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Abstract

In this paper, adaptive control is extended from real space to complex space, resulting in a

new control scheme for a class of n-dimensional time-dependent strict-feedback complex-

variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex

parameters and perturbations, which has not been previously reported in the literature. In

detail, we have developed a unified framework for designing the adaptive complex scalar

controller to ensure this type of CVCSs asymptotically stable and for selecting complex

update laws to estimate unknown complex parameters. In particular, combining Lyapunov

functions dependent on complex-valued vectors and back-stepping technique, sufficient cri-

teria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex

space. Finally, numerical simulation is presented to validate our theoretical results.

Introduction

Chaos is a ubiquitous phenomenon in nonlinear system. Over the last few decades, the chaotic

behavior has been discovered in numerous systems in atmosphere [1], chemistry [2], biology

[3], laser [4], mechanics [5], electronic circuits [6], and so on. It is well known that chaos effect

may be undesirable in practice, it is often necessary that chaos should be controlled so that the

system trajectory exhibits a desired dynamics. Therefore, chaos control plays a very important

role in many different contexts. After the pioneering work of Ott, Grebogi and Yorke (OGY)

[7] in 1990, chaos control and synchronization have attracted increasing attention in academic

research and practical applications. For example, Petrov et al. [8] stabilized periodic behavior

embedded in chaotic attractor of the BZ reaction by proportional-feedback. Pyragas [9] con-

trolled chaos via an unstable delayed feedback controller. Wang and Lin [10] developed an

observer-based fuzzy neural sliding mode control scheme for interconnected unknown chaotic

systems. Wang et al. [11] presented networked synchronization control of coupled dynamic

networks with time-varying delay. Luo and Zeng [12] investigated adaptive control of

unknown strict-feedback chaotic systems by introducing proper auxiliary variable.Particularly,

backstepping has become one of the most popular design methods for nonlinear control
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because it can guarantee global stabilities, tracking and transient performance for a broad class

of nonlinear systems. For instance, Lü and Zhang [13] proposed backstepping design for con-

trolling Chen’s chaotic attractor based on parameters identification. Park [14] proposed mas-

ter-slave synchronization of Genesio chaotic system via backstepping approach. Wu et al. [15]

stabilized a class of nonlinear strict-feedback time-delay systems by an adaptive backstepping

neural controller. However, these fruits are all in real space.

In complex space, Fowler et al. [16, 17] derived originally the Lorenz equations with com-

plex variables and complex parameters to describe rotating fluids and ring laser in 1982.

Twenty-five years later, Mahmoud et al. [18] introduced Chen and Lü complex-variable cha-

otic systems (CVCSs) with real parameters. Liu and Liu [19] presented the adaptive anti-

synchronization of CVCSs with unknown real parameters. Wang et al. [20–26] realized

module-phase synchronization, modified function projective lag synchronization, hybrid

modified function projective synchronization, and complex generalized synchronization of

CVCSs or neural networks.

As is known to all, complex-variable Duffing’s oscillator appear in many important fields of

physics and engineering, for example, in nonlinear optics, deep-water wave theory, plasma

physics and bimolecular dynamics. The complex-variable Duffing’s oscillator model [27] can

be expressed in the form of strict-feedback CVCSs with complex parameter, which is given by

_z1 ¼ z2;

_z2 ¼ f ðz1; z2; �z1; �z2; tÞ;

(

ð1Þ

where z1 ¼ zr
1
þ jzi

1
; z2 ¼ zr

2
þ jzi

2
are complex-valued state variables, f ¼ z1 � az2 � bz2

1
�z1þ

g0cosðotÞ, g0 ¼
ffiffiffi
2
p

g exp jp
4

� �
, α, β, γ and ω are positive parameters, and a dot is time derivative,

chaotic motion of complex system (1) is shown as in Fig 1. In fact, a variety of physical systems

could be written as the form of strict-feedback CVCSs, such as perturbed van der Pol CVCSs

[28], Jerk CVCSs [29]. Up to now, there have been only a few papers on the stabilization for

strict-feedback CVCSs. For example, the Duffing CVCSs (1) in [27] is stabilized by using the

method in reference [9] in 2001. The chaos control of van der Pol CVCSs which occurs in vac-

uum tube circuits [28] is achieved by using a feedback control method in 2008, and that of jerk

CVCSs [29] are investigated by adding a complex periodic forcing in 2012.

Surprising, it is found that the state variables in the mentioned studies are all supposed to

be real-valued [8–15] or complex-valued with real parameters [18–26]. As is well known, com-

plex nonlinear dynamic systems are more complicated than real systems, and can generate

more abundant dynamical behaviors, which can be applied to secure communication for high

transmission efficiency and anti-attack ability. In addition, the complex parameters in CVCSs

follow from purely physical consideration, for example, complex parameters in [16, 17] arise

due to the weak dispersive effects and are related to the detuning, we should consider the effect

of the detuning in many practical applications. Very recently, Liu et al. [30–33] investigated

several kinds of complex projective synchronization for a class of CVCSs with complex param-

eters. To the best of our knowledge, however, fewer works have been done to study the stabili-

zation problems for strict-feedback CVCSs involving complex parameters, such as system (1).

On the other hand, in many practical engineering problems, it is hard to assume that all the

exactly values of system parameter are known a priori, and sometimes there are also perturba-

tions in system, and the system may be time-dependent. To deal with these unknown factors,

adaptive control has been widely used as an effective method. Furthermore, most of the publi-

cations concern on complex chaos control and synchronization are only valid for some partic-

ular strict-feedback CVCSs, and their Lyapunov stabilization are not investigated [27–29].

However, as mentioned in [12], from the viewpoint of practical applications, it is expected that
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the control and synchronization scheme can be used for more CVCSs. As far as we know,

there are no achievements about stabilization of time-dependent strict-feedback CVCSs with

uncertain complex parameters and perturbations. Therefore, how to stabilize this kind of

CVCSs via the adaptive control in complex space is an open problem.

Inspired by the aforementioned discussions, in this paper our major concerns are adaptive

control for time-dependent strict-feedback CVCSs in the presence of uncertain complex

parameters and perturbations by using backstepping approach. Compared with the previous

works, the main contributions of the present paper are summarized as follows.

First, the systems under investigation are remarkably more general than those in the closely

related literatures [12, 14, 15, 27–29]. In [12, 15], stabilization of strict-feedback real-variable

chaotic system (RVCSs) was investigated. In [14], synchronization of Genesio RVCSs was

achieved. It is well known that Genesio RVCSs is a special strict-feedback chaotic system, and

real space is a subspace of complex one. Moreover, the authors [27–29] only investigated non-

Lyapunov stabilization of some particular strict-feedback CVCSs, such as Duffing, van der Pol

and Jerk CVCSs. However, Lyapunov stabilization problem has not been solved for more gen-

eral strict-feedback CVCSs Eq (7) in complex space. In the present work, we address a unified

framework for adaptive control of time-dependent strict-feedback CVCSs with uncertain com-

plex parameters and perturbations.

Second, in contrast to the classical control and synchronization schemes proposed in the lit-

erature [18–29], we accomplish all the theoretical works in the sense of Wirtinger calculus in

complex space [34–36]. From the technical perspective, as described in [30–33], the classical

Fig 1. The phase portrait of the chaotic attractor for unperturbed Duffing CVCSs Eq (1) with complex

parameters α = 0.13, β = w = 1, γ0 = 0.18(1 + j), and initial values z1 = −0.2 − 0.2j, z2 = 0.

https://doi.org/10.1371/journal.pone.0175730.g001
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control and synchronization for CVCSs, which were all achieved by separating imaginary and

real parts of complex variables, are still that of RVCSs. As is well known, there are essential dif-

ferences between RVCSs and CVCSs. Most properties and conclusions of RVCSs cannot be

simply extended to that of the CVCSs. What’s more, it is difficult or even impossible to sepa-

rate imaginary and real parts of complex variables for some CVCSs. To avoid this limitation,

we use Wirtinger calculus in this paper, extend adaptive control from real space to complex

space, and accomplish all the theoretical works in complex space. Combining Lyapunov func-

tions dependent on complex-valued vectors and back-stepping technique, stabilization of this

type of CVCSs is achieved by complex scalar adaptive controller, unknown complex parame-

ters are estimated by complex update laws.

The rest of this paper is organized as follows. In section 2, some preliminaries and relevant

lemmas are briefly reviewed. In section 3, problem formulation and some assumptions are

given. In Section 4, back-stepping method is employed and the adaptive complex scalar con-

troller is designed and the complex update laws of unknown parameters are selected. A

numerical example is presented in Section 5. Finally, Section 6 draws some conclusions.

Preliminaries

Notation The notations used throughout the paper are standard. Cn
stands for n dimensional

complex vector space. If z 2 Cn
is a complex vector, then z = zr + jzi, j ¼

ffiffiffiffiffiffiffi
� 1
p

is the imaginary

unit, superscripts r and i stand for the real and imaginary parts of z, respectively; zT and zH are

the transpose, conjugate transpose of z, respectively, and kzk implies the 2-norm of z. If z is a

complex scalar, |z| indicates the modulus of z and �z is the conjugate of z. Θ̂ is the estimation of

complex parameter vector Θ.

Wirtinger calculus

In this subsection, we first recall briefly the definition of Wirtinger calculus and some basic

facts. As stated in [34–36], Wirtinger calculus also called the CR calculus, which provides a

framework for differentiating nonanalytic functions. Importantly, it allows performing all the

derivations in complex field, in a manner very similar to the real-valued case.

In classical complex-variable theory, as the differentiation of �z by z is not defined, the func-

tion � : C! C given by �ðzÞ ¼ �z is not analytic; i.e. is not differentiable with respect to z in

the Cauchy-Riemann sense. Thus the real-valued function f : C! R given by f ðzÞ ¼ z�z ¼
jzj2 is not analytic in the Cauchy-Riemann sense either. To avoid this limitation, it is conve-

nient to define a generalization or extension of the standard partial derivative to nonholo-

morphic functions of complex-valued variable z = zr + jzi, that is differential with respect to zr

and zi. Generally speaking, nonholomorphic functions F(z) can be viewed as Fðz; �zÞ, where

they are holomorphic in z for fixed �z and holomorphic in �z for fixed z. This underlies the

development of Wirtinger calculus. Associated with these functions are two partial derivatives

@F=@z ¼ @F=@zj�z¼constant and @F=@�z ¼ @F=@�zjz¼constant that are given by

@F
@z
¼

1

2

@F
@zr
� j

@F
@zi

� �

;
@F
@�z
¼

1

2

@F
@zr
þ j

@F
@zi

� �

: ð2Þ

Note that from Eq (2) that we immediately have the properties

@z
@z
¼
@�z
@�z
¼ 1;

@z
@�z
¼
@�z
@z
¼ 0: ð3Þ
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The differential form of a function with respect to complex variables z and �z is

dFðz; �zÞ ¼
@F
@z

� �

dz þ
@F
@�z

� �

d�z; ð4Þ

Generalizing the above concept to complex domain vector space, the differential form of a

function with respect to complex column vectors z; �z 2 Cn
is

dFðz; �zÞ ¼
@F
@z

� �T

dzþ
@F
@�z

� �T

d�z; ð5Þ

where the complex gradient and complex conjugate gradient operators for complex column

vectors are defined respectively as

rz ¼
@

@z
≜

@

@z1

;
@

@z2

; . . . ;
@

@zn

� �T

;

r�z ¼
@

@�z
≜

@

@�z1

;
@

@�z2

; . . . ;
@

@�zn

� �T

:

Relevant lemmas

Lemma 1. [36]

If F : Cn
! R be a real-valued function of a complex vector z, let FðzÞ ¼ Fðz; �zÞ, then

@F
@�z
¼ ð

@F
@z
Þ: ð6Þ

lemma 2. (Barbălat’s lemma [37]) If the differentiable function f(t) has a finite limit, as t!
1, and if _f ðtÞ is uniformly continuous (a sufficient condition for a differentiable function to

be uniformly continuous is that its derivative is bounded), then _f ðtÞ ! 0, as t!1.

Problem formulation and assumptions

In this paper, we consider a class of n-dimensional time-dependent strict-feedback CVCSs as

follows

_z1 ¼ z2 þΨH
1
ðz1; �z1ÞΘ;

_z2 ¼ z3 þΨH
2
ðz1; z2; �z1; �z2ÞΘ;

:::;

_zn� 1 ¼ zn þΨH
n� 1
ðz1; z2; :::; zn� 1; �z1; :::; �zn� 1ÞΘ;

_zn ¼ φðz; �z; tÞ þΨH
n ðz; �zÞΘþ uðtÞ;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð7Þ

where z ¼ ðz1; z2; :::; znÞ
T
2 Cn

is complex state vector, φ : Cn
� Cn

� ½0;þ1Þ ! C is a non-

linear scalar complex-valued function, Ψi : Ci
� Ci

� ½0;þ1Þ ! Cs
; ði ¼ 1; 2; :::; nÞ are

known complex-valued function vectors, respectively. Θ ¼ ðy1; y2; :::; ysÞ
T
2 Cs

is an uncer-

tain complex parameter vector, and uðtÞ 2 C is the complex scalar control input. In the follow-

ing, Ψiðz1; z2; :::; zi; �z1; �z2; :::; �ziÞ will be replaced by Ψi for convenience. The aim of this paper

Adaptive control for a class of nonlinear complex dynamic systems
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is to design proper control input uðtÞ 2 C and complex update law of Θ to ensure the global

stability of the CVCSs Eq (7).

Remark 1. It is well known that the strict-feedback RVCSs are described as

_x1 ¼ x2 þϒ
T
1
ðx1ÞΘ;

_x2 ¼ x3 þϒ
T
2
ðx1; x2ÞΘ;

:::;

_xn� 1 ¼ xn þϒ
T
n� 1
ðx1; x2; :::; xn� 1ÞΘ;

_xn ¼ f ðxÞ þϒT
nðxÞΘþ uðtÞ;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð8Þ

where x ¼ ðx1; x2; :::; xnÞ
T
2 Rn is real-valued state vector, f,ϒi (i = 1, 2, . . ., n) are real-valued

smooth scalar function and function vectors respectively, and Θ ¼ ðy1; y2; :::; ysÞ
T
2 Rs is an

uncertain real-valued parameter vector, uðtÞ 2 R is the real-valued scalar control input. In

[12], Luo and Zeng investigated the control of chaotic system (8) in the absence ofϒi (i = 1,

2, . . ., n − 1), which is the special case of system (8). Obviously, system (7) is the complex-val-

ued extension of system (8).

Throughout this paper, we will assume as follows.

Assumption 1. Ψi has n − 1 order partial derivatives with respect to complex vectors

ðz1; z2; :::; ziÞ; ð�z1; �z2; :::; �ziÞ 2 C
n
. Moreover, Ψi(0) = 0, i = 1, 2, . . ., n.

Assumption 2. The unknown complex parameter vector Θ is norm-bounded, i.e., there

exists d> 0, such that kΘk< d.

Main results

In the following, we consider the general case that Ψi 6¼ 0 (i = 1, 2, . . ., n).

Adaptive complex scalar controller design based on back-stepping

In this subsection, we employ the adaptive back-stepping control technique to design our com-

plex scalar controller and complex update laws for n-dimensional CVCSs. The designing pro-

cedure is achieved by n steps.

Step 1. First, let us analyze the subsystem

_z1 ¼ z2 þΨH
1
Θ: ð9Þ

Consider the Lyapunov function candidate defined on complex space in the form as

V1 ¼
1

2
½�z1z1 þ ðΘ � Θ̂ÞHðΘ � Θ̂Þ�: ð10Þ

Let

�1 ¼ � Mz1 � ΨH
1
Θ̂;

Λ1 ¼ z1Ψ1;

8
<

:
ð11Þ

where M> 0, and according to Lemma 1 and the chain rule, the time derivative of V1 along

Adaptive control for a class of nonlinear complex dynamic systems
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the subsystem Eq (9) is given by

_V 1 ¼
1

2
½�z1ðz2 � �1 þ �1 þΨH

1
ΘÞ þ z1

�z_
1
� �

1

2
½ðΘ � Θ̂ÞH _̂

Y þ
_̂

YHðΘ � Θ̂Þ�

¼ � Mjz1j
2
þ

1

2
½�z1ðz2 � �1Þ þ z1ð�z2 �

��1Þ�

þ
1

2
½ðΘ � Θ̂ÞHðΛ1 �

_̂
YÞ þ ðΛ1 �

_̂
YÞ

H
ðΘ � Θ̂Þ�:

ð12Þ

Step 2. For the subsystem

_z1 ¼ z2 þΨH
1
Θ;

_z2 ¼ z3 þΨH
2
Θ;

8
<

:
ð13Þ

we consider the Lyapunov function candidate as

V2 ¼ V1 þ
1

2
ðz2 � �1Þ ðz2 � �1Þ: ð14Þ

Note that by Lemma 1 and the chain rule

d�1

dt
¼

@�1

@z1

� �

ðz2 þΨH
1
ΘÞ þ

@�1

@�z1

� �

ð�z2 þΘHΨ1Þ þ
@�1

@Θ̂

� �T
_̂

Y ;

and

@��1

@�z1

¼
@�1

@z1

;
@��1

@
�̂
Y
¼
@�1

@Θ̂
;

the time derivative of V2 along the subsystem Eq (13) is given by

_V 2 ¼
_V 1 þ

1

2
ð�z2 �

��1Þ ðz3 � �2 þ �2 þΨH
2
ΘÞ �

@�1

@z1

� �

ðz2 þΨH
1
ΘÞ

��

�
@�1

@�z1

� �

ð�z2 þΘHΨ1Þ �
@�1

@Θ̂

� �T
_̂

Y � þ ðz2 � �1Þ½ð�z3 �
��2 þ

��2 þΘHΨ2Þ

�
@��1

@z1

� �

ðz2 þΨH
1
ΘÞ �

@��1

@�z1

� �

ð�z2 þΘHΨ1Þ �
_̂ΘH@�1

@Θ̂

��

:

ð15Þ

Defining

�2 ¼ � Mðz2 � �1Þ � z1 � ΨH
2
Θ̂ þ

@�1

@z1

� �

ðz2 þΨH
1
Θ̂Þ

þ
@�1

@�z1

� �

ð�z2 þ Θ̂
H
Ψ1Þ þ

@�1

@Θ̂

� �T

Λ2;

Λ2 ¼ Λ1 þ ðz2 � �1Þ Ψ2 � Ψ1

�@�1

@z1

� �

þ z2 � �1

@�1

@�z1

Ψ1;

A1 ¼ 0;

A2 ¼ ðz2 � �1Þ
@�1

@Θ̂

� �

;

ð16Þ

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Adaptive control for a class of nonlinear complex dynamic systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0175730 May 3, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0175730


and substituting Eqs (16) into (15) yield

_V 2 ¼ � Mjz1j
2
� Mjz2 � �1j

2
þ

1

2
½z2 � �1ðz3 � �2Þ þ ðz2 � �1Þz3 � �2 �

þ
1

2
½ðΘ � Θ̂ÞHðΛ2 �

_̂
YÞ þ ðΛ2 �

_̂
YÞ

H
ðΘ � Θ̂Þ�

þ
1

2
½A

H
2
ðΛ2 �

_̂
YÞ þ ðΛ2 �

_̂
YÞ

H
A2�:

ð17Þ

Step i (i� 3). Assume that in Step i − 1, there exist Vi−1, ϕi−1, Λi−1, Ai−1 such that

_V i� 1 ¼ � Mðjz1j
2
þ jz2 � �1j

2
þ . . .þ jzi� 1 � �i� 2j

2
Þ

þ
1

2
½ðzi� 1 � �i� 2Þðzi � �i� 1Þ þ ðzi� 1 � �i� 2Þðzi � �i� 1Þ�

þ
1

2
½ðΘ � Θ̂ÞHðΛi� 1 �

_̂
YÞ þ ðΛi� 1 �

_̂
YÞ

H
ðΘ � Θ̂Þ�

þ
1

2
½A

H
i� 1
ðΛi� 1 �

_̂
YÞ þ ðΛi� 1 �

_̂
YÞ

H
Ai� 1�:

ð18Þ

In order to analyze the subsystem

_z1 ¼ z2 þΨH
1
Θ;

� � � ;

_zi ¼ ziþ1 þΨH
i Θ;

8
>>><

>>>:

ð19Þ

we introduce the following Lyapunov function candidate as

Vi ¼ Vi� 1 þ
1

2
ðzi � �i� 1Þðzi � �i� 1Þ: ð20Þ

Then, the time derivative of Vi along Eq (19) is

Vi ¼
_V i� 1 þ

1

2
fzi � �i� 1 ½ziþ1 � �i þ �i þΨH

i Θ �
Xi� 1

k¼1

ð
@�i� 1

@zk
Þðzkþ1 þΨH

k ΘÞ

�
Xi� 1

k¼1

ð
@�i� 1

@�zk
Þð�zkþ1 þΘHΨkÞ � ð

@�i� 1

@Θ̂
Þ
T _̂
Y �

_̂
YH @�i� 1

@
�̂
Y
�

þðzi � �i� 1Þ½�ziþ1 �
�� i þ

�� i þΘHΨi �
Xi� 1

k¼1

@�� i� 1

@zk
ðzkþ1 þΨH

k ΘÞ

�
Xi� 1

k¼1

@��i� 1

@�zk
ð�zkþ1 þΘHΨkÞ � ð

@��i� 1

@Θ̂
Þ
T _̂
Y �

_̂ΘH@�i� 1

@Θ̂
�g:

ð21Þ
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Give the definition as follows

�i ¼ � Mðzi � �i� 1Þ � ðzi� 1 � �i� 2Þ � ΨH
i Θ̂ þ

Xi� 1

k¼1

ð
@�i� 1

@zk
Þðzkþ1 þΨH

k Θ̂Þ

þ
Xi� 1

k¼1

ð
@�i� 1

@�zk
Þð�zkþ1 þ Θ̂

H
ΨkÞ þ ð

@�i� 1

@Θ̂
Þ
TΛi þ ΛH

i
@�i� 1

@
�̂
Y
þ vi;

Λi ¼ Λi� 1 þ ðzi � �i� 1ÞðΨi �
Xi� 1

k¼1

@�i� 1

@zk
ΨkÞ � zi � �i� 1

Xi� 1

k¼1

@�i� 1

@�zk
Ψk;

Ai ¼ Ai� 1 þ zi � �i� 1

@�i� 1

@
�̂
Y
þ ðzi � �i� 1Þð

@�i� 1

@Θ̂
Þ;

ð22Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

where vi is the auxiliary input to be decided. Noting that

AH
i� 1
ðΛi� 1 � ΛiÞ ¼ AH

i� 1
� ðzi � �i� 1Þ Ψi �

Xi� 1

k¼1

@�i� 1

@zk
Ψk

 !

þ zi � �i� 1

Xi� 1

k¼1

@�i� 1

@�zk
Ψk

" #

; ð23Þ

we take

v1 ¼ v2 ¼ 0;

vi ¼ � ΨH
i �

Xi� 1

k¼1

@�i� 1

@zk
ΨH

k

 !

Ai� 1 þA
H
i� 1

Xi� 1

k¼1

@�i� 1

@�zk
Ψk:

8
>><

>>:

ð24Þ

It follows from Eqs (23) and (24) that

A
H
i� 1
ðΛi� 1 � :ŶÞ þ ðΛi� 1 � :ŶÞ

H
Ai� 1 þ ðzi � �i� 1Þvi þ �viðzi � �i� 1Þ

¼ A
H
i� 1
ðΛi � :ŶÞ þ ðΛi � :ŶÞ

H
Ai� 1:

ð25Þ

Combining Eqs (22)–(25) with Eq (21), we get

_V i ¼ � Mðjz1j
2
þ jz2 � �1j

2
þ � � � þ jzi � �i� 1j

2
Þ

þ
1

2
½ðzi � �i� 1Þðziþ1 � �iÞ þ ðzi � �i� 1Þziþ1 � �i �

þ
1

2
½ðΘ � Θ̂ÞHðΛi �

_̂
YÞ þ ðΛi �

_̂
YÞ

H
ðΘ � Θ̂Þ�

þ
1

2
½A

H
i ðΛi �

_̂
YÞ þ ðΛi �

_̂
YÞ

H
Ai�:

ð26Þ

Step n. Use the same derivation procedure as the above, and assume that we have got Vn−1,

ϕn−1, Λn−1, An−1, vn−1. Construct the following Lyapunov function candidate as

Vn ¼ Vn� 1 þ
1

2
ðzn � �n� 1Þðzn � �n� 1Þ: ð27Þ

Hence, the control input is given by

u ¼ � φðz; �z; tÞ þ �n; ð28Þ
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where

�n ¼ � Mðzn � �n� 1Þ � ðzn� 1 � �n� 2Þ � ΨH
n Θ̂ þ

Xn� 1

k¼1

ð
@�n� 1

@zk
Þðzkþ1 þΨH

k Θ̂Þ

þ
Xn� 1

k¼1

ð
@�n� 1

@�zk
Þð�zkþ1 þ Θ̂

H
ΨkÞ þ ð

@�n� 1

@Θ̂
Þ
TΛn þ ΛH

n
@�n� 1

@Ŷ
þ vn;

Λn ¼ Λn� 1 þ ðzn � �n� 1ÞðΨn �
Xn� 1

k¼1

@�n� 1

@zk
ΨkÞ � zn � �n� 1

Xn� 1

k¼1

@�n� 1

@�zk
Ψk;

vn ¼ � ðΨH
n �

Xn� 1

k¼1

@�n� 1

@zk
ΨH

k ÞAn� 1 þA
H
n� 1

Xn� 1

k¼1

@�n� 1

@�zk
Ψk:

ð29Þ

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Taking

An ¼ An� 1 þ ðzn � �n� 1Þ
@�n� 1

@
�̂
Y
þ ðzn � �n� 1Þ

@�n� 1

@Θ̂
; ð30Þ

and combining Eqs (28) and (29), we have

_V n ¼ � Mðjz1j
2
þ jz2 � �1j

2
þ � � � þ jzn � �n� 1j

2
Þ

þ
1

2
½ðΘ � Θ̂ÞHðΛn �

_̂
YÞ þ ðΛn �

_̂
YÞ

H
ðΘ � Θ̂Þ�

þ
1

2
½A

H
n ðΛn �

_̂
YÞ þ ðΛn �

_̂
YÞ

H
An�:

ð31Þ

Stability analysis

Theorem 1. Consider the n (� 3)-dimensional strict-feedback system (7) with initial condition

z(0), suppose Assumptions 1 and 2 hold. If the adaptive complex scalar controller is designed

as

u ¼ � φðz; �z; tÞ þ �n; ð32Þ

and the complex update law of complex parameter vector Θ is chosen as

_̂Θ ¼ Λn; ð33Þ

where ϕi, Λi, Ai and the auxiliary input vi (1� i� n) are defined as Eqs (11), (16), (22), (24),

(29) and (30), then the controlled system (7) is globally asymptotically stable.

Proof. Substitution of
_̂Θ from Eq (33) into Eq (31) yields

_V n ¼ � Mðjz1j
2
þ :::þ jzn � �n� 1j

2
Þ � 0:

By integrating the above inequality from 0 to1, we get

Vnð1Þ � Vnð0Þ � � M
Z 1

0

ðjz1j
2
þ :::þ jzn � �n� 1j

2
Þdt:

It implies that
R1

0
ðjz1j

2
þ :::þ jzn � �n� 1j

2
Þdt and Vn(1) are bounded. Since Vn(t) is continu-

ous, Vn(t) and |z1|2 + . . . + |zn − ϕn−1|2 is bounded. Hence, it can be concluded that |z1|, |z2 −
ϕ1|, . . ., |zn − ϕn−1| 2 L2 \ L1.

Adaptive control for a class of nonlinear complex dynamic systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0175730 May 3, 2017 10 / 16

https://doi.org/10.1371/journal.pone.0175730


On the other hand, since k Θ � Θ̂ k is bounded, it follows from Eqs (9) and (10) that j _z1j is

also bounded. Hence, z1 is uniformly continuous. Similarly, z2 − ϕ1, . . ., zn − ϕn−1 is uniformly

continuous. Therefore, by Lemma 2, z1! 0, z2 − ϕ1! 0, . . ., zn − ϕn−1! 0, as t!1. More-

over, in view of the continuity of Ψ1 and Ψ1(0) = 0 followed from Assumption 1, and noting

that the definition of ϕ1 in Eq (11), we conclude that lim
t!1

�1 ¼ 0. Thus, z2! 0 as t!1.

Assume that z1, z2, . . ., zi, ϕ1, ϕ2, . . ., ϕi−1 (i� 2) converge to 0 as t!1. It is clear that Λi,

Ai, vi also converge to 0 or 0 as t!1, which implies that lim
t!1

�i ¼ 0. Noting that zi+1 − ϕi!

0 as t!1, we obtain lim
t!1

ziþ1 ¼ 0. Repeating this procedure yields lim
t!1

zk ¼ 0, k = 1, 2, . . ., n.

Therefore, the controlled system (7) is stabilized. The proof is completed.

Corollary 1. Consider 2-dimensional strict-feedback CVCSs

_z1 ¼ z2 þΨH
1
ðz1; �z1ÞΘ;

_z2 ¼ φðz1; z2; �z1; �z2; tÞ þΨH
2
ðz1; z2; �z1; �z2; ÞΘþ uðtÞ;

8
<

:
ð34Þ

where z1 ¼ zr
1
þ jzi

1
; z2 ¼ zr

2
þ jzi

2
are complex-valued state variables. Suppose Assumptions 1

and 2 hold. For given initial condition z(0) = (z1(0), z2(0))T, if the adaptive complex scalar con-

troller is designed as

uðtÞ ¼ � φ � Mðz2 � �1Þ � z1 � ΨH
2
Θ̂ þ

@�1

@z1

ðz2 þΨH
1
Θ̂Þ

þ
@�1

@�z1

� �

ð�z2 þ Θ̂
H
Ψ1Þ þ

@�1

@Θ̂

� �T

Λ2;

ð35Þ

and the complex update law of complex parameter vector Θ is chosen as

_̂Θ ¼ Λ2; ð36Þ

where

�1 ¼ � Mz1 � ΨH
1
Θ̂;

Λ2 ¼ z1Ψ1 þ ðz2 � �1Þ Ψ2 �
@�1

@z1

Ψ1

� �

� z2 � �1

@�1

@�z1

Ψ1:

8
>><

>>:

ð37Þ

then the controlled system (34) is globally asymptotically stable.

Proof. It is similar to the former design procedure and the proof in Theorem 1 and thus is

omitted.

Remark 2. Theorems 1 and Corollary 1 guarantee the controlled CVCSs Eq (7) to be glob-

ally asymptotically stable. Therefore, one can make the controlled system converge to other

attractors instead of zero by introducing a appropriate linear transformation of coordinate.

Remark 3. Compared with prior work [18–29], we address stabilization of time-dependent

strict-feedback CVCSs with uncertain complex parameters and perturbations, and design the

adaptive complex scalar controller and complex update laws of uncertain complex parameters.

From the technical perspective, as our previous works [30–33], we don’t separate the real and

imaginary parts of the complex state variables or complex parameters, and accomplish all the

theoretical works in the sense of Wirtinger calculus in complex space. It’s clear that separating

imaginary and real parts of complex variables is a frequently used in [18–29], but largely inef-

fective solution to a stabilization problem in that case the imaginary and real parts cannot be

separated.
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Remark 4. If Θ is real-valued parameter vector, Theorems 1 and Corollary 1 are also

applied to achieve stabilization of strict-feedback CVCSs with real parameters [28, 29]. How-

ever, it’s clear that one cannot stabilize the strict-feedback CVCSs with complex-valued param-

eters by the method presented in [28, 29].

Remark 5. If both the parameters and state variables are taken to be real-valued, Theorems

1 and Corollary 1 are also applied to achieve stabilization of real-variable strict-feedback cha-

otic systems [12, 14]. However, it’s clear that one cannot stabilize the strict-feedback system

with complex-valued parameters and complex-valued state variables by the method presented

in [12, 14].

Remark 6. It is noted that based on the backstepping method, a recursive design is provided

for stabilization problems of a class of CVCSs with Ψi 6¼ 0, (i = 1, 2, . . ., n) in theory. In fact, it

is also applicable under the circumstances that some of the terms Ψi, (i = 1, 2, . . ., n) degener-

ate into zero in the real application.

Numerical example

In this section, we take the Duffing CVCSs as an example to verify and demonstrate the effec-

tiveness of the proposed control scheme. The simulation results are carried out using the

MATLAB software. The fourth order Runge-Kutta integration algorithm was performed to

solve the differential equations. The 2-dimensional Duffing CVCSs Eq (1) is perturbed by

uncertainty terms c
H
i y; ði ¼ 1; 2Þ, which is described as follows

_z1 ¼ z2 þ c
H
1
ðz1; �z1Þy;

_z2 ¼ f ðz1; z2; �z1; �z2; tÞ þ c
H
2
ðz1; z2; �z1; �z2Þyþ uðtÞ;

8
<

:
ð38Þ

where z1 ¼ zr
1
þ jzi

1
; z2 ¼ zr

2
þ jzi

2
are complex-valued state variables,

f ¼ z1 � az2 � bz2
1
�z1 þ g0cosðotÞ, g0 ¼

ffiffiffi
2
p

g exp jp
4

� �
, α, β, γ and ω are positive parameters, θ is

uncertain complex parameter, and u(t) = ur(t) + jui(t) is the control input. The control-free

perturbed complex system (38) is also chaotic in Fig 2 when

c1 ¼ sinð�z1Þ; c2 ¼ �z2
1
þ �z2

2
; y ¼ 0:2, and at the same values of the parameters and initial

conditions as in Fig 1.

According to Eqs (35)–(37) in Corollary 1, the adaptive complex scalar controller is con-

structed as follows.

uðtÞ ¼ � f � Mðz2 � �1Þ � z1 � ðz2
1
þ z2

2
Þŷ

� ðM þ ŷcosz1Þðz2 þ ŷsinz1Þ � l2sinz1;
ð39Þ

and the complex update law of complex parameter θ is given by

_̂
y ¼ l2; ð40Þ

where

�1 ¼ � Mz1 � ŷsinz1;

l2 ¼ z1sin�z1 þ ðz2 � �1Þ½�z2
1
þ �z2

2
þ ðM þ �̂

ycos�z1Þsin�z1�:

8
<

:
ð41Þ

In the numerical simulations, M ¼ 1; ŷð0Þ ¼ 0:1, and the same values of the other parame-

ters and initial conditions are chosen as in Fig 1. The state variables z1 and z2 of system (38)

converge asymptotically to zero as demonstrated in Fig 3(A), where the dotted red line shows
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mode of the variable z1 and the solid green line presents mode of the variable z2. The time

response of complex scalar controller and uncertain complex parameter estimation ŷ are

shown in Fig 3(B) and 3(C), where the dotted pink line shows the real part of the control input

(parameter) and the solid blue line the imaginary part of the control input (parameter).

Therefore, with the adaptive complex scalar controller Eq (39) and complex update law Eqs

(40) and (41), system (38) is stabilized. And note that the control input is periodical after some

time (the imaginary part of the controller is very the same as the real part when t is sufficiently

large) as in Fig 3(B). In fact, lim
kzk!0

u ¼ g0cost ¼ ð0:18þ 0:18jÞcost.

Remark 7. The persistent exiting conditions (PE conditions) in real space could not be eas-

ily extended to complex space because there exist neither sign function nor comparison of

complex numbers in the complex field. It is difficult or even impossible to solve the precise

parameter estimate problem in complex space by the existing approaches. Therefore, it is a

challenging but crucial issue, and we will continue the topic in the near future.

Discussion and conclusions

In this paper, we have developed a new unified framework for the stabilization of a class of n-

dimensional time-dependent strict-feedback CVCSs with uncertain complex parameters and

perturbations. In detail, appropriate Lyapunov functions dependent on complex-valued vec-

tors and unknown complex parameters have been constructed, and their Lie derivatives are

Fig 2. Phase portrait of the chaotic attractor for perturbed Duffing CVCSs Eq (38) when c1 ¼

sinðz1Þ; c2 ¼ z2
1
þ z2

2
; y ¼ 0:2 and in the absence of the controller u(t). (A): On (zr

1
, zr

2
) plane. (B): On (zi

1
,

zi
2
) plane.

https://doi.org/10.1371/journal.pone.0175730.g002
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provided in the sense of Wirtinger calculus. And on this basis, an efficient back-stepping

design has been proposed for controlling this type of CVCSs. It should be noted that it needs

only one complex scalar controller to realize stabilization no matter how many dimensions

CVCSs contain and the conditions for the existence of controller are very easy to check. Espe-

cially, this method combine the identification of unknown complex parameters with back-

stepping design to control time-dependent strict-feedback CVCSs. The proposed systematic

procedure sheds some light on the potential real world applications, such as the electronic and

mechanic devices, biology and medicine, and so on.
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