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Abstract

North American amphibians have recently been impacted by two major emerging patho-
gens, the fungus Batrachochytrium dendrobatidis (Bd) and iridoviruses in the genus Rana-
virus (Rv). Environmental factors and host genetics may play important roles in disease
dynamics, but few studies incorporate both of these components into their analyses.

Here, we investigated the role of environmental and genetic factors in driving Bd and Rv
infection prevalence and severity in a biodiversity hot spot, the southeastern United States.

We used quantitative PCR to characterize Bd and Rv dynamics in natural populations of
three amphibian species: Notophthalmus perstriatus, Hyla squirella and Pseudacris ornata.
We combined pathogen data, genetic diversity metrics generated from neutral markers, and
environmental variables into general linear models to evaluate how these factors impact
infectious disease dynamics. Occurrence, prevalence and intensity of Bdand Rv varied
across species and populations, but only one species, Pseudacris ornata, harbored high Bd
intensities in the majority of sampled populations. Genetic diversity and climate variables
both predicted Bd prevalence, whereas climatic variables alone predicted infection intensity.

We conclude that Bd'is more abundant in the southeastern United States than previously
thought and that genetic and environmental factors are both important for predicting
amphibian pathogen dynamics. Incorporating both genetic and environmental information
into conservation plans for amphibians is necessary for the development of more effective
management strategies to mitigate the impact of emerging infectious diseases.

Introduction

Infectious disease is a well-known driver of animal declines worldwide (e.g. [1-2]). Ectother-
mic vertebrates, particularly reptiles and amphibians, have been exceptionally impacted by
emerging infectious diseases (EIDs) [1]. Observations of massive, worldwide, pathogen-associ-
ated amphibian die-offs date back to the 1970s and 80s [3]. In North America, amphibians
have been impacted by two major emerging pathogens, the fungus Batrachochytrium
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dendrobatidis (Bd) and a class of iridoviruses collectively known as Ranavirus (Rv) [4-7]. Bd
was identified as a disease agent in 1998 [8] and Rv was classified as an emerging pathogen
after 1993 [9-10]. In North America, Bd has mainly impacted anurans in the families Ranidae
and Bufonidae, causing mass mortality events for species in these families. Most infections
have occurred in the western United States and have impacted already threatened and endan-
gered species (e.g. [1,4, 11-12]). Rv has caused die-offs in at least 20 different reptile and
amphibian species throughout the United States, including species under state and federal pro-
tection [4, 13-14].

In the southeastern United States (hereafter, Southeast), emerging pathogens impacting
ectothermic vertebrates have been poorly characterized but have the potential to significantly
impact the area. The Southeast is exceptionally rich in amphibian and reptile diversity, hosting
more than half of species occurring in the United States [15]. EIDs therefore have potential to
severely impact this region’s ecosystems and overall biodiversity. Presently, EIDs have been
documented in multiple amphibian and reptile groups occurring in the Southeast [4, 13, 16],
yet disease monitoring has been limited. One species, the Gopher frog (Lithobates capito), is
susceptible to Ry infections in the lab [14] and infection and die-offs have been documented
for wild populations [16-17]. However, impacts of pathogens on other species in this area are
more enigmatic [13, 17-19]. Because disease monitoring has been limited, museum specimens
and other archived biological samples are critical for retrospective pathogen detection and can
aid in uncovering when pathogens were first introduced and where they were found in the
past [20].

Climatic variables are significant drivers of pathogen prevalence in wildlife populations,
and amphibians and their pathogens are no exception (e.g. [7, 21-22]). Temperature and pre-
cipitation are the two major environmental factors that appear to be drivers of Bd dynamics.
Studies have shown a negative relationship between temperature and Bd occurrence, preva-
lence and intensity both in the lab [23-24] and in natural populations (e.g. [7, 25-27]). Addi-
tionally, variation in precipitation and humidity have been implicated in the occurrence and
prevalence of Bd, with increased precipitation and humidity driving patterns (e.g. [23, 28]).
Most work to date on Ry has focused on documenting infections. To our knowledge, there is a
paucity of work investigating how environmental factors serve as drivers of Rv. Only two stud-
ies look at this pattern; one in which salamanders were experimentally infected under different
temperature regimes and a negative relationship between Ry infection intensity and tempera-
ture was found [29] and one testing ranid frogs under differing temperature regimes [30].

There is increasing empirical evidence for a genetic basis to disease resistance in wild verte-
brate populations [31-32], although more studies are needed to test this hypothesis in amphib-
ian taxa [33]. To date, reduced genetic diversity has been found to increase susceptibility to
one pathogen (Rv) in a single amphibian species based on neutral microsatellite loci [34].
Additionally, a handful of studies have explored the underlying genetic basis for disease resis-
tance to Bd. Tobler and Schmidt [35] looked at among-population susceptibility to Bd in a
European frog and inferred that differences in susceptibility among populations had a genetic
basis due to differential population responses in a common garden experiment. Similarly, Sav-
age et al. [36] found that neutral genetic diversity was negatively correlated with Bd infection
prevalence in a North American frog. Immunogenetic analyses have also found significant
associations between specific major histocompatibility complex (MHC) class II alleles and Bd
tolerance in the lab and in natural systems for multiple species of anurans [37-39]. These stud-
ies suggest that host genetic diversity underlies differential amphibian population responses to
EIDs, but are based on a limited number of taxa.

Despite the importance of environmental and genetic factors in explaining amphibian dis-
ease dynamics when investigated separately, few studies incorporate both into a single analysis.
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Ribas et al. [24] demonstrated in the lab that both temperature and expression of skin peptides
determined how anuran hosts responded to Bd infection. Savage et al. [39] found that environ-
mental factors were responsible for predicting Bd infection intensity, while both genetic and
environmental factors influenced Bd prevalence. This was the first analysis to combine both
genetic and environmental factors in a predictive model for EIDs in a natural amphibian sys-
tem. More studies are needed to confirm the importance of both genetic and environmental
factors for explaining amphibian EIDs.

Here, we assess whether EIDs are impacting amphibian populations in the southeastern
United States by characterizing Bd and Rv dynamics using archived samples from three
amphibian species: a salamander, Notophthalmus perstriatus and two tree frogs, Hyla squirella
and Pseudacris ornata. Each species exhibits unique life history traits and all three occur
throughout the Southeast, offering varying perspectives into pathogen dynamics among
diverse taxa. Notopthalmus perstriatus has a complex life cycle, spending two out of its three
life stages in the water [40]. Previous studies have observed that N. perstriatus and other
Notophthalmus are susceptible to both Bd [19] and Ry [41]. Hyla squirella is a common, highly
arboreal species that breeds in large aggregates during summer months (Elliot et al. 2009), and
little is known about the presence or impact of Bd and Ry in this species. In contrast, P. ornata
is an increasingly uncommon species (B. Means pers. comm.), breeds in winter at low densities
[42], and is highly susceptible to Rv in experimental infection trials [43]. Field studies of
P. ornata tadpoles in northern Florida have also confirmed Ry infections in the wild [17]. Pre-
vious population genetic analyses found that N. perstriatus form distinct East-West groups that
do not share haplotypes [40], H. squirella genetic structure is heavily determined by habitat
structure [44], and P. ornata genetic structure varies among populations and the species may
have been widespread across the Southeast in the past [45]. By combining these genetic data
with environmental and disease variables for each sampled population, we simultaneously
assessed the importance of host genetics and environmental variables on predicting disease
impact and spread in amphibian populations of the Southeast.

Materials and methods
Sample collection

All appropriate permits were acquired for the desired field and lab work. Vertebrate animal
use was approved by University of Central Florida’s IACUC, #06-01W, 09-13W, 09-21W.
Samples were collected over various months throughout the Southeast Atlantic Coastal Plain
from 1997 to 2010 (Table A in S1 File). Notophthalmus perstriatus samples were collected in
Florida and Georgia from 1997 to 2000, with additional samples collected in 2008-2010. Sam-
ples were collected during various months over the entire collection period [40]. Hyla squirella
samples were collected in Florida and Georgia in 2010 during summer months [44]. Pseudacris
ornata samples were collected in Florida, Georgia, Alabama, South Carolina and North Caro-
lina between 2006 and 2009 during winter months [45]. Toe clips were taken from anurans
and tail clips were taken from salamanders. Each animal was then released where it was found.
For N. perstriatus, tissue was either stored in saturated salt buffer (NaCl; 25 mM EDTA, pH
7.5; 20% DMSO), or in DrieRite Desiccant [40]. For H. squirella, tissue was stored in in anhy-
drous calcium sulfate [44]. P. ornata tissue samples were also stored in anhydrous calcium sul-
fate [45]. While multiple storage methods were used, long-term storage occurred in a -20C
freezer, we ran a random assemblage of samples (10 samples from each species group) and
tested elutions via a Microdrop assay in a BioTek plate reader to check for a comparison of the
DNA extractions. No significant difference was found between species in amount of DNA
present in elutions (P = .06).
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Pathogen detection

DNA was extracted from whole tissue samples using DNeasy Blood and Tissue kits (Qiagen)
or through the phenol—chloroform method [40, 44-45] and DNA elutions were stored at -20
C or cooler. Tagman quantitative (q)PCR was performed on extracted DNA using the Bio-Rad
CFX96 Real-Time System and analyzed with Bio-Rad CFX Manager 3.1 software. Reaction
volumes were 25 pL for all standards, samples and controls, consisting of: 8 uL of Bio-Rad
Super Mix, 2 uL of 10 pM Forward primer (0.8 pM/ uL), 2 uL of 10 uM Reverse primer

(0.8 uM/ uL), 3 uL of Molecular Grade water, 5 uL of 1 uM probe (Bd or Ry; 0.2 pM/ pL) and

5 uL of standard DNA template or sample DNA template. Cycling conditions were as follows:
95°C for 5 minutes followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 min. Bd reac-
tions used primers and probes developed by Boyle et al. [46] and Ry reactions used primers
and probes developed by Allender, Bunick and Mitchell [47]. Bd and Ry reactions were run
separately on individual 96-well plates. For absolute pathogen quantification, standard curves
were generated from serial dilutions of synthetic pathogen DNA (gBlock Gene Fragments) run
in duplicate [48-49]. Two negative controls (molecular grade water) were included with each
run, as well as a positive control. Samples were first run in pools, which consisted of 5 uL of
DNA template from each individual within a population combined, to test for the presence of
positives within a population. A result was considered positive if the DNA from 5 pL of the
pooled sample amplified before cycle 39 for at least two runs. If a population tested positive,
each individual was then tested. All positive samples were run twice and the average of the two
values was used in downstream analysis. In rare cases when two runs were inconsistent (one
positive and one negative, or more than an order of magnitude difference in infection inten-
sity), a third run was performed and the two most consistent results were retained.

Pathogen data analyses

We used two metrics to catalog Bd and Ry infection across the species ranges for these three
amphibians. Prevalence was calculated by dividing the number of infected individuals by the
total population sample size, and 95% Clopper—Pearson binomial confidence intervals were
calculated using the package binom in R (see S1 File for Data A (R code)). To compare preva-
lence across population and species, we analyzed two-way contingency tables using Fisher’s
Exact Tests with simulated P-values based on 2000 replicates. The second metric, infection
intensity, was calculated as the mean number of Genome Equivalents (GE) among duplicate
runs. Mean infection intensity per population was measured as the mean infection intensity
among infected individuals only. To compare average infection intensity across populations
and species, a two-way ANOVA was performed in R v. 3.1.3 [50]. Prevalence and intensity
maps were created in ArcGIS v. 10.2.2 to visualize the spatial distribution of infections.

Genetic and environmental disease modeling

For species that tested positive for Bd or Ry in multiple populations, we used general linear
models (GLMs) to predict pathogen prevalence (with binomial error; [51]) and the natural log
of intensity based on genetic and environmental variables, as well as location. For genetic pre-
dictor variables, we used average expected heterozygosity (Hg) and allelic richness (AR) as
these were found to be important predictors of infection by Savage et al. [36]. Genetic diversity
estimates were calculated by investigating diversity at 7 nuclear microsatellites for P. ornata
[45], as this species was the only one used in modeling due to its infection prevalence recov-
ered (Table B in S1 File). For environmental predictor variables, we used average precipitation,
average temperature, and maximum and minimum temperature per population site for each
month of the year. Location factors included latitude and longitude for each population site.
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Environmental data (current data interpolated from 1960-2000 data) was acquired through
Worldclim/Bioclim layers in ArcGIS [52]. Environmental and location data were assessed
with Principle Component Analysis (PCA). Additive and interactive models were created and
assessed via variance inflation factor (vif) using the car package in R, and only models with val-
ues <4 were included [53]. GLMs meeting this criterion were ranked using Akaike informa-
tion criterion (AICc), and the most informative model was chosen using the lowest AICc value
[53].

Results

We tested 401 N. perstriatus tissue samples from 11 populations, none of which were infected
with Bd or Rv. Among 580 H. squirella tissue samples from 20 populations, one individual was
infected with Bd (Table C in S1 File; Fig 1a) and one individual from a different population
tested positive for Ry (Table C in S1 File; Fig 1b). Neither Bd nor Ry prevalence were signifi-
cantly different among H. squirella populations (Fisher Exact test P = 0.64). Finally, among 327
P. ornata tissue samples from 15 populations, 103 individuals from 10 populations were Bd
positive (Table A in S1 File; Fig 1c), whereas none tested positive for Rv (Table C in S1 File; Fig
1d). Bd prevalence among infected P. ornata populations ranged from 0.24 to 1.0 (Table C in
S1 File). Bd prevalence varied significantly among P. ornata populations (Fisher Exact test,
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Fig 1. Map of sample localities and (A) Bd prevalence in Hyla squirella, (B) Rv prevalence in H.
squirella, (C) Bd prevalence in Pseudacris ornata and (D) Rv prevalence in P. ornate. Circle size is
relative to population size. Arrows point to infected H. squirella populations. Green represents proportion of
negative cases of the indicated pathogen while red represents proportion of positive cases.

https://doi.org/10.1371/journal.pone.0175843.g001
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P =0.0005). Additionally, pooled Bd prevalence was significantly different in P. ornata com-
pared to H. squirella (Fisher Exact test, P < 0.00001). Average Bd infection intensity among
infected populations ranged from 226 to almost eighteen million genome equivalents (GE; Fig
2). Of the 11 infected populations, nine harbored average infections of over 10,000 GE
(Table C in S1 File; Fig 2). All but one infected populations had 40% of individuals harboring
loads above 10,000 GE and two populations had 100% of individuals with infections above
10,000 GE. Bd infection intensity was significantly different among infected P. ornata popula-
tions (two-way ANOVA, P < 0.00001).

Because P. ornata was the only species harboring pathogens in more than one population,
and Bd was the only pathogen detected, we limited GLM analyses to Bd dynamics within
P. ornata. PCA of environmental variables across sampled P. ornata populations revealed that
the first two components explained 89% of variation in our data (Fig A in S1 File). PC1 is asso-
ciated with decreasing temperature and some increasing precipitation variables and positively
associated with latitude. PC2 is positively associated with winter precipitation. We assessed
only additive models with AICs for prevalence and intensity as interactive models showed
high variance inflation. We chose the most informative models based on the lowest AIC score
in the set (Table 1). PC1, PC2 and average heterozygosity significantly influenced Bd preva-
lence (Fig 3; Table D in S1 File). Based on our general linear models, there is a significant rela-
tionship between decreasing temperature and an increase in Bd prevalence (P = 0.0000002; Fig
3A). Moreover, there is a significant negative relationship between winter precipitation and Bd
prevalence (P = 0.000591; Fig 3B). Surprisingly, our model identified a significant relationship
between increased average heterozygosity and increased Bd prevalence (P = 0.0000698; Fig
3C). Environmental factors (PC1) significantly influenced Bd intensity (Fig B and Table E in
S1 File). Linear regression displayed a significant relationship between a decrease in tempera-
ture and an increase of Bd intensity (P = 0.011; Fig B in S1 File).

Discussion

Our study used both environmental and genetic variables to create a predictive model for chy-
tridiomycosis disease dynamics in the southeastern United States. We identified both concor-
dant and discordant patterns of pathogen prevalence and infection intensity in N. perstriatus,
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Fig 2. Log-transformed Bd average intensities for sampled populations of H. squirellaand P. ornata
with standard error of the mean (SEM). White bars indicate average intensity among infected individuals
from H. squirella populations and black bars denote average intensity among infected individuals from P.
ornata populations. The red line marks an infection intensity of 10,000 GE.

https://doi.org/10.1371/journal.pone.0175843.g002
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Table 1. Five most informative general linear models and the null models for Bd prevalence and Bd

intensity.

Bd Prevalence models AlCc dAICc Df Weight
PC1+PC2+AvgHE 62.4 0 4 0.750
PC1+PC2+AvgHE+AR 64.6 2.2 5 0.249
PC1+PC2+AR 75.6 13.2 3 0.001
PC1+PC2 80.4 18.0 2 <0.001
PC1+AvgHE 82.6 20.3 3 <0.001
NULL 112.6 50.3 1 <0.001
Bd Intensity models AlCc dAICc Df Weight
PC1 87.0 0 3 0.5192
PC1+AR 89.6 2.6 4 0.1425
PC1+AvgHE 90.7 3.7 4 0.0823
PC1+PC2 91.3 4.3 4 0.0601
AvgHE 91.8 4.8 3 0.0478
NULL 91.5 4.5 2 0.0559

AvgHE = average heterozygosity, AR = allelic richness, dAICc = delta Akaike information criterion. The
difference in AICc between the current model and the most informative model in the set. df = degrees of
freedom.

https://doi.org/10.1371/journal.pone.0175843.t001

H. squirella, and P. ornata compared to previous studies [18-19, 54]. First, our data showed
limited Rv occurrence and high variation in Bd infection prevalence within and among our
three focal species. Second, we found surprisingly high Bd infection intensity in P. ornata and
H. squirella, a strikingly different result compared to the extremely low intensities previously
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Fig 3. Logistic relationships between Bd prevalence and PC1 (A), PC2 (B), and average heterozygosity (C) in populations of P. ornata.
Increasing values of PC1 correspond most strongly to decreasing values of temperature. Increasing values of PC2 correspond most strongly to
increasing winter precipitation. In all panels, each dot corresponds to the observed prevalence in a population and each line corresponds to the
best fit logistic model of the relationship between the two variables shown.

https://doi.org/10.1371/journal.pone.0175843.9003
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detected [54]. Finally, our overall model found that both genetic and environmental variables
predict Bd prevalence but only environmental variables predict infection intensity. These
results are important for understanding the enigmatic story of Bd infection in this region, and
provide a framework for future management of declining amphibians in the Southeast. Over-
all, this study offers insight into pathogen infection history and amphibian disease dynamics in
the southeastern United States, a hotspot of amphibian diversity.

Our three focal amphibian species showed largely unique patterns of Bd and Ry infection
prevalence compared to previous studies on the same or similar species. Interestingly, Rv was
previously found within ponds where N. perstriatus populations occur [17], and a closely
related Notophtahlmus species in the Southeast, N. viridescens, was found to have high Bd
infection prevalence within sampled populations [19]. In contrast, we found no evidence of Bd
or Rv in N. perstriatus, suggesting the presence of genetic, temporal or seasonal differences for
our sampled populations. Hyla squirella infection dynamics were also surprising as this species
breeds in large aggregates in habitats frequented by known Bd and Ry vector species, particu-
larly Lithobates catesbianus [42, 55]. We predicted high pathogen prevalence in H. squirella,
but instead only found two infected individuals (one Bd infected and one Ry infected) among
all sampled populations. Interestingly, these are the first documented Bd and Ry infections in
H. squirella despite previous sampling efforts [19]. These results indicate low overall infection
prevalence in H. squirella, but the high Bd infection intensity we detected in one individual
suggests the potential for negative impacts on populations where infection does occur. The
only focal species with high pathogen prevalence was P. ornata, which exhibited strikingly dif-
ferent infection patterns for Rv and Bd compared to H. squirella. While Ry infection was unde-
tectable in P. ornata, high Bd infection prevalence and intensity occurred in the majority of
sampled populations. These results mirror previous studies testing P. ornata and other mem-
bers of Pseudacris for pathogens in the Southeast [19, 54].

Life history variation among amphibian species often contributes to variation in pathogen
infection prevalence [56]. The distinct life histories among our three study species may be an
underlying factor contributing to the significant differences in Bd prevalence and intensity
that we observed. In particular, high susceptibility to Bd infection in P. ornata may be due to
the trait of breeding exclusively during rainy periods in the winter months [42], unlike the
other two species that are summer breeders. Our data, along with data from several other stud-
ies, correlate Bd infection with cooler temperatures and higher precipitation in winter months
[7,26-27, 56-57]. Thus, high contact rates among P. ornata individuals during winter breed-
ing aggregations when Bd experiences preferred temperatures may be driving the observed
high infection prevalence and intensity. Our results, combined with previous monitoring
efforts, serve as a valuable baseline should infection outbreaks occur for other southeastern
amphibian species and may help elucidate reasons for any enigmatic declines.

Our Bd infection intensity data seem to contradict previous studies suggesting that values
greater than 10,000 GE lead to mortality, regardless of the amphibian species [58-59]. We
found high Bd intensities that surpassed this threshold for the single infected H. squirella indi-
vidual and within most infected P. ornata individuals (Fig 2). Although high Bd infection prev-
alence in Pseudacris populations is well documented in the literature [19-20, 54], only one
other study quantified Bd intensity for P. ornata; they found low values (<102 GE) for all indi-
viduals sampled throughout the United States [54]. We uncovered a pattern that is much more
extreme; average Bd intensities were millions of GE for all but three infected populations (Fig
2) despite the absence of any observed disease signs or mortality events (T. Hether pers.
comm.). Our data therefore demonstrate that the 10,000 GE proposed mortality threshold is
not a standard applicable to every species. Indeed, our findings reinforce recent Bd studies in
Brazilian amphibian communities [60] and New York State amphibian communities [61]
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which showed varying infection intensities across a range of species and seasons without
observing any mortality or disease signs in the individuals sampled.

To uncover the driving forces behind the observed patterns of Bd infection among our sam-
pled P. ornata populations, we incorporated climatic variables and genetic diversity factors
into a comprehensive model. Bd intensity increased at lower air temperatures, consistent with
similar analyses in other species and regions (e.g. [27, 36, 56, 62]. Further, the same variables
that influenced Bd prevalence for P. ornata in our study (temperature, precipitation and aver-
age heterozygosity) also explained Bd prevalence in L. yavapaiensis in Arizona [36]. However,
in contrast to the negative correlation between average heterozygosity and Bd prevalence
found for L. yavapaiensis, we found average heterozygosity was positively correlated with Bd
prevalence for P. ornata (Fig 3C). This pattern is in direct contrast with expectations, as
numerous studies across wildlife disease systems have found higher genetic diversity within
populations leads to decreased infection prevalence and increased disease resistance (e.g. [34,
63-64]. Our models show that for P. ornata, the opposite is true: increased genetic diversity
correlates positively with Bd prevalence. Two possible explanations exist for this pattern. First,
because average heterozygosity increases with larger effective population size, there could be
better facilitation of pathogen spread due to density-dependent disease outbreaks [65-66].
This explanation is unlikely for P. ornata, however, as this species is generally uncommon and
has historically small population sizes [42]. Another possible explanation is that Bd swept
through P. ornata populations before our sampling occurred, and selection favoring Bd toler-
ant individuals was strong enough to push tolerant genotypes towards fixation, resulting in
decreased heterozygosity. Bd has been present in the United States long enough to make this
“genetic purging” [67] scenario plausible; Ouelett et al. [20] and Talley et al. [68] found evi-
dence of Bd infections existing in North America as far back as the late 1800s. Our results
could thus represent indirect evidence of genetic tolerance to Bd evolving in natural amphibian
populations [39], although further genetic sampling, molecular tests of selection and experi-
mental evidence of Bd tolerance are necessary to resolve this hypothesis.

Our data strongly suggest that both genetic and environmental factors should be incorpo-
rated, when possible, into models when trying to predict dynamics of infectious pathogens in
natural populations. Management plans often only consider genetic or environmental factors
when planning for long-term species persistence, but it is becoming increasingly clear that
both are important for predicting pathogen impacts. While our study only focuses on amphib-
ians, this modeling framework is applicable and important for other wildlife disease systems.
Our results also suggest that Bd may be more of a concern for the Southeast than previously
thought, at least for some species. There are no documented instances of disease-driven mor-
bidity or mortality in P. ornata, yet a majority of sampled individuals were heavily infected
with Bd and there is evidence of population declines in recent decades (B. Means pers.comm.).
Cryptic chytridiomycosis may therefore be an unobserved but causal factor behind population
declines and patterns of genetic diversity. Alternately, the Bd strain(s) present in the Southeast
may currently exist as commensals or sub-lethal pathogens in P. ornata. Even under the latter
scenario, monitoring Bd and other pathogen dynamics is important for future P. ornata con-
servation efforts. If novel biotic or abiotic stressors appear, the additional toll of harboring
massive Bd intensities may be a tipping point towards extirpation. This may be especially true
for populations with low genetic diversity, even if that loss of diversity is due to selection for
pathogen tolerance. Means and Means (unpublished data) highlight that habitat destruction
and degradation are threatening P. ornata population persistence, and more recently Means
et al. [17] found wild P. ornata tadpoles to be heavily infected with Ry. Our results suggest Bd
is a threat for adult frogs, particularly if the same populations are impacted by Ry prior to
metamorphosis.
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Opverall, our study highlights how species are differentially impacted by EIDs in the South-
east and how models can be used to infer which environmental and genetic factors are drivers
of infection. Infectious disease is often implicated in amphibian population declines only after
morbidity and mortality is observed, making the trigger for a disease outbreak difficult to
determine retrospectively. It has therefore become increasingly important to characterize and
monitor species that have yet to display signs of disease in order to generate a baseline of path-
ogen dynamics should any future disease outbreak occur. Museum collections and specimens
collected for non-disease studies are invaluable for assessing conditions faced by amphibians
in the past [20], and here we utilized these resources to document the presence of two infec-
tious pathogens in two frog species without any prior evidence of disease. Whether ubiquitous
Bd infections in P. ornata reflect post-epidemic adaptation, non-pathogenic Bd strains, or viru-
lent, ongoing chytridiomycosis that has gone undetected will require additional analyses.
Regardless, our modeling results highlight the combined importance of host genetic variation
and climate for determining Bd prevalence. Other climatic factors, such as seasonality, may
also play a big part in disease dynamics and should be considered in future studies. Our results
begin the journey to uncovering amphibian pathogen dynamics and can be used to develop
more robust predictive models to assess where pathogens will likely spread and to inform spe-
cies managers, as well as target suitable future re-introduction sites for amphibians that have
been hit the hardest by disease-related declines.
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