methods are proposed to

create the nodes D = {d1,d2,. . .,dn} and to solve the localization problem. In all cases, first we

detail the kind of information each node descriptor dj contains and second we give details

about the localization process.

a) Method 1. The RT descriptor is not invariant against rotation per se, because the infor-

mation contained in the descriptor changes when the robot rotates. As shown in Fig 2, a pure

rotation of the robot produces a circular shift of the columns of the RT descriptor. This effect

must be taken into account during the implementation of a localization method. In method 1

the FS is used to transform the RT descriptor, in order to obtain a new descriptor which is

completely invariant against rotation. More concisely, for each omnidirectional image fj, the

RT descriptor is obtained rj 2 R
Mx�My and then the FS of this descriptor is calculated. As a

result, each node dj,j = 1,. . .,n contains two matrices: the magnitudes matrix Aj 2 R
Mx�k and

the arguments matrix Θj 2 R
Mx�k. The first one contains information on the appearance of the

environment and is independent on the robot orientation thus it permits estimating the posi-

tion of the robot. The second matrix permits estimating the robot orientation. This is an
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advantage, as both problems are decoupled, and the estimation of the position and the orienta-

tion can be done sequentially.

To carry out the localization process, when the robot captures a new test image ft from an

unknown position, first, the RT descriptor is obtained rt 2 R
Mx�My . Second, the FS of this

descriptor is calculated, and the magnitudes matrix At 2 R
Mx�k and the arguments matrix

Θt 2 R
Mx�k are obtained. Once these matrices are available, At is compared with the matrices

Aj,j = 1,. . .,n to solve the image retrieval problem. With this aim, the distance between At and

each matrix Aj is obtained, and the node that presents the minimum distance (nearest neigh-

bour) is considered the corresponding position of the robot.

After that, the arguments matrix Θnn
t of the nearest neighbour node dnn

t is compared with

Θt to estimate the relative orientation of the robot. The shift theorem of the DFT (Eq 2) is used

to do it, following the next steps. We consider the robot captures an omnidirectional image

from a specific position and calculates its RT, obtaining r1 2 R
Mx�My . We represent each row

of this matrix as a sequence {an} and the k-th component of the DFT of this row is FðfangÞk ¼

Ak. If we consider now a second image, captured from the same position but having the robot

a different relative orientation Δθ (deg), the RT of this image, r2 2 R
Mx�My will contain the

same information than r1 but with a circular shift of columns equal to q = Δθ˚ �My/360. This

way, each row of r2 can be represented as the shifted sequence {an−q}. According to the shift

theorem, the DFT of this shifted sequence can be calculated as:

Fðfan� qgÞk ¼ Ak � e
� j�2pqk

Ny ; k ¼ 0; 1; . . . ;My � 1 ð2Þ

where F is the DFT operand, j ¼
ffiffiffiffiffiffiffi
� 1
p

and Ak are the components of the DFT of the original

row (without shift). We take advantage of this theorem to estimate the relative orientation of

the robot. Starting from the arguments matrix of the test image Θt, a set of artificial rotations is

generated, using Eq 2, to cover the whole circumference. The resulting arguments matrix after

each artificial rotation is compared with the nearest neighbour arguments matrix Θnn
t . To do

this, the Hadamard product between matrices is calculated. The orientation of the rotated

matrix that produces the maximum Hadamard product is the estimated orientation of the

robot.

b) Method 2. This method is an adaptation of method 1 to try to optimize the computa-

tional cost of the comparisons between descriptors. The method starts following the same

steps: the RT descriptor of each omnidirectional image fj is calculated, obtaining rj 2 R
Mx�My

and then the FS of them is calculated, obtaining the magnitudes matrices Aj 2 R
Mx�k and

the arguments matrices Θj 2 R
Mx�k. Once the magnitudes matrix of each image has been

obtained, the average value of each column is calculated, obtaining the localization descriptor

a!j 2 R
1�k; j ¼ 1; . . . ; n. The orientation descriptor is the same as in method 1. As a result,

each node dj contains two components: the vector a!j and the arguments matrix Θj.

The image retrieval problem is solved now with the descriptors a!t and a!j; j ¼ 1; . . . ; n.

The estimation of the orientation is carried out as in method 1. Since the size of the position

descriptor has been substantially reduced, the estimation of the position is expected to be a

quicker process with this method.

c) Method 3. This method consists in describing each image directly through its RT

descriptor rj 2 R
Mx�My and using the Phase Only Correlation (POC) to compare two descrip-

tors. This way, in this case, each node dj,j = 1,. . .,n contains only one component, rj.
The image retrieval problem and orientation estimation are solved through the POC opera-

tion [33]. This operation is carried out in the frequency domain and provides us with a
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correlation coefficient that permits estimating the similitude between two scenes that may

present a relative offset (and this relative offset can also be estimated thanks to POC [34]).

POC is a correlation method based upon the inverse Fourier transform of the phase difference

between two images. Therefore, it can measure both the similitude between two images and

the shift between them. The use of the phase information has proved to be a robust choice to

provide immunity to various types of noise or other image distortions [33]. The POC is based

on the fact that the information of the shift between two images resides in the phase of the

cross power spectrum.

In general, the POC between two matrices m1(x,y) and m2(x,y) is defined according to Eq 3:

Cm1m2
x; yð Þ ¼ F � 1 M1ðu; vÞ �M

�

2
ðu; vÞ

jM1ðu; vÞ �M
�

2
ðu; vÞj

� �

ð3Þ

where M1(u,v) is the two dimensional DFT of m1, M�

2
ðu; vÞ is the conjugated two dimensional

DFT of m2 and F � 1 is the 2D inverse DFT operand.

The result of this operation is a matrix Cm1m2
ðx; yÞ which has the same dimensions than m1

and m2. It contains information on the similitude between these matrices and also on the rela-

tive shift between them. First, the component of this matrix that takes the maximum value,

maxfCm1m2
ðx; yÞg, is a coefficient that takes value in the interval [0,1] and measures the simili-

tude between the two matrices m1 and m2. It is invariant against shifts of m2 with respect to m1

(both in files and/or in columns). Taking this fact into account, in this work, we consider as

distance measure:

distfm1;m2g ¼ 1 � maxfCm1m2
ðx; yÞg ð4Þ

Second, the shift of the second matrix m2 with respect to m1 can be obtained with the next

expression:

ðDx;DyÞm2m1
¼ argmaxðx;yÞfCm1m2

ðx; yÞg ð5Þ

In this work, the two matrices to compare are the Radon Transforms of two images

rf 1ð�; sÞ ¼ Rff1ðx; yÞg and rf 2ð�; sÞ ¼ Rff2ðx; yÞg. Taking the shift property into account

(Fig 2), the relative orientation of the robot between the positions 1 and 2 is:

y21 ¼ y2 � y1 ¼ D�r2r1
¼ argmax�fCr1r2

ð�; sÞg ð6Þ

where:

Cr1r2
�; sð Þ ¼ F � 1

Rf 1ðu; vÞ � R
�

f 2ðu; vÞ
jRf 1ðu; vÞ � R

�

f 2ðu; vÞj

( )

ð7Þ

Rf 1ðu; vÞ ¼ Ffrf 1ð�; sÞg; Rf 2ðu; vÞ ¼ Ffrf 2ð�; sÞg ð8Þ

Fig 3 shows two sample omnidirectional images, captured from the same point on the floor

but with a change of orientation θ21 between them. Their RT descriptor and the POC opera-

tion between descriptors is shown. The maximum value of the POC is in the first row and in

the column θ21.

3.2. Experiments

In this subsection, a study is carried out to evaluate the performance of the proposed methods

in an absolute localization task. First, the sets of images used to develop the experiments are
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described. Then, the evaluation is carried out to find out the performance of each method and

the results of the experiments are shown.

The experiments have been performed with a database captured by ourselves, using an

Imaging Source DFK 21BF04 camera, which takes pictures of a hyperbolic mirror (Eizoh

Wide 70). The mirror is mounted over the camera, with its axis aligned with the camera optic

axis. The whole database contains 400 images that were captured while the robot went through

a previously defined trajectory in a laboratory area, at Miguel Hernández University (Spain).

The distance between each pair of consecutive images is equal to 20cm. The route covers a dis-

tance equal to 80m and the environment where the images were captured is very prone to

visual aliasing (the visual appearance of some images that have been captured in different

rooms may be similar). Fig 4 shows a bird eye’s view of the positions where the images were

captured and some sample omnidirectional images. This database is available from [35]. To

carry out the localization experiment, the images have been divided into two groups: the train-
ing set, which is composed of 200 images, taking one every two and the test set, composed of

the rest of images.

To carry out the experiment, first the descriptor of each training scene has been obtained

and stored to compose the map. Then, the absolute localization problem has been solved with

all the test images. Four different distance measures have been tested along with methods 1

and 2: d1 is the cityblock distance, d2 is the Euclidean distance, d3 is the correlation distance

and d4 is the cosine distance. With method 3, the distance measure used is POC. Table 1

Fig 3. Phase only correlation. Result of the POC operation between two RT descriptors r1 and r2. The original images f1 and f2 were

captured on the same point of the floor plane with orientations θ1 and θ2 respectively. The RT descriptors of these images are r1 and r2

respectively. The result of the POC operation between r1 and r2 is the matrixCr1r2
, whose elements take values between 0 and 1.

These values are shown in a colour scale. The maximum value inCr1r2
is a measure of similitude between r1 and r2 (the higher value

the maximum component takes, the most similar both matrices are) and it is independent on the change of orientation. The position of

the maximum value permits estimating the relative orientation of the robot when capturing both initial images θ21 = θ2 − θ1.

https://doi.org/10.1371/journal.pone.0175938.g003

Robot localization using omnidirectional imaging and global appearance

PLOS ONE | https://doi.org/10.1371/journal.pone.0175938 May 2, 2017 10 / 25

https://doi.org/10.1371/journal.pone.0175938.g003
https://doi.org/10.1371/journal.pone.0175938


Fig 4. Set of images. Trajectory followed by the robot to capture the whole set of images. The capture points are shown as green dots. Some

sample omnidirectional images are shown.

https://doi.org/10.1371/journal.pone.0175938.g004

Table 1. Distance measures.

Distance measure Type of distance Mathematical expression

d1 Cityblock
d1ð a
!
; b
!
Þ ¼

Xl

i¼1

jai � bij

d2 Euclidean
d2ð a
!
; b
!
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xl

i¼1

ðai � biÞ
2

s

d3 Correlation
d3 a!; b

!� �
¼ 1 �

a!T
d � b
!

d

j a!d j�j b
!

d j

where:

a!d ¼ a1 � a; . . . ; al � a½ �; a ¼ 1

l

X

j

aj

b
!

d ¼ b1 � b; . . . ;bl � b
� �

; b ¼ 1

l

X

j

bj

d4 Cosine
d4 a!; b

!� �
¼ 1 � a!T � b

!

j a!j�j b
!
j

Distance measures used along with methods 1 and 2 to compare descriptors in the localization process.

https://doi.org/10.1371/journal.pone.0175938.t001
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shows the definition of each type of distance. In these definitions, a! 2 Rl�1 and b
!
2 Rl�1 are

the two data vectors to compare, whose components are respectively ai,bi,i = 1,. . .,l.
During the experiments, the eventual presence of noise and/or occlusions in the test images

has been considered, since these are two common phenomena that may be present in a real

localization application.

First, three occlusion levels have been considered: 1) 20%, 2) 25% and 3) 35% of the test

image occluded. Second, Gaussian noise with three different variances has been superposed to

the test images; 1) σ2 = 0.025, 2) σ2 = 0.05 and 3) σ2 = 0.1. At last, both effects have been com-

bined on the test images, considering the next three cases with respect to the percentage of

occlusion and variance of the Gaussian noise: 1) 20% and σ2 = 0.025, 2) 25% and σ2 = 0.05 and

3) 35% and σ2 = 0.1. Fig 5(A) shows a sample test image and the effect of the three levels of

occlusion considered (Fig 5(B), 5(C) and 5(D)), the effects of the Gaussian noise with different

variances (Fig 5(E), 5(F) and 5(G)) and the combined effect of both occlusions and noise (Fig

5(H), 5(I) and 5(J)).

Taking all these facts into account, the localization results obtained after the experiments

are shown in Fig 6. The bars that appear in this figure show the percentage of correct decisions

of each algorithm (expressed on a per-unit basis). Three precision measures have been consid-

ered. The first one considers a correct decision when the algorithm returns one of the two true

nearest positions (zone 1) and is shown with a blue bar; the second one when the algorithm

returns one of the four true nearest positions (zone 2) and is shown with a green bar and the

last one, one of the six true nearest positions (zone 3) and is shown with a red bar.

First, Fig 6(A) shows the localization results when partial occlusions are present on the test

image. In this experiment, the orientation of each test image is the same than the orientation

of the nearest map image. The method 2 tends to degrade quickly as the level of occlusions

increases. In this case the method 1 with the cityblock distance and the method 3 present the

most stable behaviour and they have a percentage of correct answers around 98% with the

higher level of occlusions.

Second, Fig 6(B) shows the localization results when noise appears on the test images. The

orientation of the test images is again equal to the orientation of the nearest map image. As

shown in the figure, the method 1 with the cityblock distance and the method 3 present excel-

lent results as the percentage of correct localizations is 100% even in the case of the highest

level of noise.

Third, the simultaneous presence of noise and occlusions is considered. The localization

results obtained in this case are presented in Fig 6(C). Method 3 presents a percentage of cor-

rect localizations near 100% and method 1 with the cityblock distance around 75%. These two

configurations clearly outperform the other methods. The results provided by method 2 are

significantly low in the case of the maximum level of simultaneous occlusion and noise.

To complete the experiment, the effect of changes in the robot orientation has been tested.

With this aim, the localization experiment is repeated but considering the robot has different

orientations on each test position. The range of orientations considered for each test image is

θt = [0,10,20,30,. . .,350] deg. After each experiment, the relative orientation of the robot is cal-

culated, comparing each test image with its nearest neighbour. Fig 6(D) shows the localization

results in this case, considering also the simultaneous presence of occlusions and noise. This

figure shows how method 3 tends to perform worse when the orientation of the robot changes.

However, the comparison with Fig 6(C) shows how method 1 presents the same behaviour

independently on the robot orientation so this is the method that best represents the robot

position with rotational invariance. In general, the best results have been obtained with

method 1 using the cityblock distance, with around 75% of correct choices when considering
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changes in orientation and the higher level of simultaneous noise and occlusions and 100% of

correct choices when considering changes in orientation and the second level of simultaneous

noise and occlusions. The results of this experiment show that, despite the challenging prob-

lem (because the visual appearance of the scenes has been seriously compromised), is it possi-

ble to build a descriptor based on the Radon Transform that describes visually the robot

position robustly and with rotational invariance.

Fig 5. Occlusions and noise on the test images. (a) Original sample test image with (b), (c), (d) different

increasing levels of partial occlusion; (e), (f), (g) increasing levels of Gaussian noise and (h), (i), (j) increasing

levels of simultaneous occlusion and noise.

https://doi.org/10.1371/journal.pone.0175938.g005
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Once the performance of the proposed methods in position estimation has been tested, we

compare it with the performance of two well-known global appearance descriptors: Histo-

grams of Oriented Gradients (HOG) and gist. They have been used previously in map building

tasks, and a complete description can be found in [18]. Fig 7 shows the comparative results

obtained with our method 1, HOG and gist in position estimation, when the robot presents

any orientation in the test position, and with the simultaneous presence of noise and occlu-

sions (it is the equivalent to Fig 6(D)). Only the results of method 1 have been included in this

figure since it is the method that has provided the best localization results. Fig 7 shows that

Fig 6. Localization results. Percentage of correct localizations when (a) occlusions are present in the test images (b) noise is considered,

(c) simultaneous occlusions and noise are considered and (d) the robot presents any orientation in the test position and also simultaneous

occlusions and noise.

https://doi.org/10.1371/journal.pone.0175938.g006
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both HOG and gist provide excellent results when the test image does not present neither

occlusions nor noise. However, their performance degrades quicker as the level of occlusions

and noise increase, compared to the performance of the method 1. In these cases, our method

1 along with the cityblock distance proves to be more robust and outperforms both HOG and

gist. It presents the best localization results in any zone, specially in zone 1 (the most restrictive

one).

Apart from the accuracy in position estimation, it is also interesting to study the necessary

processing time to solve the localization problem. Table 2 shows the average time to estimate

the position of the robot, depending on the method and type of distance used. To measure this

time, the experiments have been carried out using Matlab running on a 2 x 2.4 GHz 6-Core

Intel Xeon processor. Initially, the model of the environment is available (i.e. the n descriptors

Fig 7. Localization results. Comparative between the method 1, HOG and gist. Percentage of correct localizations when the robot presents any

orientation in the test position and also simultaneous occlusions and noise.

https://doi.org/10.1371/journal.pone.0175938.g007
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of the images that compose the model, D = {d1,d2,. . .,dn} are calculated previously, where

n = 200). This way, the position estimation time is the necessary time to make all the calcula-

tions since the omnidirectional test image is available: to describe it, to compare the descriptor

with the n descriptors stored in the model and to detect the nearest neighbour. In general, the

method 2 is the quickest one, as expected. Nevertheless, the method 1 along with distances 1

and 2 (cityblock and Euclidean) also presents a good processing time, lower than in the case of

HOG and gist. This way, the method 1 with distance 1 presents a higher accuracy and an

improved computation time compared to the two reference methods studied.

Apart from the position, it is also interesting to estimate the robot orientation. With this

aim, the set of test images that include different robot orientations can be used. Fig 8 shows the

orientation estimation results. Method 1 with the cityblock distance and method 3 are com-

pared in this figure, as these are the two methods that have presented the best localization

results (including the presence of noise and occlusions). To obtain this figure, the descriptor of

each test image has been compared with the descriptor of the geometrically closer map image

and, as a result, the relative orientation between the test and the map image has been calcu-

lated. In the vertical axis, the average orientation error is shown, and in the horizontal axis,

several levels of simultaneous noise and occlusion are considered. ‘0’ represents no noise nor

occlusion, ‘1’ simultaneous 20% occlusion and σ2 = 0.025 Gaussian noise, ‘2’ 40%, σ2 = 0.05

and ‘3’ 40% and σ2 = 0.1.

Fig 8 shows that both methods present a quite stable behaviour in the orientation estima-

tion, independently on the added occlusions or noise. The method 1 with the cityblock distance

presents an average error around 3 deg and method 3 around 2 deg, even in the case of the

higher level of simultaneous occlusion and noise. Taking this fact into account, the Radon

Transform is able to generate a descriptor that not only describes visually the robot position

robustly but also is able to estimate the robot orientation with accuracy. The average process-

ing time to estimate the orientation with method 1 is equal to 115 msec. The processing time

with method 3 is included in Table 2, because when POC is used, this operation is able to esti-

mate both the position of the robot and the relative orientation with the same calculations.

Table 2. Computation time of the position estimation process.

Method Distance t (msec)

RT–Method 1 d1 137

d2 136

d3 245

d4 235

RT–Method 2 d1 103

d2 102

d3 103

d4 103

RT–Method 3 POC 394

HOG d1 152

d2 151

d3 152

d4 152

gist d1 197

d2 196

d3 197

d4 197

https://doi.org/10.1371/journal.pone.0175938.t002
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This way, method 3 takes 394 msec to estimate both the position and the orientation of the

robot, and method 1 with distance d1 takes 137 msec to estimate the position plus 115 msec to

estimate the orientation.

To finish this section, the scalability of the position estimation algorithms (methods 1, 2

and 3) is tested. All the methods have been implemented as a single process running on a sin-

gle processor. To study their scalability, we consider different sizes of the model used to esti-

mate the position of the robot and we study the performance of each method with respect to

the processing time and memory requirements. The results are shown in Fig 9. On the left

side, the processing time of each method is presented. It is expressed as the necessary time to

estimate the position of the robot versus the size of the model (n is the number of images in

the previously created model). On the right side, the memory requirements of the algorithm

versus the number of images in the model is presented.

The method 2 is the computationally most efficient method, and the method 3 is the least effi-

cient one. About the method 1, when it is used along with the cityblock or the Euclidean distances,

the processing time takes reasonable values, arriving to around 2 seconds when the model is com-

posed of n = 214 = 16384 images (the evolution of the time with both distances is the same and the

graphical representations overlap). We must take it into account that the objective of this analysis

is to study the performance of the methods to solve an absolute localization task. In a real applica-

tion, when the environment is very large and the model contains a big amount of images, some

algorithms can be implemented to carry out the localization process in real time, such as probabi-

listic localization [14], where the previous position of the robot can be taken into account to

reduce the number of images used to solve the image retrieval problem.

4. Side detection with respect to a trajectory

In the previous section, a topological localization method with respect to a trajectory-like map

has been developed and tested. Initially, the trajectory-like model of the environment is

Fig 8. Orientation estimation results. Average orientation error obtained with method 1 and cityblock

distance and with method 3. Simultaneous occlusions and noise are considered in the test images.

https://doi.org/10.1371/journal.pone.0175938.g008
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available. This model or map is composed of a set of image descriptors dj 2 R
360�Nx ; j ¼

1; . . . ; n captured from known positions and orientations (xj,yj,θj). Later, when the robot is at

an unknown position (xt,yt) with an unknown orientation θt it is possible to identify the near-

est neighbour position of the map ðxnn
t ; y

nn
t Þ using the methods presented in section 3.1. Also,

the relative robot orientation yt � y
nn
t can be estimated comparing the test image descriptor dt

with the nearest neighbour image descriptor dnn
t .

From this information, it is possible to know that the robot is around a specific map posi-

tion. However, it is not possible to distinguish on which side of the route the robot is located.

This is a typical problem when global appearance descriptors are used since they do not con-

tain any metric information, and it can be a serious drawback in case this information has

to be used to solve the navigation problem. To solve this problem, the robot should start

approaching the route from its initial position and follow it till the target point. If the robot

knows (up to an existing uncertainty) the point it is located around but not the side, it is

impossible to deduce in which direction it has to start moving to tend to the route.

Fig 9. Processing time and memory requirements of the proposed methods. Average localization time and memory requirements of each

method versus the size of the model (n is the number of images that the model contains).

https://doi.org/10.1371/journal.pone.0175938.g009
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Taking these facts into account, in this section, we develop an additional method to esti-

mate which side of the route the robot is located on. This method has to be used after the local-

ization and orientation estimation processes exposed in the previous section.

Let’s suppose a set of test images has been captured around a trajectory-like map. In Fig 10

the test images are shown as red crosses and the linear map as blue crosses on the left side. The

right side of Fig 10 shows the omnidirectional scenes captured on each of the test points. If

each image is compared with the image situated on its right, it can be clearly appreciated that

the objects have moved in such a way that the radii situated in the interval ]0,180[ deg. in the

first image, tend to decrease their angle, and the radii situated in the interval ]180,360[ deg. in

the first image, tend to increase their angle. This effect is more noticeable in the case of objects

that are situated far from the catadioptric system axis.

Taking this property into account, a method has been developed. This method consists in

comparing each column of the RT test image descriptor rt (method 3) with all the columns of

the nearest neighbour image descriptor rnnt . The objective is to know how much each column

of the test image RT has to move to match a column of the map image RT. Let’s suppose the

image retrieval (localization) problem has been solved with test image imt, according to the

previous section. To estimate the side where the robot is, the next algorithm can be run:

1. Calculate the RT descriptor of the test image rt.

2. Compare rt with the RT descriptor of the nearest neighbour ri ¼ rnnt and calculate the rela-

tive orientation between them θti = θt − θi.

3. Correct the orientation of rt so that its orientation is equal to the orientation of the nearest

neighbour. This correction is done as a shift of columns.

4. For each column θk,k = 1,. . .,360 of rt.

Fig 10. Side detection. Capture points of the test images (red crosses) and the training images or map (blue crosses). The distance between each

pair of adjacent images is equal to 40 cm. The omnidirectional images captured from the test positions are also shown.

https://doi.org/10.1371/journal.pone.0175938.g010
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4.1. Obtain the most similar column of ri, using POC as distance measure. With this aim,

compare the column θk of rt with the columns of ri which are in the range [k − α,k + α].

Let’s suppose the most similar column is θj, distfyk ; yjg ¼ 1 � maxfCykyjg.

4.2. Retain this correspondence only if dist{θk,θj}< cTh and, in this case, calculate the differ-

ence Dy
corresp
k ¼ yj � yk .

Once this algorithm has finished, the difference Dy
corresp
k calculated for each column

k = 1,. . .,360 of rt will give us an idea of how each radius of the test image ft has moved to

obtain the map image fj. The average difference permits knowing if the test image is on the

right or on the left of the map image.

In this algorithm, two important parameters must be tuned. The first parameter is α, which

defines the range of angles where the column θk of rt is searched in ri. This angle is defined

around the column k in the descriptor ri defining the following range: [k − α,k + α]. The sec-

ond parameter is cTh, which is the distance threshold. If the distance between the column θk of

rt and the column θj of rj is below this threshold, it is considered a good correspondence.

To test the validity of this algorithm, a complete set of experiments has been carried out,

using a different database that contains 872 omnidirectional images which have been captured

Fig 11. Results of the side detection algorithm. Percentage of test images that have been classified on the correct side of

the trajectory versus α and cTh.

https://doi.org/10.1371/journal.pone.0175938.g011
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on a dense regular 40 x 40 cm grid of points, covering a whole floor of a building (Quorum V

building, 2nd floor) at Miguel Hernandez University, Spain. The whole database is download-

able from [36]. From this database, 20 images have been chosen to compose the training test.

Around the capture point of each training image, 3 pairs of images have been selected at dis-

tances equal to 40 cm, 80 cm and 120 cm (thus the total number of test images considered is

equal to 120). The six capture points are on a line which is perpendicular to the direction the

robot had when capturing the training (central) image. Fig 10 shows an example of the six test

images capture points around the training image capture point i.
The algorithm has been run using all the test images to know whether they are situated on the

left or on the right of the corresponding training image. The results will be expressed as a percent-

age of test images that are classified on the correct side (expressed on a per-unit basis). Fig 11

shows the success rate of the algorithm versus α and cTh. To carry out this experiment α takes the

values [5,6,7,. . .,30] deg and cTh takes the values [0.2,0.22,0.24,. . .,0.8]. This figure shows that the

success rate is quite sensitive to α, and it is important to tune correctly this parameter. In general,

the algorithm tends to behave quite robustly and it is possible to achieve 100% of correct classifica-

tion when the parameters take value in the ranges cTh2 [0.58,0.64] and α2 [22,24] deg.
To finish, Fig 12 shows the processing time of the side detection algorithm versus α (cTh has

no effect in this processing time). When α = 22 deg, the processing time is equal to 282 msec.

5. Discussion

In real applications, when a mobile robot has to create a model of an unknown environment,

it is usual that the robot goes through a trajectory while capturing the visual information to

Fig 12. Processing time of the side detection algorithm. The figure shows the necessary time to detect the side

versus α.

https://doi.org/10.1371/journal.pone.0175938.g012
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store in the model. This way, it is necessary to work with sets of images captured along a trajec-

tory to create robust maps. These models must be useful to estimate the position of the robot

and to allow a visual control so that the robot can navigate using the information stored in the

model. This work has focused on these problems and the use of omnidirectional visual imag-

ing and global appearance descriptors to solve them.

First, a description method based on the Radon Transform has been proposed and some

methods to obtain and compare descriptors have been presented and tested. A comparative

evaluation has been carried out with all these methods to test their robustness to solve the

robot localization task. During this process, several distance measures have been considered in

the analysis. The performance of the proposed algorithms has been tested under some chal-

lenging conditions such as severe noise and/or occlusions in the test images

The Radon Transform has demonstrated to be a robust way of describing omnidirectional

images in mapping and localization tasks: the models built with this approach are quite intui-

tive and the robot is able to estimate its position using only visual information in a straightfor-

ward way, based on the pairwise comparison of descriptors. Two sets of images captured by

ourselves in different environments and under real working conditions have been used to test

the performance of the algorithms. The main contributions of the paper include the study of

the localization process using global appearance descriptors and a trajectory-like model, the

evaluation of the performance when noise or/and occlusions are present and degrade substan-

tially the appearance of the images, the comparison with two state-of-the-art approaches, and

the development of a method to estimate on which side of the map the robot is situated. The

experiments have demonstrated that it is possible to find robust solutions to these problems

so this work constitutes a good basis for the implementation of a complete visual control

framework.

6. Conclusion and future research directions

The results presented in this work show the feasibility of the global appearance description

methods in mapping and localization tasks and, especially, the robustness of the Radon

Transform to create such descriptors, thanks to the integration process it follows to build the

descriptor.

The use of the Radon Transform presents some advantages comparing to other global

appearance-descriptors (such as the Histogram of Oriented Gradients or gist). First, it can be

obtained working directly with the omnidirectional image so no further projection is necessary

(such as the cylindrical projection to obtain the panoramic image). Also, since it integrates the

information of the scenes along some sets of lines to build the descriptor, the new information

tends to be robust against noise and occlusions, as the experiments have demonstrated. This

means that the descriptor is able to capture the visual information around the robot with

robustness. Thanks to it, the robot is able to recognize a localization although the visual infor-

mation is severely corrupted (with noise and/or partial occlusions). This descriptor also con-

tains useful information to estimate the orientation of the robot with respect to the orientation

it had when capturing the images of the map. At last, the mathematical process to obtain it and

the new coordinates of the RT descriptor (with angles in the horizontal axis) permits develop-

ing a method to estimate on which side of the route the robot is located. This is a relevant fea-

ture as it may permit the development of a navigation approach that makes the robot tend to

the desired target point. Also, the processing time of the localization process using the Radon

Transform (with method 1) is lower compared to Histograms of Oriented Gradients and gist.
Once the utility and robustness of such descriptors have been proven, it would also be

interesting to develop and implement a probabilistic localization algorithm using global
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appearance. This way, the information of the previous position of the robot could be used to

avoid solving globally the localization problem at each time instant. Furthermore, using the

information provided by the localization and side detection algorithms, a visual control frame-

work could be implemented. With this framework, the robot would be able to navigate to the

target points in the environment following the routes previously included in the model.
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