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Abstract

Load information plays an important role in deregulated electricity markets, since it is the pri-

mary factor to make critical decisions on production planning, day-to-day operations, unit

commitment and economic dispatch. Being able to predict the load for a short term, which

covers one hour to a few days, equips power generation facilities and traders with an advan-

tage. With the deregulation of electricity markets, a variety of short term load forecasting

models are developed. Deregulation in Turkish Electricity Market has started in 2001 and lib-

eralization is still in progress with rules being effective in its predefined schedule. However,

there is a very limited number of studies for Turkish Market. In this study, we introduce two

different models for current Turkish Market using Seasonal Autoregressive Integrated Mov-

ing Average (SARIMA) and Artificial Neural Network (ANN) and present their comparative

performances. Building models that cope with the dynamic nature of deregulated market

and are able to run in real-time is the main contribution of this study. We also use our ANN

based model to evaluate the effect of several factors, which are claimed to have effect on

electrical load.

Introduction

Deregulation in Turkish Electricity Market has started in 2001 and liberalization will be com-

pleted in a few years with the removal of the consumption limits of eligibility for consumers to

choose their distributing company. This will cause distributors to offer prices as low as possible

to attract new subscribers, while preserving the profitable level. Currently, distribution compa-

nies trade with manufacturers over the prices that are determined daily by EPIAS [1]. In the

near future, as the market becomes fully deregulated and competitive, correct moves in the

market will depend on the precision of the expected electricity cost.

Load is a fundamental and vital information for power generation facilities and traders,

especially in production planning, day-to-day operations, unit commitment and economic

dispatch. Load forecasting is done in different intervals according to requirements: long term

load forecasting covers one to several years for plant and infrastructure investment decisions;
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mid-term load forecasting covers a few days to a few months for maintenance scheduling and

negotiation of forward contracts; short term load forecasting (STLF) covers one hour to a few

days for real time generation control, security analysis and energy transaction planning [2].

STLF can be nationwide [3], regional [4] or for microgrids [5]. Well known rules of supply-

demand balance are also valid in electricity markets: price increases during the hours of higher

demand and goes down during the hours of lower demand such as nights, weekends and holi-

days. Demand is shaped hourly and it is impossible to start or stop production instantaneously

in a huge power plant; therefore, production planning is mostly done in daily basis. Thus,

STLF plays a crucial role for managing operations in electricity markets.

With the deregulation of electricity markets, a variety of STLF models are developed. These

models include multi linear regression [6], Box-–Jenkins method and other derived autore-

gressive models [7], artificial neural networks (ANNs) [8], fuzzy logic systems [9], Kalman Fil-

ter models [10] and hybrid models [11, 12]. Relationship between external factors and

electrical load is not only quite complex but also nonlinear. This nature of load makes it diffi-

cult to predict future values with parametric modeling methods such as time series and linear

regression analysis. Parametric methods require making assumptions on the rules of underly-

ing system. On the other hand, ANNs require minimum number of assumptions to find out

the relation between input and the output. For non-linear multivariate problems with large

datasets, ANN is known to exhibit a much higher performance and therefore, seems to be

appropriate for STLF. Contrariwise, autoregressive models sometimes outperform ANN based

models due to seasonality effect.

Medium and long term forecasts are done using collected historical load data, weather data,

the number of consumers in different classes, number and characteristics of appliances at the

region, population data, electrical equipment sales and estimations of these for the interval to

be forecasted [13]. On the other hand, short term forecasts use historical load, price and

weather data. Introducing seasonality effect by using day of week, hour of the day and holiday

information as input has shown to increase performance [14].

Deregulation of the Turkish Electricity Market is still in progress with new rules being effec-

tive. Earlier studies on Turkish Electricity Market are done in regional basis and span the

period before the actual deregulation. Also there is a growing trend to use intermittent sources

such as wind and solar energy to produce electricity due to the environmental concerns. How-

ever, irregular nature of these resources increases the degree of uncertainty of electrical load.

Our primary motivation is to create an accurate STLF system for current Turkish Electricity

Market, since both deregulation and the use of intermittent sources have changed the dynam-

ics of the market.

The literature review on STLF shows that two main streamlines exist. The first group con-

sists of regression [15–17] and time series methods [7, 18–23], where the performances are

given in Mean Absolute Percentage Error (MAPE) and vary between 1.40% and 7.0%. The sec-

ond group of studies are either ANN based [8, 24–28] or have some extensions and modifica-

tions to ANN, which are referred as hybrid solutions [6, 12, 29–36]. All these modifications

tend to increase forecast performance, and this group of studies report MAPE values between

0.98% and 14.0%. We have to note that all these mentioned MAPE values are not standardized,

changing from only one-hour-ahead forecasts to weekly mean values. Besides, the nature of

the electricity markets used in these studies directly affects the forecast performances.

STLF studies for Turkish market are very limited. Filik et al. develop a statistical model to

forecast short, medium and long term load for regulated Turkish Market. The success of the

model for short term is given as 5.74% MAPE [37, 38]. Topalli et al. work on Turkish load data

of year 2001 and develop an ANN model after clustering the data according to its characteris-

tics. Their model outperform Autoregressive Moving Average (ARMA) model developed for
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benchmarking and achieve 1.51% weighted average MAPE [39, 40]. Yasin et al. compare per-

formance of ANN and SVM based methods for STLF using calendar and temperature data of

three major cities. They report MAPE values ranging from 2.0% to 3.55% determined by the

season [41]. Cevik and Cunkas compare performance of ANN and Adaptive Neuro Fuzzy Sys-

tem (ANFIS) methods using load data of Turkish Market between 2009 and 2011. They report

1.85% to 2.02% MAPE values for ANN and ANFIS respectively [42].

As we reported above, the studies on Turkish Electricity Market are inadequate. First, they

are outdated and do not fit to the deregulating structure of the Market. Second, they propose

one method and lack on presenting comparisons. Our motivation is to fill this gap by propos-

ing two separate models, one based on Seasonal Autoregressive Integrated Moving Average

(SARIMA) and the other based on ANN. There are several factors including weather, cur-

rency, and price, which are believed to have effect on load. However, to the best of our knowl-

edge there are limited number of studies investigating this subject and scope of these studies is

limited to weather forecasts as in [43–46]. Another motivation for our work is investing the

correlation between these factors and load by using real data spanning over two years.

Our contribution is three folded. First, while building our proposed systems, we used recent

deregulated market data, which reflect the dynamic nature of Turkish Electric Market. Sec-

ondly, in most of the proposed STLF systems, successive one hour is predicted using previous

actual values of inputs. This approach is not suitable to make a weekly prediction in real-time,

since it requires actual values to be known beforehand. Our proposed systems are based on

weekly predictions and able to forecast 168 hours ahead. Finally, on contrary to existing stud-

ies, we performed extensive test cases by using a week from each month of the year. Thus, we

obtained fair and unbiased results, which includes effects of special days and seasons.

The rest of this paper is organized as follows. Details of the methods that we used to create

our models, are given in Methods. Case studies and detailed discussion on experimental results

are presented in Experimental results. Finally, we conclude the paper and provide guidelines

for future work.

Methods

Electrical load is a typical time series, since it consists of successive hourly measurements.

Such time series data occur naturally in many application areas including process control,

forecasting in economics, marketing, population studies, biomedical science. In order to

understand the characteristics of a physical system that creates the time series, time series anal-

ysis methods that use systematic approaches are employed [47]. An important part of time

series analysis is forecasting, which focus on prediction of future events based on the informa-

tion extracted from the time series. There are different approaches used in time series analysis

to forecast short and long term future. We can categorize these methods as parametric and

non-parametric methods.

Parametric methods

Parametric methods that are used for time series forecasting include mathematical models

such as Autoregressive (AR), Moving Average (MA), ARMA, Autoregressive Integrated Mov-

ing Average (ARIMA) and SARIMA. These models are used frequently in electrical load and

price forecasting [48, 49].

All these methods employ a four step approach to create a model. First, model is formulated

as a hypothesis. Then, a specific model is formed by selected variables based on observations.

In the third step, model parameters are estimated by least-squares or maximum likelihood. At

the final step, performance of the model is tested with selected variables and parameters. If the
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performance of the model meets predefined criteria, then the forecasting model is accepted.

Otherwise, new parameters for model are estimated. This procedure is repeated until a set of

model parameters that satisfies our predefined criteria is found [50].

In AR models, a series of previous values Zt−1, Zt−2, . . .Zt−p are used to forecast the value Zt.

An AR model can simply be defined as in Eq (1).

Zt ¼ C þ �1Zt� 1 þ �2Zt� 2 þ :::þ �pZt� p þ �t ð1Þ

Where C is a constant, ϕ1, ϕ2, ϕ3, . . ., ϕp are coefficients, �t is forecast error and p is the num-

ber of autoregressive terms. The formula above can also be written as in Eq (2).

Zt ¼ C þ
Xp

i¼1

�iZt� i þ �t ð2Þ

MA models use average of subsequences. As the process in a time series goes on, each new

observation is added to the average and the oldest observation is dropped. Mathematical defi-

nition of MA models is given in Eq (3).

Zt ¼ �t �
Xq

j¼1

yj�t� j ð3Þ

Where θj are model parameters and �t is error. q represents the number of moving average

terms. ARMA models are formed by combining AR and MA models. An ARMA(p, q) model

can be expressed as:

Zt ¼ C þ
Xp

i¼1

�iZt� i þ �t �
Xq

j¼1

yj�t� j ð4Þ

In practice, most of the time series are non-stationary. In order to fit a stationary model, it

is necessary to remove non-stationary sources of variation. This can be done by differencing.

Integrating ARMA(p, q) process to the dth order creates a model that is capable of describing

certain types of non-stationary series [51]. This model is called ARIMA and can be shown as

ARIMA(p, d, q), where d is the number of nonseasonal differences needed for stationarity.

Time series may possess seasonal patterns such as daily, weekly, monthly, etc. In order to

model such time series, SARIMA models can be used. A SARIMA model is an extended ver-

sion of ARIMA model with additional seasonal terms and can be shown as ARIMA(p, d, q) ×
(P, D, Q)s, where P is the degree of seasonal AR model, Q is the degree of seasonal MA model,

D is degree of seasonal integration, and s is the span of repeating seasonal pattern. Detailed dis-

cussion about variable selection of our SARIMA based model is given in Experimental results.

Non-parametric methods

The methods discussed in the previous subsection rely on tuning the parameters of the defined

model. On the other hand, due to the nature of the time series data, the coefficients and the

constant can belong to an unknown distribution and may not be described with parameters.

This situation especially arise from the non-stationary nature of the data. To overcome this

problem, non-parametric forecasting methods are introduced [52–54].

In early studies, non-parametric kernel estimators are used to adjust the coefficients of AR,

MA, ARMA and ARIMA methods [55]. Later on, ANNs are used as non-parametric estima-

tors for time series forecasting. ANN can fit a non-parametric and non-linear function, with-

out guidance to time series data [56–58]. ANN is a biologically inspired machine learning
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method, which simulates the workflow of human neural system. However, the function

approximation and learning algorithms differ from the way that the biological nerves behave.

The underlying mechanism of ANNs is defining a function by means of weighted sum of sev-

eral sigmoids. These sigmoid transfer functions are in fact the combining functions of all rele-

vant explanatory variables. The weights of the sigmoids are determined with regard to the

impacts of the input variables and their interrelations, typically with gradient search algo-

rithms. This structure enables the network to fit a non-linear function to the given data. This is

achieved by the multi-layered topology, where the input layer normalizes and weighs the

inputs, the hidden layer fits nonlinear function to the presented data through the transfer func-

tions, and the output layer sums up the results. These layers consist of the processing units

called neurons. The topology of ANN is formed by the weighted connection structure between

the neurons. Multi-layered topology with direct weighted connections is known as the Feed

Forward (FF) network and visualized in Fig 1. Besides FF, there are many ANN topologies pre-

sented in the literature, each having a different specific target according to the nature of the

data and the problem. The most commonly used network topologies in short-term electrical

load and price forecasting are discussed in [59]. In this study we used FF ANN as it is already

shown that they perform better on forecasting [60].

In order to train a network for adapting to the introduced data for the desired output, the

objective function must be minimized, using learning algorithms. Back Propagation (BP) is

the most commonly used error distribution model in learning phase of ANNs. In order to

minimize the objective function, or cost, different algorithms are presented. Starting from the

slow converging gradient descent, each learning algorithm works fine on certain types of data-

sets or objectives. Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM), Quasi-New-

ton (QN) and Bayesian Regulation (BR) are the examples of common learning algorithms

used in ANNs. The LM algorithm works 10 to 100 times faster than BP [61]. This makes LM

the most convenient learning algorithm in many tasks. Newton’s minimization function for

Fig 1. Feed-forward neural network design.

https://doi.org/10.1371/journal.pone.0175915.g001
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vector x is

Dx ¼ � ½JTðxÞJðxÞ�� 1JTðxÞeðxÞ ð5Þ

where J(x) is the Jacobian matrix and e(x) is the error vector. The LM algorithm is in fact an

update to Newton’s minimization, defined as:

Dx ¼ � ½JTðxÞJðxÞ þ mI�� 1JTðxÞeðxÞ ð6Þ

and practically solves the situations where JTðxÞJðxÞ can not be inverted. The μ coefficient

adjusts the convergence speed of LM. While small values provide fast convergence, large values

speeds down and turns the algorithm into the steepest descent. μ can be modified during learn-

ing phase, between iterations, to guarantee convergence.

Due to the nature of ANN, every feature vector can be presented as an input neuron. This

structure enables us to form any subset of features that effect electrical load and use these as

the inputs of the forecasting NN. The subsets of features and their impact on load forecast per-

formance is discussed in Dataset section.

Experimental results

We evaluated our power load forecasting models on data from deregulated Turkish Market. In

this section, we present our dataset, performance evaluation metric and experimental setups of

the selected methods.

Dataset

Electrical load depends on several factors including calendar effect, consumption, electricity

price, weather and currency. The effects of these factors can be explained as follows: Calendar

effect shapes demand through working hours, holidays, and national or religious days. Con-

sumption corresponds to the electricity demand of both industrial and residential consumers.

Electricity price is shaped by both production and trading, and influences load. Weather con-

ditions can change power demand. It is known that temperature, relative humidity, wind

speed and direction are the most affectional weather parameters, since the usage of air condi-

tioners or electrical heaters are directly related to these factors. Currency is another major fac-

tor because it directly affects the electricity production costs and cross-border electricity trade

agreements.

Selecting the correct combination of input parameters is the key to create an effective elec-

trical load forecasting system. In order to attain a good combination, data is collected from

several sources related to the factors mentioned above. We evaluated the effects of these factors

on load forecast performance using ANN and compared the results with SARIMA. Load, elec-

tricity price, and weather data are collected in hourly period between 01.01.2013 and

31.12.2014. Currency data is collected in daily basis. Using these data, we constructed our

training and test sets. We established our test sets by selecting the last full week, starting from

Monday, of the corresponding month in 2014. The data in the preceding 1, 3, 6 and 12 months

of the test weeks are used for training. The training and test sets for the selected weeks are

given in Table 1, with start and end dates.

The hourly load data and market clearing prices for Turkish Market are gathered from

EPIAS [62]. Using this data, we calculated hourly lagged load data that includes the previous

hour load, the load at the same hour on previous day, on previous week, and average load on

last 24 hours. Besides load data, we prepared calendar data by marking weekdays, weekends,

Turkish national and religious holidays.
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We collected weather data for the major cities of Turkey from Turkish State Meteorological

Service [63]. After analyzing their impact on load forecast performance, we selected four

prominent cities: İstanbul, Ankara, İzmir and Antalya. The weather data consist of hourly tem-

perature and humidity values for these city centers.

Most of the wholesale trade in Turkish Electricity Market is made using foreign currencies.

Thus, foreign exchange currency rates for Euro and US Dollar are collected from the Central

Bank of the Republic of Turkey archives [64]. Unfortunately, historical hourly rates for these

currencies are not provided in the records. Thus, we used daily currency exchange rates for

every hour in a day.

A detailed description of our feature sets and the features within these groups are presented

in Table 2. In order to evaluate the effect of these features on load, we analyzed their correla-

tion coefficients with respect to the hourly load data. Based on the p-values matrix, we can eas-

ily say that there is a significant correlation between the selected input features and load.

Besides statistical parameter observations, we estimate the importance of inputs using a boot-

strap aggregated random-forest ensemble. Out-of-bag importance of the selected features are

given in Fig 2, and it clearly shows that all these features have impact on load.

Performance metric

In this study, we use Absolute Percentage Error (APE) and MAPE to measure the perfor-

mances of the proposed approaches. APE is calculated by Eq (7) and is used to show the maxi-

mum and minimum forecast errors. On the other hand, MAPE gives an overall performance

evaluation of proposed approaches. MAPE formula is given in Eq (8). In Eq (7), LPi is the

Load Estimation Plan value, that is the original value provided by EPIAS, whereas LEi is the

Table 1. Start and end dates of the training and test periods for the selected test weeks.

Train set Test set

Start date

Weeks 1 month 3 months 6 months 12 months End date Start date End date

W1 20.12.2013 20.10.2013 20.07.2013 20.01.2013 19.01.2014 20.01.2014 26.01.2014

W2 17.01.2014 17.11.2013 17.08.2013 17.02.2013 16.02.2014 17.02.2014 23.02.2014

W3 24.02.2014 24.12.2013 24.09.2013 24.03.2013 23.03.2014 24.03.2014 30.03.2014

W4 21.03.2014 21.01.2014 21.10.2013 21.04.2013 20.04.2014 21.04.2014 27.04.2014

W5 19.04.2014 19.02.2014 19.11.2013 19.05.2013 18.05.2014 19.05.2014 25.05.2014

W6 23.05.2014 23.03.2014 23.12.2013 23.06.2013 22.06.2014 23.06.2014 29.06.2014

W7 21.06.2014 21.04.2014 21.01.2014 21.07.2013 20.07.2014 21.07.2014 27.07.2014

W8 25.07.2014 25.05.2014 25.02.2014 25.08.2014 24.08.2014 25.08.2014 31.08.2014

W9 22.08.2014 22.06.2014 22.03.2014 22.09.2014 21.09.2014 22.09.2014 28.09.2014

W10 20.09.2014 20.07.2014 20.04.2014 20.10.2014 19.10.2014 20.10.2014 26.10.2014

W11 25.10.2014 24.08.2014 24.05.2014 24.11.2014 23.11.2014 24.11.2014 30.11.2014

W12 22.11.2014 22.09.2014 22.06.2014 22.12.2014 21.12.2014 22.12.2014 28.12.2014

https://doi.org/10.1371/journal.pone.0175915.t001
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Table 2. Details of feature sets that are used in ANN based STLF model.

Feature Set Included Features

Calendar Data (D) Day of week

Working day

Holidays

Previous Load Estimation Plan (L) Previous day same hour load

Previous week same hour load

Previous 24 hour average load

Electricity Price (P) Previous market clearing price

Previous day same hour price

Previous week same hour price

Previous 24 hour average price

Weather (W) İstanbul temperature

İstanbul relative humidity

Ankara temperature

Ankara relative humidity

İzmir temperature

İzmir relative humidity

Antalya temperature

Antalya relative humidity

Currency (C) USD/TRY exchange rate

https://doi.org/10.1371/journal.pone.0175915.t002

Fig 2. Comparison of feature importances on load.

https://doi.org/10.1371/journal.pone.0175915.g002

Power load forecasting models for Turkish electricity market

PLOS ONE | https://doi.org/10.1371/journal.pone.0175915 April 20, 2017 8 / 24

https://doi.org/10.1371/journal.pone.0175915.t002
https://doi.org/10.1371/journal.pone.0175915.g002
https://doi.org/10.1371/journal.pone.0175915


estimated Load at hour i. In Eq (8), N corresponds to total number of estimated hours.

APEi ¼
jLPi � LEij

LPi
ð7Þ

MAPE ¼
1

N

XN

i¼1

APEi ð8Þ

Creating SARIMA model

Electrical load of four consecutive weeks on March 2014 is given in Fig 3. A close inspection of

the figure shows a distinct weekly seasonal pattern, which electrical load possesses. Thus, in

this study, we prefer to build a SARIMA model, which can be shown as ARIMA(p, d, q) × (P,

D, Q)S. Determining the values of p, q, d, P, Q, and D plays a crucial role for creating a highly

accurate SARIMA model. We used Econometrics Toolbox of Matlab to determine these val-

ues, and to estimate parameters of our SARIMA models.

In most of the previous studies, variables of proposed ARIMA models are determined intui-

tively as in [18, 40, 65]. It is also possible to use Sample Autocorrelation Function (ACF) and

Partial Autocorrelation Function (PACF) for determining p and q variables [7, 32]. ACF and

PACF of the electrical load for March 2014 are given in Fig 4, which shows that there is a high

correlation between the first few lags and the actual load. This figure also shows that t − 168th

lag has a high influence on the tth hour. This also validates our assumption about the weekly

seasonal characteristic of the electrical load.

In order to select degrees of p and q parameters, we employed Bayesian Information Crite-

rion (BIC). We estimated several models with different p and q values. Then, for each esti-

mated model, the log-likelihood objective function value is calculated. This value is then used

to calculate the BIC measure of fit. In our study, we scanned a wide range of p and q values,

Fig 3. Power load in four consecutive weeks of March 2014.

https://doi.org/10.1371/journal.pone.0175915.g003
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and observed that the best fitted model is constructed when both p and q values are set to 1.

BIC values of models with different p and q values are given in Table 3.

We also created another SARIMA model and selected its parameters intuitively. Our selec-

tion basically depends on the idea that electrical load on time t (Lt) depends on the load on last

three hours (Lt−1, Lt−2, Lt−3), the load at same hour in previous day (Lt−24), the load 48 (Lt−48)

hours ago and the load 72 (Lt−72) hours ago. Variables used in these models are given in

Table 4.

We evaluated the performance of the proposed SARIMA models using one week of each

month in 2014. Table 5 shows the MAPE values of both models for each week. Load estima-

tions of both models and the actual load for the first test week is given in Fig 5. Figure clearly

shows that both models perform well in weekdays. However, their accuracy is very low on

weekends. This is due to fact that there is no information about weekdays or weekends sup-

plied to both models. On the other hand, both models have relatively higher MAPE values on

test week 7, that corresponds to July. Load estimated by our models and actual load for these

weeks are given in Fig 6. Test week 7, which starts from July 21 and ends at July 27, overlaps

with the Ramadan Feast Eve. Thus, last day of this week has higher error rate that increases

overall MAPE value of the week.

Fig 4. Autocorrelation function and partial autocorrelation function of load.

https://doi.org/10.1371/journal.pone.0175915.g004
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Table 4. Variables of both SARIMA models.

Model Non-seasonal Seasonal

AR Lags d MA Lags AR Lags D MA Lags

BIC based model 1 0 1 1 0 1

Intuitive model 1, 2, 3, 24, 48, 72 0 1, 2 1 0 1

https://doi.org/10.1371/journal.pone.0175915.t004

Table 5. Comparison of proposed SARIMA models.

Weeks SARIMA MODEL

Intuitive BIC

W1 0.0124 0.0136

W2 0.0384 0.0238

W3 0.0212 0.0184

W4 0.0216 0.0257

W5 0.0253 0.0234

W6 0.0409 0.0374

W7 0.0501 0.0459

W8 0.0137 0.0195

W9 0.0325 0.0292

W10 0.0304 0.0271

W11 0.0296 0.0310

W12 0.0164 0.0175

Average 0.0277 0.0260

https://doi.org/10.1371/journal.pone.0175915.t005

Table 3. BIC values of SARIMA models with different p & q values.

p q

1 2 3 4 5 6 7 8 9 10 11 12

1 10632 10651 10651 10660 10656 10655 10664 10668 10684 10684 10717 10696

2 10646 11199 11211 11224 11207 11225 11202 11227 11277 11253 11254 11258

3 11085 11335 11495 11522 11497 11472 11504 11508 11538 11597 11596 11597

4 11097 11228 11575 11724 11685 11682 11696 11708 11744 11761 11814 11765

5 11273 11481 11574 11842 11829 11798 11809 11841 11877 11899 11900 11903

6 11290 11575 11527 11814 11960 11830 11911 11925 11952 12030 12048 11991

7 11338 11565 11621 11802 11980 12001 11922 11941 11992 12033 12039 12043

8 11363 11517 11673 11747 11975 12037 12006 11947 11999 12053 12066 12071

9 11347 11577 11686 11771 11949 12060 12054 12010 11937 12027 12080 12097

10 11387 11605 11674 11787 11899 12013 12051 12057 12021 11966 12043 12066

11 11351 11577 11634 11791 11852 11974 12032 12064 12059 11989 11949 12010

12 11388 11549 11606 11819 11850 11933 12022 12074 12076 12032 11988 11925

https://doi.org/10.1371/journal.pone.0175915.t003
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Fig 5. Load estimation of both SARIMA models for the last week of January 2014. Estimations for week 1, BIC based SARIMA model is shown in the

upper part. Estimations of intuitive SARIMA model are given in the lower part.

https://doi.org/10.1371/journal.pone.0175915.g005

Fig 6. Load estimation of both SARIMA models for the last week of July 2014. Estimations for week 7, BIC based SARIMA model is shown in the upper

part. Estimations of intuitive SARIMA model are given in the lower part.

https://doi.org/10.1371/journal.pone.0175915.g006
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Overall performance of both models are very close. However, our first model, which was

built using BIC, outperforms the intuitive model. Thus, we preferred to use BIC-based SAR-

IMA model and hereafter SARIMA refers to our BIC-based model.

Creating neural network model

The architectural properties of ANN directly effect the performance. In a FF network, most

crucial properties are the hidden layer size, learning method and the length of training data. In

order to successfully select and adjust these properties, we ran comparative tests on our

dataset.

Choosing the number of hidden neurons is an important problem since there is not a cer-

tain way to determine it. Previous studies report that most widely used hidden neuron num-

bers are 2n + 1, (n + 1)/2, where n is the number of input neurons [66]. We observed that 2n
+ 1 hidden neurons worked best especially in shorter training datasets. It is also possible to use

the trial and error approach to determine number of hidden neurons. Our trials showed that

20 hidden neurons produced better results in larger training datasets. A detailed comparison

of hidden layer size effect on load forecast performance using LM is given in Table 6. Since

highest forecast performance is expected using larger training data, we set our hidden layer to

20 neurons.

We discussed popular learning methods for training ANN in Methods. We compared three

different learning methods, LM, BR and SCG using 20 hidden neurons. The impact of these

learning methods across the feature sets, grouped by training dataset size, are compared in

Table 7 and visualized in Fig 7. The comparison results showed that LM is the most convenient

learning method that reasonably works good for every training dataset size. In addition, overall

error decreases as the training dataset gets larger, regardless of learning algorithms.

Here we define the detailed parameters of our FF network, based on the determined hidden

layer size and learning method above. Our input neurons vary from 6 to 19, depending on the

feature set combinations of calendar data (D), previous load estimation plan (L), electricity

price (P), weather data (W), and currency (C). The DL combination has 6 input neurons.

Table 6. Impact of hidden layer size on ANN performance, measured with MAPE (%). Smaller MAPE means higher forecast accuracy. The network is

trained using LM. D refers to calendar data, L is previous load estimation plan, P is electricity price, W is weather and C is currency feature sets.

# of hidden neurons Training dataset size Feature set

DL DLP DLW DLC DLPWC

(n = 6) (n = 7) (n = 14) (n = 8) (n = 17)

nþ1

2
1 month 0.0282 0.0273 0.0364 0.0326 0.0437

3 months 0.0267 0.0254 0.0278 0.0294 0.0324

6 months 0.0252 0.0234 0.0269 0.0258 0.0268

12 months 0.0194 0.0208 0.0218 0.0250 0.0229

2n + 1 1 month 0.0281 0.0330 0.0412 0.0538 0.0511

3 months 0.0236 0.0262 0.0343 0.0287 0.0359

6 months 0.0235 0.0347 0.0301 0.0239 0.0331

12 months 0.0185 0.0184 0.0217 0.0200 0.0842

20 1 month 0.0318 0.0310 0.0404 0.0509 0.0429

3 months 0.0323 0.0274 0.0330 0.0293 0.0380

6 months 0.0218 0.0226 0.0303 0.0261 0.0304

12 months 0.0180 0.0184 0.0217 0.0202 0.0227

https://doi.org/10.1371/journal.pone.0175915.t006
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DLP, DLW and DLC combinations have 10, 14 and 7 input neurons respectively. When all of

the aforementioned features are used, the system has 19 inputs. We have a fully connected hid-

den layer with 20 neurons. The hidden neurons are activated with tansig transfer function.

Our output neuron has linear activation function. Bias is introduced to both hidden and out-

put neurons. Our model does not have input delays or layer delays. We measure the error on

training with mean squared error, only with error minimization. LM training algorithm is

used with 1000 maximum training epochs, 6 validation checks and μ beginning from 0.001,

with 0.1 decrement and 10 increment ratios with 10,000 maximum limit. Usually, μ values

converge to 10. We used Matlab Neural Network Toolbox in order to build and train the

network.

Another focus point on the forecast performance of ANN is the impact of the feature sets.

We evaluated the effect of these features by creating combinations of D, L, P, W, and C. The

comparative results are given in Table 7. The t-tests proved that using DL, DP, DLW and

DLPWC for load forecasting is statistically significant. On contrary to our expectations, cur-

rency has no positive effect on performance. This situation is clearly proved in our tests. Simi-

larly, weather and price has minor positive effects. Calendar data and previous load values

work well for load forecasting with adequate precision. We observed that an ANN with 20 hid-

den neurons, trained with DL of previous 12 months using LM learning algorithm, produced

lowest MAPE. Our test results showed that using larger training dataset and simpler feature

sets work better on load forecasting with ANN on Turkish Market.

Comparative discussion

Performance evaluation of both methods is summarized in Table 8. The table is also visualized

in Fig 8 using minimum, maximum APE values and MAPE values of each test week. Values in

Table 8 and Fig 8 are calculated by averaging of 20 runs, in order to suppress the sensitivity of

ANN to initial state. Hourly predictions of both models for 12 test weeks are also given in Fig 9

and in Fig 10. Our models predict all 168 hours of each test week at once. Therefore, we have a

168-hour ahead forecast horizon.

Table 7. Learning method performance evaluation across different feature sets, grouped by training set length. Performance is measured with MAPE

(%). Smaller MAPE means higher forecast accuracy. D refers to calendar data, L is previous load estimation plan, P is electricity price, W is weather and C is

currency feature sets.

Training dataset size Learning method Feature set

DL DLP DLW DLC DLPWC

1 month BR 0.0447 0.0487 0.0555 0.1128 0.0799

LM 0.0318 0.0310 0.0404 0.0509 0.0429

SCG 0.0321 0.0310 0.0399 0.0454 0.0409

3 months BR 0.0412 0.0300 0.0424 0.0439 0.0467

LM 0.0323 0.0274 0.0330 0.0293 0.0380

SCG 0.0310 0.0296 0.0350 0.0343 0.035

6 months BR 0.0277 0.0225 0.0292 0.0301 0.0352

LM 0.0218 0.0226 0.0303 0.0261 0.0304

SCG 0.0272 0.0268 0.0336 0.0311 0.0317

12 months BR 0.0168 0.0176 0.0193 0.0195 0.0224

LM 0.0180 0.0184 0.0217 0.0202 0.0227

SCG 0.0244 0.0250 0.0287 0.0287 0.0298

https://doi.org/10.1371/journal.pone.0175915.t007
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Table 8 is obtained disregarding a special hour: MAPE of 10th week is evaluated by remov-

ing the 146th hour, which corresponds to October 28th, 2014 02:00 am. This hour was, unfortu-

nately, end of daylight saving time, and since clocks are turned backwards from 2 am to 1 am,

2 am has occurred twice. Therefore, load of this hour is doubled. Clock change happens twice

a year; start of daylight saving time, there happens a single hour with 0 load, and end of day-

light saving time, where load is almost doubled for a single hour. We chose to disregard those

hours.

At the first glance, it can easily be seen that performance of both methods depends on the

season: average forecasting error for winter weeks is much less then that of summer, while

Fig 7. Performance comparison of NN learning methods across feature sets, measured with MAPE (%). Smaller MAPE

means higher forecast accuracy. D refers to calendar data, L is previous load estimation plan, P is electricity price, W is weather

and C is currency feature sets.

https://doi.org/10.1371/journal.pone.0175915.g007
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spring and autumn are placed in between. Special cases for unexpected errors are explained

below.

The highest forecasting error is at 9th week which covers 22nd to 28th of September. Here,

for a single hour, 75th hour of the week (September 25th, 2014 02:00 am) both methods make

an unfortunate peak causing the maximum error of the week. The cause of this peak is a inex-

plicable peak at same hour of previous week of the input data. The magnitude of the peak with

SARIMA is reasonably greater than that of the ANN. Here the effect of seasonality on the

model is revealed. ANN can smooth the noisy values, however, noise is directly reflected to

forecasts.

Table 8. Performance of implementations, measured with MAPE (%). Smaller values mean higher forecast accuracy.

Method Evaluation Week

1 2 3 4 5 6 7 8 9 10 11 12

SARIMA Min APE 0.02 0.02 0.00 0.01 0.04 0.02 0.00 0.01 0.03 0.03 0.02 0.03

Max APE 4.79 9.34 7.79 13.35 14.02 17.05 27.58 5.7 44.09 9.48 11.75 5.19

MAPE 1.36 2.38 1.84 2.57 2.34 3.74 4.95 1.95 2.92 2.43 3.1 1.75

ANN Min APE 0.00 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.00

Max APE 4.58 6.53 5.66 8.62 11.65 11.3 25.73 3.76 16.03 7.78 9.07 6.33

MAPE 0.98 1.42 1.45 2.01 2.26 1.81 3.26 1.03 1.03 1.13 1.38 1.36

https://doi.org/10.1371/journal.pone.0175915.t008

Fig 8. Performance comparison of the proposed approaches, measured with APE. MAPE values are highlighted on min-max

intervals. Smaller values mean higher forecast accuracy.

https://doi.org/10.1371/journal.pone.0175915.g008
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Fig 9. Load estimations of SARIMA based model and actual load values for 12 weeks of year 2014.

https://doi.org/10.1371/journal.pone.0175915.g009
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Fig 10. Load estimations of ANN based model and actual load values for 12 weeks of year 2014.

https://doi.org/10.1371/journal.pone.0175915.g010
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Fig 11. Empirical cumulative distribution functions for MAPEs of SARIMA and ANN based models on 12 test weeks

of year 2014.

https://doi.org/10.1371/journal.pone.0175915.g011
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Worst forecasted week seems to be the 7th week according to the MAPE values. Forecasting

error for the last day of this week is above the expectations. This day is not only Sunday but

also Ramadan Feast Eve. Load during this day is about 20% less than an ordinary Sunday. The

error occurred for this day spoils the MAPE of the week.

The 4th and 5th weeks include national days. April 23rd is National Sovereignty and Chil-

dren’s Day, and May 19th is Commemoration of Atatürk, Youth and Sports Day. Those days

not only cause errors on forecasting but also cause a noise in the training data and increase the

error on the forecasting of 6th week.

At the worst case, for week 9, forecasting error with ANN is 16.03% while highest forecast-

ing for SARIMA model is 44.09%. The reason of this error was explained above as the noise in

input. When overall performance of the methods is considered, ANN with calendar data and

previous load outperforms SARIMA although the error trend seems to be the same. SARIMA’s

main weakness is that there is no way to distinguish between the working days and holidays.

Separate models for working days and holidays might be regarded as a solution. However,

there are two religious holidays and four national holidays, which occur once a year. Religious

holidays shift 10 days each year. It is also possible for all holidays to be extended by the govern-

ment, if the holiday is close to weekend. Therefore separate models for SARIMA is not applica-

ble and ANN is the method which provides the distinction required by the nature of electric

consumption.

SARIMA’s benefit seems to be quick recovery from the effect of the holidays. The effect of

national days in third day of 4th week and first day of the 5th week is reflected to next day in

ANN model, however, SARIMA does not propagate this unexpected effect to next day. For the

fourth day of 4th week, ANN has 3.4% MAPE while ARIMA has 1.6% MAPE. Difference for

the second day of 5th week is not this much notable; MAPE values are 4.1% for ANN and 3.1%

for SARIMA.

We compare the distribution of errors for the SARIMA and ANN based models in Fig 11

by using the empirical cumulative distribution function. We see that ANN based model pro-

duces less error than the SARIMA based model on most of the test weeks and the cumulative

error is below 5% in general. However, SARIMA has minor advantages in some points of the

4th and 5th test weeks. This is due to the SARIMA’s ability to recover quickly from the effects of

the national holidays in these months, as we discussed above.

Conclusion

In this study, we created two separate STLF models based on SARIMA and ANN for Turkish

Electricity Market. We comparatively presented their performances for last weeks of each

month. On contrary to existing studies, we included weekends and special days in our test sets

for fair and unbiased performance evaluation. Additionally, we evaluated the contribution of

globally known factors on forecast performance, such as electricity price, weather parameters

and currency.

When the model performances are observed on average of 12 test weeks, ANN produced

1.80% MAPE and outperformed SARIMA, which had 2.60% MAPE. We can say that ANN

model fits better than SARIMA to Turkish Market. However, in some cases SARIMA performs

better than ANN, especially on the forecasts after holidays. This structure addresses one of our

future works, to produce a hybrid load forecast solution.

Experimental results proved that when more features are utilized, model becomes more

complex and forecast performance decreases. For this reason, we do not recommend using

load, price, weather and currency feature sets together. Calendar data and load feature sets

work best on ANN for forecasting with adequate precision.
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Our future work consists of building a hybrid model to produce more accurate forecasts,

using the models and directive discussions we presented here. Moreover, we will use the out-

put of this system as input to a short term electricity price forecaster. We also plan evaluating

our model after the total liberalization of Turkish Market.
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