
RESEARCH ARTICLE

Validation of enhanced kinect sensor based

motion capturing for gait assessment

Björn Müller1, Winfried Ilg1, Martin A. Giese1, Nicolas Ludolph1,2*

1 Department of Cognitive Neurology, Section Computational Sensomotorics, Hertie Institute for Clinical

Brain Research, and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Baden-
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Abstract

Optical motion capturing systems are expensive and require substantial dedicated space to

be set up. On the other hand, they provide unsurpassed accuracy and reliability. In many sit-

uations however flexibility is required and the motion capturing system can only temporarily

be placed. The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait

analysis promising results have been published. We here present a motion capturing sys-

tem that is easy to set up, flexible with respect to the sensor locations and delivers high

accuracy in gait parameters comparable to a gold standard motion capturing system

(VICON). Further, we demonstrate that sensor setups which track the person only from one-

side are less accurate and should be replaced by two-sided setups. With respect to com-

monly analyzed gait parameters, especially step width, our system shows higher agreement

with the VICON system than previous reports.

Introduction

Motivated by emerging research questions that require objective evaluation of intervention

outcome, there is an increasing demand for quantitative movement assessment also in clinical

centers, which do not possess an advanced motion lab with an elaborated whole-body motion

capture system. Especially if multiple gait analysis systems are needed, such as in multicenter

studies of rare movement disorders, a cost-efficient alternative is attractive. The Microsoft

Kinect v2 sensor is a low-priced depth camera, which was originally meant to be used for gam-

ing in combination with the Microsoft Xbox One console. Recently, increasing interest in

using the Kinect sensor for general purpose motion capturing (MoCap) of humans has

emerged, especially for clinical and scientific motion analysis of gait [1–7], the detection of

falls [8–10] but also as instrument for physical therapy [11,12] (also see [13]). Due to the low

costs it was proposed to utilize the Kinect sensor as a cost-efficient alternative to expensive

gold standard motion capturing systems [1,10]. A similar attempt has been made using the

first generation of the Kinect sensors (Kinect for Xbox 360) which was designed to be used

with the Microsoft Xbox 360 console [3,14–16]. However, the Kinect for Xbox 360 relies on

the recognition of reflected infrared patterns to acquire the depth information and great effort
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has been put into studying and reducing the interference of the patterns when using multiple

sensors [17,18]. In contrast to this, the Kinect v2 uses time of flight measurements, is less sensi-

tive to interference with other sensors and provides a higher resolution. The term “time of

flight” describes the method to determine the distance to an object by measuring the time a

laser pulse needs to travel from the sensor to the object and back. The Kinect v2 sensor has a

horizontal field of view of about 70 degrees and can cover 4.5 meters in depth reliably. Due to

the limited size of the tracking volume of the Kinect sensor, single sensor approaches were

mostly constrained to examinations of body posture and balance during stance or of walking

on a treadmill [2,5,6]. In order to cover a larger volume, setups with multiple Kinect sensors

have been proposed [1,3,7,10,19].

With the Kinect v2 software development kit (SDK) Microsoft provides an easy way to

access the different data streams of the sensor. The most important data streams for the pur-

pose of motion tracking are the color, depth and skeleton streams. In a previous study it has

been described how these streams can be utilized to spatially calibrate multiple sensors [20]. A

more clinically motivated study examined successfully 10-meter walking using four Kinect v2

sensors. The sensors were lined up on the left side of the walking corridor. Based on the aver-

aged joint position estimates, several gait parameters have been extracted and compared to a

gold standard MoCap system [1]. The depth resolution of the Kinect v2 sensor, however,

depends not only on the distance but also on the view angle from which a plane is measured

[21]. In addition, the error of the joint position estimation algorithm increases with the view

angle which is likely caused by partial self-occlusion [4]. Motion capturing from only one side

using Kinect sensors, might therefore introduce biases and unnecessary inaccuracies in the

estimation of joint positions.

The aim of this study was to (1) develop a scalable motion tracking system based on Kinect

v2 sensors, (2) to examine in how far one-sided tracking biases gait parameters and (3) to pro-

pose a camera setup which circumvents the potential drawbacks of one-sided tracking. In

order to evaluate the quality of our system, we conducted a statistical comparison of the track-

ing performance with a VICON MoCap system based on the gait parameters: step length, step

width, step time, stride length and walking speed. Six Kinect v2 sensors were used to cover a

walking corridor of more than six meters. We put emphasis on a detailed description of the

system since, even though several Kinect-based MoCap systems have been described, no stan-

dard has been defined yet. Furthermore, we show that our system has pronounced advantages

in gait parameters that depend on accurate measurements of both legs, like the step width,

which is crucial for a thorough description of gait in movement disorders such as Parkinson’s

disease [22–24] and cerebellar ataxia [25–28].

Methods

Kinect sensor

Microsoft’s Kinect v2 provides five video related data streams [29]. Besides the color

(1920x1080@30Hz) and infrared (512x424 @30Hz) data streams, the Kinect provides depth

images (512x424@30Hz), body index images (512x424@30Hz) and the skeleton information

for every tracked person (25 joints@30Hz). The sensors tracking volume is defined by the field

of view (FOV, 70˚ horizontally, 60˚ vertically) and the range of depth sensing (0.5–4.5 meters).

These data streams can be accessed using Microsoft’s software development kit (v2.0).

Color images are provided with 4 bytes per pixel (BGRA) and depth images with 2 bytes per

pixel resolution. In order to distinguish tracked persons, the Kinect SDK assigns indices which

are stored in body index images and take one byte per pixel. The joint positions are provided

at a resolution of 4 bytes per coordinate (12 bytes per joint). Every frame contains a timestamp
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representing the local time of the computer. Besides the transformation between the pixel

coordinate systems of the data streams (e.g., the color and depth data streams have different

resolutions), the SDK can also be used to translate depth images into 3d point clouds (inverse

perspective projection). This way it is possible to acquire the color values for every depth

image pixel and display a colored 3d point cloud.

According the Microsoft’s specifications each Kinect v2 sensor requires a dedicated USB

3.0 controller. Additionally, even though Microsoft initially planned to support multiple

Kinect sensors per computer, the current SDK version (v2.0) does not support this feature.

Thus, each Kinect sensor has to be connected to a dedicated computer.

Hardware & software architecture

Our hardware architecture consists of six Microsoft Kinect v2 sensors which are each plugged

into a separate mini-computer (Zotac Zbox ID83 Plus, Intel Core i3 dual core 2.5GHz, 8GB

Ram, 256GB SATA-3 SSD, Windows 10 Pro) and a dedicated computer for control and moni-

toring (Fig 1). All computers are connected via a gigabit Ethernet network. In order to reduce

network traffic while recording, we decided to store the data locally instead of transmitting the

data directly to a remote computer. To this end, solid state drives have been used. These pro-

vide a higher write speed than conventional hard disk drives. We mounted the Kinect sensors

on and strapped the mini-computers to tripods for a solid stance and flexible setup. As dedi-

cated computer for controlling and monitoring the system, we used a laptop computer with a

dedicated 3d graphics card for visualization.

Based on this hardware architecture we implemented a client server software architecture

(Fig 1) such that each mini-computer (in the following called: client) runs the client software

and the desktop computer (in the following called: server) runs the server software. Both com-

ponents were implemented using C# in Microsoft’s.NET framework (v4.5). Communication

between the server and its clients is based on the TCP/IP protocol and a custom-made soft-

ware-level protocol which defines the format for the transfer of commands and recorded data.

The Kinect data streams recorded by the clients had to be synchronized in time. To this

end, we initially synchronized the clocks of all clients with the server using Microsoft Win-

dows’ time service. However, we noticed that, even when the computers’ clocks had been syn-

chronized in this way, they differed by several hundreds of milliseconds and sometimes even

Fig 1. Architecture. Connections between the Kinect sensors, Zotac mini computers running the client software and the

server computer in a setup with six Kinect sensors.

https://doi.org/10.1371/journal.pone.0175813.g001
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by seconds. In order to synchronize the computer clocks more precisely, we used Greyware’s

DomainTime II (Greyware Automation Products, Inc.) which implements the precision time

protocol (PTP). PTP was designed for time critical applications, e.g. in industry, and allows to

synchronize computers in a network with millisecond accuracy. We were thereby able to

achieve a maximum difference of two milliseconds between the clocks of all involved comput-

ers. This difference has been monitored before and during every recording using Greyware’s

monitoring software in order to ensure synchrony. The timestamps of the captured frames

have then been used to align the data streams in time.

Server & client software. The server software consists of several modules which are

responsible for the data management, recording, live-view and spatial calibration of the sys-

tem. The data management module structures the data hierarchically in projects, subjects, ses-

sions and recordings. Additionally, it keeps track of the recorded data and its location. Since

each client stores the data locally and sends it only on request to the server via Ethernet, the

data management module also identifies and prevents data inconsistencies, such as incomplete

or partial transmission.

The recording module realizes the synchronous start and stop of recording for all clients.

Due to network transmission the clients might receive the commands at slightly different

times. To counteract the resulting problem, first of all, each client is buffering the two most

recent seconds of all data streams and secondly, when a recording is started, the transmitted

command contains the server’s current timestamp. Thereby, even when the clients receive the

start command at a slightly different time, they can compensate for this using the timestamp

and buffered data. During recording the data is stored locally by each client using custom

binary data formats. The stop procedure is implemented in a similar way in order to make

sure that all clients record for the same duration.

Within the live-view module, the overall 3d scene (merged point clouds of all clients, Fig

2A and 2B) and the depth images (Fig 2C) can be displayed. While the on-demand visualiza-

tion of the overall 3d scene serves mere the purpose of illustration, displaying the depth images

is helpful to facilitate the process of setting up the system. Tracked bodies are highlighted such

that one can easily identify blind-spots in the tracking volume. Thereby, blind-spots and too

little overlap of the sensors’ tracking volumes can be easily avoided when positioning and ori-

enting the sensors. For the 3d visualization, every client transforms the depth images into 3d

point clouds in real time using the Kinect SDK. The current point cloud can be requested by

the server for visualization and spatial calibration (see Spatial calibration). In order to perform

a reconstruction of the whole scene, the server requests the point cloud from every client,

transforms these into the global coordinate system using the spatial calibration parameters

(see Spatial calibration) and visualizes every point as small cube in an OpenGL viewport (Fig

2A). Each cube is colored according to the corresponding pixel in the color image.

Spatial calibration. The spatial calibration is equivalent to estimating the position and

orientation of every Kinect sensor in the global coordinate system. Inspired by the work of

Kowalski et al. [20], we use two-dimensional markers which can easily be detected in the color

images captured by the Kinect sensor (see Fig 3A). Using these markers, we defined the global

coordinate system. In some setups however, the sensors might be so far away from each other,

that not every sensor sees all markers. We extended their solution by a flexible concatenation

of Euclidian transformations (e.g., rotations and translations) in order to overcome this prob-

lem. Thus, not every marker needs to be visible to every sensor and the spatial relation between

the markers does not need to be known prior to calibration. The calibration procedure consists

of six steps which are described in more detail in the following.

The two-dimensional markers proposed by Kowalski et al. [20] consists of a salient shape

(rectangle with a dent at the bottom) and a unique pattern of white squares in a 3x3 grid
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(Fig 3A). In the first step, we find these shapes in the color image using the OpenTK library

and then interpret the pattern as identification code (for details see Kowalski et al. [20]).

Besides identifying the markers uniquely, the identification code also breaks the symmetry of

the shape. In the second step, we use the point cloud to determine the 3d coordinates of the

Fig 2. Screenshots of the server program. (A-B) Three-dimensional point clouds of six Kinect sensors after

spatial calibration. Each point is represented as tiny cube with the color of the corresponding the pixel in the

color image. The big colored cubes indicate the Kinect sensors. The red, green and blue lines attached to the

colored boxes (sensors) indicate the axes of local coordinate system. Notice that the edge of the red coating

on the floor is very straight, which illustrates the precise spatial calibration. (A) The marker in the very back is

the marker with id 1 and represents the origin of the global coordinate system which is indicated by the grid.

(B) A subject standing in the tracking volume to visualize the dimensions. (C) Screenshot of the live depth

images view. The tracked body is highlighted. By walking through the tracking volume one can easily identify

blind spots.

https://doi.org/10.1371/journal.pone.0175813.g002
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salient points (corners) belonging to the marker. While the third step consists only of the

transmission of the information about the markers to the server, we apply a Procrustes analysis

[30] to the 3d positions of the salient marker points in the fourth step. The result of the Pro-

crustes analyses are estimates of the relative positions and orientations (Euclidian transforma-

tions) between the markers and sensors.

The fifth step is to determine the position and orientation of every sensor relative to the

marker with id 1. This marker can be placed anywhere in the tracking volume and defines the

origin and directions of the axes. Since the Kinect sensor has a limited field of view and can

only estimate depth values of about 4.5 meters accurately, depending on the setup, the marker

is not in the field of view of all sensors. Notice, that in the fourth step only the relative position

and orientation between markers and sensors that are visible to each other have been deter-

mined. In order to tackle this problem, we developed an algorithm which is flexible with

respect to the placement of the calibration markers. Our algorithm is based on the idea, that

even if the marker that represents the origin is not visible to a certain sensor, the relative posi-

tion and orientation could still be calculated as concatenation of the Euclidian transformations

which express the relative positions and orientations of the other sensors and markers (Fig 3B).

For example, if sensor 1 sees the markers 1 and 2 but sensor 2 sees only marker 2, the position

and orientation of sensor 2 relative to marker 1 can be calculated using the relative position

and orientation between the two sensors which can be determined using marker 2. In other

words, marker 1 is indirectly visible to sensor 2. In order to find this concatenation of Euclidian

transformations automatically, we use a bipartite undirected graph G = (V, E) with V = M [ S,

M \ S = ; and E = {(s,m) 2 S ×M, (m, s) 2M × S |"sensor s sees marker m"} where M denotes

the set of all markers and S the set of all sensors (Fig 3B). Thus, we can verify that every sensor

can see the origin (in-)directly by evaluating whether the graph is connected. Furthermore, the

position and orientation of every sensor relative to the origin can be determined by finding a

path between the two respective nodes in the graph (see S1 Appendix for details), because every

path in the graph describes a concatenation of Euclidian transformations. In the case that there

are multiple paths, we use the shortest one, because every transformation is based on an estima-

tion that includes an estimation error and thus reduces the accuracy of the final estimate.

Fig 3. Markers and bipartite graph used for the spatial calibration. (A) The shape of the markers is easily detectable in the RGB

image; the white squares in the center encode the marker id [20]. The red circles indicate the salient points which have been used for

defining the position and orientation of the marker. (B) Graph illustrating the “sees / is seen” relation (edges) between sensors (blue

vertices) and markers (red vertices). For example, S3 cannot see M1 directly but indirectly via M2 and S2. A second possibility is via

M2 and S5.

https://doi.org/10.1371/journal.pone.0175813.g003
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Having hereby determined a coarse estimate of the sensor positions and orientations rela-

tive to the origin (see S1 Appendix for details), we perform a refinement using the iterative

closest point method in the sixth step (see [20] for details). Using these refined estimates, we

can merge the 3d scenes (Fig 2A and 2B) and Kinect skeletons in the global coordinate system.

Evaluation of the gait analysis system

In order to evaluate the quality of the developed MoCap system we compared gait parameters

measured by our system to measurements gathered using a VICON system (Vicon Motion

Systems Ltd). VICON motion capturing systems are seen as gold standard in optical gait analy-

sis [31]. We operated both systems in parallel, allowing us to compare the two systems based

on individual steps.

Subjects and task. We recorded 10 healthy subjects performing a 7-meters walk at com-

fortable speed ten times. Subjects were wearing tight clothes and normal shoes without heels.

Subjects’ age ranged from 18 to 35 years. All subjects have given written informed consent

prior to participation. The subject in Fig 2B has given written informed consent, as outlined in

the PLOS consent form, to publish this photograph. The experimental procedure had been

approved by the local ethical review board of the University Clinic in Tuebingen. Due to

recording errors, six of overall 100 trials had to be excluded from the analysis.

VICON motion capturing system. As ground truth for the accuracy evaluation of our

system we used a VICON MX motion capture system with 10 cameras. The VICON system is

an optical tracking system which tracks three-dimensional movement trajectories of reflective

markers with up to 1mm accuracy. We used this system to track 12 markers attached to the

hip, legs and feet according to VICON’s Plugin-Gait marker-set for lower body measurements

at a temporal resolution of 120 Hz. Our VICON setup is able to track about 6 meters in length

with high precision. Marker trajectories were recorded and processed using the commercial

software Nexus (v2.2, Vicon Motion Systems Ltd).

Kinect sensor setup for gait analysis. Six Kinect sensors were arranged as an avenue (Fig

4) in order to cover the tracking volume of the VICON system. We placed the sensors pairwise

in rows along the walking direction for two reasons: (1) reduction of self-occlusions of the

tracked person and (2) more accurate tracking. The theoretical length of the tracking volume

is about 9 meters of which we used the overlapping 6 meters with the VICON setup.

Fig 4. Arrangement of the Kinect sensors illustrating the overlapping tracking volumes. Sensors were arranged using

this pattern but then spatially calibrated to achieve high precision. The theoretical length of the tracking volume in walking

direction using this setup is about 9 meters. The Kinect sensors were arranged in a way ensuring that the VICON tracking

volume was completely covered.

https://doi.org/10.1371/journal.pone.0175813.g004
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We noticed during initial tests of our system that the Kinect skeleton fitting algorithm

depends heavily on the view angle from which the sensor tracks the body (Fig 5A and 5B and

S2 Appendix). A similar finding has previously been reported [4], however the cause of the

inaccuracy had not been examined in detail before. Tracking a person only from one side, e.g.

from the left side, could degrade the tracking precision and potentially bias the skeleton fitting.

Additionally, when tracking a walking person only from one side, the leg of the opposite body

half is periodically occluded during the gait cycle. In these situations, the Kinect skeleton fit-

ting algorithm initially tries to infer the position of the occluded joints and if that fails the

respective joints are labeled as untracked. For the usual application of the Kinect sensor in

gaming this is not an issue, since the accuracy is less important. However, for gait analysis, we

do not want to rely on the inferred joint positions or biased skeleton fits. Therefore, we ignore

joint positions which are labeled as untracked and record the person from two sides which

allows us to correct biases and to reduce self-occlusions.

We also made sure that the tracking volumes of two rows overlap by about two meters

along the walking path (Fig 4). The Kinect pose estimation algorithm needs some time to rec-

ognize a person that enters the volume. Hence, we had to make sure that the sensors in the

next row are already tracking the person when s/he is about to leave the tracking volume of the

previous sensor pair. We empirically estimated that an overlap of the tracking volumes of

about two meters is sufficient for normal walking speed. Thus, the sensor pairs were placed 2.5

meters apart along the walking path. Within each row the sensors were rotated inwards by

about 35 degrees and placed two meters apart, which provides plenty of width for walking in

the corridor (Fig 4).

Data analysis

Before being able to compare the performance of both tracking systems we had to pre-process

the data. First, we had to integrate the skeleton information of the different Kinect sensors.

Secondly, we had to extract the gait-features from both data sets (VICON and Kinect).

Fig 5. Reconstruction of the body surface and averaged skeleton. (A, B) Three-dimensional reconstruction of the body surface

and the corresponding skeleton reconstruction using two sensors. The surface was estimated based on the 3d point clouds using

the marching cubes algorithm in MeshLab [32]. Surface areas tracked by only one of the two sensors are highlighted in red (right)

and blue (left). Corresponding Kinect skeleton joint positions estimates of the two sensors are shown as red and blue dots. The

spatially averaged skeleton is indicated as black stick figure. (B) Magnification of the left lower leg. Notice, that the joint position

estimates of the left sensor (blue) are closer to the surface which is only tracked by the left sensor (blue), correspondingly for the

joint position estimates of the right sensor. (C) Averaged skeleton and joint position trajectories during walking obtained using six

sensors.

https://doi.org/10.1371/journal.pone.0175813.g005
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Integrating the information gathered by different Kinect sensors

The information gathered from the different Kinect sensors was integrated in space and time.

Integration in space was performed using the Euclidian transformations that were computed

as result of the spatial calibration. The clocks of all involved computers were synchronized

using the PTP protocol, which guarantees that frames with the same timestamp were captured

at approximately the same time. However, the Kinect sensor captures frames at a slightly vary-

ing frequency of about 30 Hz. We resampled the recordings with a fixed sampling rate of 30

Hz using linear interpolation. Since we do not have any information about the differences in

sensor noise, we weighted all sensors equally and calculated the average across all skeletons

tracked by the different sensors for every sample. Untracked or inferred joint positions were

considered as missing values. The result of this integration is a spatially averaged skeleton

across time. For the subsequent analysis, this procedure was performed once using all Kinect

sensors (left and right) and once using only the Kinect sensors tracking the person from the

left. Subsequently, we filtered the three-dimensional joint trajectories in time for both systems.

The resulting three-dimensional Kinect skeleton trajectories are exemplified in Fig 5C.

Analyzed gait features

In order to compare the tracking accuracy of gait, we extracted five parameters from the two

datasets (VICON and Kinect) independently: walking speed, step length, stride length, step

width and step time. To this end we examined individual steps by first identifying foot place-

ments (Fig 6) in each recording. In order to identify the foot placements we determined the

events when one foot passes the other in walking direction (see Fig 7). These events are well

defined and easy to detect by searching for the intersections of the ankle trajectories (black

crosses in Fig 7). Subsequently, the stride length was calculated as the distance between subse-

quent foot placements of the same foot [33]. The step time and length describe the time passed,

and the distance between the two feet in walking direction, whereas the step width describes

the lateral distance between the feet, at the time of a foot placement (Fig 6). The walking speed

was determined by dividing the sum of all step lengths by the sum of all step times within each

Fig 6. Illustration of the analyzed spatial gait parameters. Subjects were asked to always start walking with their left foot. The

first step length left and first stride length right (gray) were excluded from the analysis, since these are generally shorter than the

steps during actual walking (acceleration phase). Subjects did not stop at the end of the track volume (finish) so that there was no

slowing down. Depending on the subjects’ individual step lengths there might be an unequal number of left and right steps.

Parameters are assigned to the left or right foot depending on which foot was last placed on the floor, e.g. the first step length and

step width are assigned to the left foot.

https://doi.org/10.1371/journal.pone.0175813.g006
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recording. Since the first step is usually significantly smaller due to the necessary acceleration,

we asked subject to begin walking with the left foot and then excluded the first step on the left

as well as the first stride on the right side.

Quantitative comparison of the tracking results

The agreement between the Kinect-based gait analysis system and the VICON system has

been evaluated using Pearson’s correlation coefficient, Bland-Altman’s method for assessing

the agreement between two clinical measurement methods [34] and the intraclass correlation

coefficient for absolute agreement (ICC(A,1)) on three levels of detail: (1) single steps/strides

left and right, (2) averaged steps/strides left and right per subject and (3) average steps/strides

per subject (pooled over left and right steps/strides). Bland-Altman’s method is primarily a

graphical analysis. However, it provides three well-interpretable parameters: (1) bias (average

difference between measurement methods), (2) reproducibility coefficient (RPC, standard

deviation of the difference between the measurement methods) and (3) coefficient of variation

(CV, standard deviation of the difference between the measurement methods divided by the

average measurement) in percent. While a non-zero bias indicates a systematic deviation, the

RPC represents the overall variability between the two methods. The CV quantifies the vari-

ability in terms of the average measurement value and is therefore better suited when compar-

ing measures with different mean values. ICC(A,1) takes values between zero and one, where

one is perfect agreement. Following [35], we classified its value according to the categories:

poor (0–0.4), fair (0.4–0.59), good (0.6–0.74) and excellent (0.75–1.0) absolute agreement.

Motivated by the observation that the joint positions measured by the Kinect sensors

depend on the view angle, we performed two gait analyses for the Kinect system: (1) using

only the sensors from the left side in walking direction (one-sided) and (2) using all sensors

(two-sided). The resulting gait parameters were separately compared to those measured using

the VICON system. Instead of recording every subject twice, we used the same recordings but

Fig 7. Identification of the foot events. Foot events (black crosses) based on the ankle trajectories, here exemplified

using the Kinect skeleton averaged across all sensors. Using the same procedure foot events were extracted from the

VICON data. Top: Snapshots of the body posture during walking, bottom: ankle position of the left (red) and right (blue)

foot in walking direction.

https://doi.org/10.1371/journal.pone.0175813.g007
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reconstructed the skeleton using either only the left Kinect sensors or all of them. Since the

step time and walking speed do not depend on the view angle, we compared the Kinect and

VICON measurements of these parameters without distinguishing between one- and two-

sided Kinect tracking.

Results

Agreement of temporal gait parameters

The summary and agreement statistics of the view angle unrelated gait parameters, walking

speed and step time, are listed in Table 1. For both measures the intraclass correlation coeffi-

cients for absolute agreement ICC(A,1) are excellent on all detail levels. Best agreement has

been found for the averaged step time with an ICC(A,1) close to one, zero bias and RPC close

to zero. High agreement was also found for the step time on the other detail levels (single step

times, subjects’ average step times left/right). Despite excellent agreement for the walking

speed according to the intraclass correlation coefficient for absolute agreement, we observe a

small bias of 0.53cm/s. Overall, these results indicate excellent agreement between the evalu-

ated Kinect system and VICON in the temporal gait parameters.

Agreement of spatiotemporal gait parameters using one-sided Kinect

setup

We have listed the summary and agreement statistics for the comparison of the one-sided

Kinect tracking and VICON in Table 2. For the averages across subjects and feet in step

length, stride length, and step width we find excellent agreements. On the single steps level,

we found that the agreement for the right step length and width is worse than for the left

side, suggesting overall less precise measurements of the right body half. The worst agree-

ment is found for the step width on the right (step width R) with an ICC(A,1) of 0.297, rather

large bias of 2.68 cm and a CV of about 50%. Similarly, the subjects’ average step width on

the right (AV step width R) shows only fair agreement ICC(A,1) = 0.452 with a similarly

large bias as for the single steps (2.66 cm). Overall, the analysis shows that the agreement for

the right body half is worse than for the left, when tracking only from the left side. Even

though the ICC for the averaged step width across feet indicates excellent agreement, the

agreement is not as good as for the step and stride length, indicating that the inference of the

step width is less precise.

Table 1. Summary and agreement statistics for the view angle unrelated gait parameters walking speed and step time.

Parameter Our System VICON Pearson’s correlation Bland-Altman ICC(A,1)

Mean ± SD Mean ± SD R P N Bias RPC CV (%)

AV Walking Speed (cm/s) 123.06 ±14.26 122.53 ±14.50 1.000 <0.001 10 0.53 0.80 0.33 0.999

Step time L (s) 0.60 ±0.07 0.61 ±0.07 0.927 <0.001 267 -0.00 0.05 4.49 0.924

Step time R (s) 0.60 ±0.07 0.60 ±0.07 0.927 <0.001 281 0.00 0.05 4.38 0.925

AV step time L (s) 0.60 ±0.07 0.61 ±0.07 0.979 <0.001 10 -0.01 0.03 2.29 0.978

AV step time R (s) 0.60 ±0.06 0.60 ±0.06 0.976 <0.001 10 0.00 0.03 2.33 0.976

AV step time AVG (s) 0.60 ±0.06 0.60 ±0.07 1.000 <0.001 10 0.00 0.00 0.23 1.000

RPC: reproducibility coefficient (1.96*SD); CV: coefficient of variation (SD of mean values in %); ICC(A,1): intraclass correlation coefficient for absolute

agreement. Subject averages across steps (AV) and sides (AVG) are labeled accordingly. Measures in bold can be compared to previously reported

systems [1,2].

https://doi.org/10.1371/journal.pone.0175813.t001
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Agreement of spatiotemporal gait parameters using two-sided Kinect

setup

The statistical comparison of the two-sided Kinect tracking with the VICON results is shown

in Table 3. Overall, the agreement is much better than for one-sided Kinect tracking. All but

one measure (AV step width R) reach good agreement and most show excellent agreement.

On the level of single steps, specifically the agreement in step width is much higher than for

one-sided tracking (ICC(A,1) is about 0.66 for both sides instead of 0.49 for the left and 0.29

right side). Additionally, the average step width (AV Step width AVG) is much less biased

(0.39 cm vs. 0.66 cm) and shows an agreement more similar to the other measures (ICC(A,1) =

0.910). These results demonstrate the gain in precision due to two-sided tracking.

Discussion

We have described an improved motion capturing system based on multiple Kinect v2 sen-

sors in the context of gait analysis. The importance of spatial and temporal calibration has

been emphasized. Further, we have demonstrated that the human pose estimation algorithm

of the Kinect sensor depends on the view angle and that self-occlusions might lead to biased

joint position estimates. The presented gait analysis system has successfully been used to

record ten healthy subjects while walking. Recordings have concurrently been acquired

using a VICON motion capturing system for quantitative comparison. Gait parameters

have been extracted from both recordings independently. Agreement with the VICON sys-

tem has been statistically examined for one-sided and two-sided Kinect tracking, revealing

much better agreement for two-sided Kinect tracking. Using two-sided tracking we also

reach better agreements in step width with the gold standard than previously reported

Kinect systems [1].

Table 2. Summary and agreement statistics for spatiotemporal gait parameters using Kinect tracking from the left side (one-sided).

Parameter Our System VICON Pearson’s correlation Bland-Altman ICC(A,1)

Mean ± SD Mean ± SD R P N Bias RPC CV (%)

Stride length L (cm) 145.95 ±11.08 145.36 ±8.49 0.786 <0.001 267 0.59 13.43 4.71 0.758

Stride length R (cm) 146.27 ±10.22 147.04 ±9.01 0.923 <0.001 187 -0.78 7.77 2.70 0.913

Step length L (cm) 72.85 ±6.18 73.95 ±5.36 0.667 <0.001 267 -1.10 9.34 6.49 0.649

Step length R (cm) 73.40 ±8.36 71.67 ±4.48 0.538 <0.001 281 1.73 13.81 9.72 0.434

Step width L (cm) 10.02 ±4.69 11.51 ±3.15 0.569 <0.001 267 -1.49 7.62 36.13 0.493

Step width R (cm) 14.58 ±7.33 11.91 ±2.97 0.475 <0.001 281 2.68 12.69 48.88 0.297

AV stride length L (cm) 146.30 ±8.70 145.66 ±7.98 0.997 <0.001 10 0.64 1.90 4.71 0.991

AV stride length R (cm) 146.16 ±8.94 146.95 ±8.43 0.994 <0.001 10 -0.79 2.15 2.70 0.989

AV stride length AVG (cm) 146.24 ±8.75 146.20 ±8.17 0.998 <0.001 10 0.04 1.53 0.53 0.996

AV step length L (cm) 72.97 ±4.17 74.10 ±5.13 0.939 <0.001 10 -1.13 3.69 2.56 0.900

AV step length R (cm) 73.36 ±5.12 71.67 ±3.60 0.898 <0.001 10 1.69 4.84 3.40 0.799

AV step length AVG (cm) 73.19 ±4.40 72.82 ±3.96 0.996 <0.001 10 0.36 1.12 0.78 0.988

AV step width L (cm) 10.03 ±2.67 11.55 ±1.85 0.750 0.01 10 -1.52 3.47 16.39 0.591

AV step width R (cm) 14.57 ±2.44 11.91 ±1.74 0.845 0.002 10 2.66 2.63 10.13 0.452

AV step width AVG (cm) 12.39 ±2.15 11.73 ±1.76 0.944 <0.001 10 0.66 1.49 6.30 0.882

Notice, the difference in agreement between the left and right body half for the step width and step length. RPC: reproducibility coefficient (1.96*SD); CV:

coefficient of variation (SD in % of the mean value); ICC(A,1): intraclass correlation coefficient for absolute agreement. Subject averages across steps (AV)

and sides (AVG) are labeled accordingly. Measures in bold can be compared to previously reported systems [1,2].

https://doi.org/10.1371/journal.pone.0175813.t002
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Kinect skeleton tracking is sensitive to view angle

To our knowledge, the most detailed report concerning the accuracy of joint position estima-

tion using the Kinect v2 sensor in comparison to another motion capturing system is provided

by Wang et al [4]. In addition to comparing different body poses (sitting and standing), they

also examined the influence of the view angle (0˚, 30˚ and 60˚) and showed that the joint posi-

tions of the turned-away body half are less accurate. They pointed out that the likely cause for

the decreased accuracy is the increasing occlusion of one body half by the other (self-occlu-

sion) with increasing view angle. In order to examine the influence of self-occlusions and view

angle dependence in a single recording, we recorded a person during the double support phase

with our gait analysis system using two sensors and opposite view angles (Fig 5). Based on this

recording we reproduced Wang et al’s finding and, further, demonstrated that the joint posi-

tions are biased towards the surface area that is visible to the respective sensor (S2 Appendix).

Hence, we verified Wang et al’s hypothesis that the decreased accuracy is caused by self-occlu-

sions [4]. As consequence, the extracted gait parameters based on one-sided tracking might

not only be less accurate but biased depending on the view angle of the sensors.

Two-sided Kinect tracking improves overall accuracy

During the gait cycle the left leg partially or completely occludes the right leg every now and

then when placing the sensors only on the left side. Depending on the view angle of the sensors

this might happen exactly when the two feet have maximum distance (double support phase).

Since this event is easily identifiable in the time series of the foot positions, this is exactly the

phase of the gait cycle which is commonly used to determine the step length and width as well

as the stride length. Inaccuracies in the joint position estimates therefore propagate directly

into the respective gait parameters. This is well captured by the agreement statistics of the one-

Table 3. Summary and agreement statistics for spatiotemporal gait parameters using Kinect tracking from both sides (two-sided).

Parameter Our System VICON Pearson’s correlation Bland-Altman ICC(A,1)

Mean ± SD Mean ± SD R P N Bias RPC CV (%)

Stride length L (cm) 146.08 ±8.65 145.36 ±8.49 0.970 <0.001 267 0.71 4.16 1.46 0.966

Stride length R (cm) 146.53 ±9.47 147.04 ±9.01 0.973 <0.001 187 -0.52 4.32 1.50 0.970

Step length L (cm) 74.36 ±5.16 73.95 ±5.36 0.833 <0.001 267 0.41 5.97 4.11 0.830

Step length R (cm) 72.01 ±5.35 71.67 ±4.48 0.817 <0.001 281 0.34 6.05 4.30 0.803

Step width L (cm) 9.94 ±3.88 11.51 ±3.15 0.757 <0.001 267 -1.57 4.98 23.70 0.675

Step width R (cm) 14.15 ±3.47 11.91 ±2.97 0.817 <0.001 281 2.24 3.94 15.42 0.650

AV stride length L (cm) 146.37 ±7.93 145.66 ±7.98 0.999 <0.001 10 0.71 0.71 0.25 0.995

AV stride length R (cm) 146.43 ±8.66 146.95 ±8.43 0.999 <0.001 10 -0.53 0.75 0.26 0.997

AV stride length AVG (cm) 146.40 ±8.23 146.20 ±8.17 0.999 <0.001 10 0.20 0.55 0.19 0.999

AV step length L (cm) 74.48 ±4.11 74.10 ±5.13 0.967 <0.001 10 0.38 3.05 2.09 0.946

AV step length R (cm) 71.99 ±4.39 71.67 ±3.60 0.927 <0.001 10 0.32 3.36 2.38 0.914

AV step length AVG (cm) 73.20 ±4.01 72.82 ±3.96 0.999 <0.001 10 0.38 0.35 0.24 0.995

AV step width L (cm) 9.97 ±2.64 11.55 ±1.85 0.842 0.002 10 -1.58 2.88 13.67 0.649

AV step width R (cm) 14.16 ±2.18 11.91 ±1.74 0.845 0.002 10 2.24 2.29 8.98 0.505

AV step width AVG (cm) 12.13 ±2.08 11.73 ±1.76 0.936 <0.001 10 0.39 1.48 6.35 0.910

Notice in comparison to Table 2, that the difference in agreement between the left and right body half for the step width and step length is reduced. RPC:

reproducibility coefficient (1.96*SD); CV: coefficient of variation (SD in % of the mean value); ICC(A,1): intraclass correlation coefficient for absolute

agreement. Subject averages across steps (AV) and sides (AVG) are labeled accordingly. Measures in bold can be compared to previously reported

systems [1,2].

https://doi.org/10.1371/journal.pone.0175813.t003
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sided Kinect setup with VICON. Specifically, for the step length and step width on the right

side the agreement with the VICON system is much lower than for those on the left side,

which are not affected by occlusions (see Table 2). The stride length is affected by occlusions

on any side, because every stride consists of subsequent left and right steps. Gold standard

motion capturing systems, like VICON, commonly track the person from all sides, minimizing

the amount of self-occlusions due to diverse view angles and multiplicity of sensors. In our

two-sided Kinect setup, we increased the number of view angles and thereby decreased the

possibility of self-occlusions in comparison to one-sided setups. The effect is prominent when

comparing the agreement statistics of the two setups. Both analyses are based on the very same

recordings and differ only in the sensors that have been used for the reconstruction of the skel-

eton. Consequently, the agreement with the VICON system is for the two-sided setup better

than for the one-sided setup (compare Tables 2 and 3). Additionally, we do not observe the

strong imbalance of agreements for steps on the left and right side anymore. Unfortunately,

Geerse et al. [1] and Mentiplay et al. [2] did not report separate agreement statistics for the left

and right steps. In most parameters (subjects’ average step length and stride length, averaged

across feet, walking speed) our system reaches similar agreement with the gold standard as

other Kinect-based systems [1,2]. However, especially for the step width and time our system

provides better results, which are important measures for examining clinical gait disorders

such as Parkinson’s disease [22–24] and cerebellar ataxia [25–28]. Although, in this first evalu-

ation, we have only examined healthy participants, the high agreement of our system with the

VICON system in diverse gait measures strongly suggests that the system can also be used to

detect differences in gait between patients and healthy controls. This however needs to be eval-

uated explicitly in future studies, possibly involving multiple clinical centers.

Precise temporal synchronization is essential for overall accuracy

Previously reported gait analysis systems based on multiple Kinect sensors are often quite

unspecific with respect to the technical details of the temporal synchronization of the sensors.

Since the Kinect v2 sensor requires a separate USB 3.0 controller and the current version of

the Kinect SDK (v2.0) does not support multiple Kinect sensors, most setups use dedicated

computers, one for each sensor, just like we do. However, it is known that internal clocks of

computers do not run in synchrony and even once synchronized the clocks diverge rather

quickly. For this purpose, time synchronization protocols have been developed. Probably the

best known one is the network time protocol (NTP) which is for example used by the Win-

dows time service to synchronize the local clock of a computer with a remote clock, also

known as time server. PTP in contrast is used to synchronize computers in local networks

with high precision, for example in distributed control scenarios. Using commercial software

that implements PTP, we have ensured steady synchrony between all involved computers

before and during the recordings. One might imagine, that even slight phase shifts due to an

asynchrony of the clients lead to inaccuracies when averaging across the data received from

different clients. Specifically, since gait is largely described by a periodic function, averaging

over different phase shifts leads to smoothing in time and space and, ultimately, to reduced

temporal resolution. The gait parameters (step time, length and width as well as the stride

length) are consequently less accurate in comparison to a gold standard system which ensures

high temporal resolution. We believe that the careful way to calibrate our system not only in

space but also in time contributes to the high agreement of our system with the VICON

system.
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Scalability of the system

The presented system can easily be scaled up using a larger number of Kinect sensors. To

our knowledge, so far only systems with up to four Kinect sensors have been published

[1,20] (also see [31]). In contrast, we have shown that our system is able to utilize six Kinect

sensors for tracking people during walking. Since we do not transmit any data in real-time

while recording, the network traffic is limited to maintaining the TCP/IP connections

between the server and clients and synchronizing the computers. Even though there are cur-

rently no obvious limitations in scalability, the maximum number of clients needs to be

evaluated.

Conclusions

We have shown that multiple Kinect v2 sensors can be used for accurate analysis of human

gait. Important is the spatiotemporal calibration of the system as well as the sensor place-

ment. Tracking from both sides leads to more accurate and less biased gait parameters which

leads to excellent agreement with the VICON motion capturing system for the gait parame-

ters step length, step width, step time, stride length and walking speed. The presented spatial

calibration algorithm allows flexible sensor placement, which makes fast and easy setup in

diverse scenarios possible. We have shown that precise spatiotemporal calibration in combi-

nation with a two-sided setup of sensors provides better statistical agreement with a gold

standard motion capturing system than previously reported systems [1,2]. The excellent

agreement with the VICON system suggests that, in addition to differences between patients

and healthy controls, even subtle changes in gait, such as in preclinical cerebellar ataxia [36],

might be detectable. Furthermore, the low-costs make multi-center studies involving clinical

centers without dedicated motion laboratories feasible, allowing for distributed investigation

of rare movement disorders. Besides the application for clinical and scientific gait analysis,

the presented motion tracking system might also be useful for the realization of virtual reality

setups in combination with head-mounted displays [37,38] such as the Oculus Rift (Oculus

VR, LLC.) or HTC Vive (HTC Corporation). Arranging the sensors in a circle would provide

a 360˚ perspective of the tracked person, possibly allowing for more freedom in overall

movement.
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