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Abstract

Panicle traits are among the most important agronomic characters which directly relate to

yield in rice. Grain number (GN), panicle length (PL), primary branch number (PBN), and

secondary branch number (SBN) are the major components of rice panicle structure, and

are all controlled by quantitative trait loci (QTLs). In our research, four advanced backcross

overlapping populations (BIL152, BIL196a, BIL196b, and BIL196b-156) carrying intro-

gressed segments from chromosome 6 were derived from an indica/japonica cross that

used the super-hybrid rice restorer line HR1128 and the international sequenced japonica

cultivar ‘Nipponbare’ as the donor and recurrent parents, respectively. The four panicle

traits, GN, PL, PBN, and SBN, were evaluated for QTL effects using the inclusive composite

interval mapping (ICIM) method in populations over two years at two sites. Results showed

that a total of twelve QTLs for GN, PL, PBN, and SBN were detected on chromosome 6.

Based on marker loci physical positions, the QTLs were found to be tightly linked to three

important chromosomal intervals described as RM7213 to RM19962, RM20000 to

RM20210, and RM412 to RM20595. Three QTLs identified in this study, PL6-5, PBN6-1,

and PBN6-2, were found to be novel compared with previous studies. A major QTL (PL6-5)

for panicle length was detected in all four populations at two locations, and its position was

narrowed down to a 1.3Mb region on chromosome 6. Near isogenic lines (NILs) carrying

PL6-5 will be developed for fine mapping of the QTL, and our results will provide referable

information for gene excavation of panicle components in rice.
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Introduction

In rice, panicle architecture is not only the most important component of plant type, but is

also a vital factor for improving grain yield. Grain number (GN), panicle length (PL), pri-

mary branch number (PBN), and secondary branch number (SBN) are the major compo-

nents of rice panicle structure. Many studies have shown that panicle structure and the

component traits are all typical and complex quantitative traits which are affected by genes

and environment, and that together they determine the design of plant architecture and yield

in rice [1–3].

With the development of molecular markers and rice mapping populations, many quantita-

tive trait loci (QTL) for panicle structure components have been reported [4–11] and some

have been fine mapped [12–16]. Except the many mapped QTLs for panicle structure, some of

those with large effects defined major genes that have been cloned. In 2005, the first gene for

grain number, Gn1a, was cloned and found to be a major QTL that encodes a cytokinin oxi-

dase gene, and this gave the first indication that endogenous hormone levels could regulate

grain yield in rice. Recently, studies of the zinc finger transcription factor DST have allowed a

further understanding into the formation of spikelet number per panicle, which is regulated

through Gn1a [17, 18]. The IPA1 QTL is encoded by OsSPL14 (SOUAMOSA PROMOTER

BINDING PROTEIN-LIKE 14) and was found to be regulated by microRNA (miRNA)

OsmiR156 in vivo. Further research demonstrated that a point mutation in OsSPL14 disrupts

OsmiR156-directed regulation of OsSPL14, generating an ’ideal’ rice plant with reduced tiller

number, increased lodging resistance, and enhanced grain yield. In addition, other studies

showed that IPA1 could not only direct binding to the promoter of the negative regulatory fac-

tor gene OsTB1, thus suppressing tillering in rice, but also affected plant height and panicle

length, which impacted yield through positive control of the important plant architecture gene

DEP1 [19–21]. DNA sequence analysis of the aberrant panicle organization 1 (apo1) mutant

indicated that the gene encodes an F-box protein which is orthologous to the regulatory factor

UFO of class-B genes in Arabidopsis thaliana, and showed that APO1 positively controls spike-

let number by suppressing the precocious conversion of the inflorescence [22, 23]. The identi-

fication and cloning of a novel rice mutant gene, short panicle1 (sp1), showed that this gene

encodes a putative transporter that belongs to the peptide transporter (PTR) family, which

supported the previous finding that SP1 contains a conserved PTR2 domain consisting of 12

transmembrane domains, and that the SP1-GFP fusion protein is localized to the plasma mem-

brane [24]. The lax2 mutant is similar to lax panicle1 (lax1) in that it lacks an apical meristem

(AM) in most of the lateral branches of the panicle and has a reduced number of AMs at the

vegetative stage. The lax1 lax2 double mutant synergistically enhances the reduced-branching

phenotype, indicating the presence of multiple pathways for branching. Lax2 encodes a

nuclear protein that contains a plant-specific conserved domain and physically interacts with

LAX1 [25, 26].

In this study, four advanced backcross populations derived from an indica/japonica cross

that used the super-hybrid rice restorer line HR1128 and the international sequenced japonica

cultivar ‘Nipponbare’ as the donor and recurrent parents, respectively, were developed for

QTL analysis of rice panicle structure which included the traits GN, PL, PBN, and SBN. We

mapped twelve QTLs for panicle components, and among these, three QTLs contained PL6-5,

PBN6-1, and PBN6-2 were found to be novel. A major QTL (PL6-5) for panicle length was

detected on the long arm of chromosome 6 and was narrowed down to a physical region of 1.3

Mb. These results will provide referable information for gene excavation of panicle compo-

nents in rice, and near isogenic lines (NILs) carrying PL6-5 will then be developed for the fine

mapping of panicle length.

QTL analysis and dissection of panicle components in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0175692 April 19, 2017 2 / 13

https://doi.org/10.1371/journal.pone.0175692


Materials and methods

Population development

In this study, four advanced backcross populations were selected for QTL mapping of panicle

components in rice (Fig 1). The donor parent was an indica super-hybrid rice restorer line,

HR1128 [27], which was previously chosen to be a high-yield QTL donor for high throughput

genetic analysis [28]. The recurrent parent was the japonica cultivar ‘Nipponbare’, the first rice

cultivar to be genome sequenced [29], which was previously used as a common recurrent par-

ent for population development and multiple QTL analyses [30–32]. Based on previous results,

we chose a single plant carrying the target fragment on chromosome 6 to backcross with the

recurrent parent continuously. Following this, the BC3F1 plant BIL196, and BIL152, which was

heterozygous in this region, were selected for self-pollination, which gave 331 and 200 BC3F2

plants, respectively, as the mapping population. A second population, named BIL196b-156

(BC3F4, 384 plants), was derived from self-pollination of a BIL196b progeny plant called 156,

which carried fewer heterozygous segments on chromosome 6 (Fig 2).

Field experiments and phenotypic evaluation

The population made up of 331 BC3F2 plants generated from BIL196 was divided into two

groups, BIL196a and BIL196b. BIL196a, consisting of 199 BC3F2 plants, was planted at Sanya

in Hainan province in the winter of 2014, while BIL196b, consisting of 132 BC3F2 plants, was

grown at Changsha in Hunan province in the summer of 2014. Another population consisting

of 200 individuals derived from the heterozygous plant BIL152 was cultivated at Sanya adja-

cent to population BIL196a, while the final population BIL196b-156 was grown at Sanya in

Hainan province in the winter of 2015. The donor and recurrent parents were included as con-

trols with three replicates of each. All plant material was cultivated using standard field man-

agement practices. A number of panicle characters including grain number (GN), panicle

length (PL), primary branch number (PBN), and secondary branch number (SBN) were

Fig 1. Flow chart of population development for QTL analysis.

https://doi.org/10.1371/journal.pone.0175692.g001
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measured in the two parental lines and the four populations. The survey standard was the

same as that of Duan et al [28].

DNA extraction and marker genotyping

Genomic DNA was extracted from small tissue samples from the parental lines and all popula-

tions at the seedling stage using the CTAB method [33]. In this study, we used SSR markers

which were obtained from the Gramene database (http://www.gramene.org/) for linkage map

construction and QTL mapping. Marker genotyping and assays were performed using 8%

denaturing polyacrylamide gels as described by Wu and Tanksley [34].

Linkage map construction and QTL analysis

Genetic linkage maps of all populations were constructed with the program Mapmaker/Exp3.0

[35]. QTL analysis was performed using the inclusive composite interval mapping (ICIM)

method in IciMapping, version 4.0, based on a stepwise linear regression model [36]. QTL

mapping in the present experiment was carried out by calculating the threshold logarithm of

odds difference (LOD) for each trait by performing a test with 1,000 permutations. The thresh-

old of LOD values was 2.5. QTL were named according to McCouch et al. [37] and the QTL

Fig 2. Graphic genotype of the selected advanced backcross individuals. The grey and black regions of the chromosomes indicate the homozygous

segments from Nipponbare and HR1128 respectively. The hatched regions of the chromosomes indicate the heterozygous areas.

https://doi.org/10.1371/journal.pone.0175692.g002
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mapping results were comprehensively compared to the OGRO database [38], the Q-TARO

database [39] and Gramene (http://archive.gramene.org/qtl/). The statistical significances for

the population and parental trait data were calculated with Microsoft Excel. Phenotypic corre-

lation coefficients were calculated using SPSS13.0 software (SPSS Inc., Chicago, IL).

Results

Phenotypic data analysis of parental lines and populations

In our research, the four panicle-related traits, grain number (GN), panicle length (PL), pri-

mary branch number (PBN), and secondary branch number (SBN), were investigated in four

populations (BIL152, BIL196a, BIL196b, and BIL196b-156) and the parental lines at SY

(SanYa) in 2014 and CS (ChangSha) in 2015.

Notable differences were observed between the measured traits in Nipponbare and HR1128

(Table 1 and Fig 3A). The male parent HR1128 had higher grain number (maximum GN of

532.6 at CS in 2014) compared with the female parent ‘Nipponbare’ (maximum GN of 119.3 at

CS in 2014). A similar situation was observed for the three traits PBN, SBN, and PL. The

donor HR1128 exhibited a large panicle architecture with a panicle length of 30.2 cm and

highly dense branching (PBN = 31.5 and SBN = 96.7) at CS in 2014, and the tendency was the

same in the environment at SY in 2014 and 2015. The female parent ‘Nipponbare’ displayed a

typical small panicle type with short panicle length of 17.6 cm, reduced branch numbers

(PBN = 8.7 and SBN = 9.8) at SY in 2015, and had the lowest trait values among the different

environments. The large trait differences between the two parents provided an abundant

source of trait variation for population development and QTL mapping.

The descriptive statistics and frequency distributions of panicle related traits in the BIL

(backcross inbred line) populations are presented in Fig 3 and Table 1. A large variation in the

BILs was observed for GN, PL, PBN, and SBN in 2014 and 2015. The phenotypic values were

all found to be continuous with normal frequency distributions, and the values of population

skewness and kurtosis were all<1. Transgressive segregation was also observed for most of the

traits which indicated that panicle component traits are controlled by multiple QTLs. Both of

the above features of the BIL populations implied that all BILs were suited for QTL mapping of

panicle-related traits.

Phenotypic correlation coefficients for BIL152, BIL196a, BIL196b, and BIL196b-156 were

calculated and the results are shown in Table 2. All traits were found to be correlative to each

Table 1. Descriptive statistics and frequency distributions of panicle related traits in populations and parents.

Traits Environment BIL152 BIL196a BIL196b BIL196b-156 Parents

Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Nipponbare HR1128

GN Sanya,2014 66.0–153.0 104.2±15.71 74.0–175.0 125.2±17.40 98.1 421.9

Changsha,2014 95.0–236.0 170.4±31.72 119.3 532.6

Sanya,2015 71.0–221.0 125.3±22.79 88.9 397.1

PL(cm) Sanya,2014 15.9–22.3 18.7±1.25 17.2–24.5 20.1±1.32 18.0 25.1

Changsha,2014 18.6–34.1 25.8±2.38 23.8 30.2

Sanya,2015 15.8–24.5 20.1±1.37 17.6 23.8

PBN Sanya,2014 7.0–13.0 10.0±1.16 7.0–13.0 10.0±1.09 8.2 23.3

Changsha,2014 8.0–17.0 12.7±1.50 9.8 31.5

Sanya,2015 6.0–13.0 9.6±1.29 8.7 25.1

SBN Sanya,2014 6.0–24.0 13.4±3.29 7.0–27.0 17.8±3.40 10.3 77.2

Changsha,2014 9.0–45.0 25.9±7.47 14.8 96.7

Sanya,2015 6.0–28.0 17.9±3.94 9.8 71.5

https://doi.org/10.1371/journal.pone.0175692.t001
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other in different populations. For example, striking positive correlations were found between

SBN and other panicle traits GN, PL and PBN in the BIL152 population. Similar phenomena

were observed in all other populations. It was noteworthy that the correlation coefficients

among panicle traits in BIL196b-156 were generally higher than those in other populations.

Fig 3. Field performance comparison between parents and distribution of yield components in the backcross populations. (A) Panicle shape

comparison between R1128 and Nipponbare. The P1 and P2 represent Nipponbare and HR1128 respectively. Scale bar: 5 cm. (B) Panicle length. (C)

Grain number per panicle. (D) Primary branch number. (E) Secondary branch number.

https://doi.org/10.1371/journal.pone.0175692.g003
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the biggest and smallest correlation coefficients were all found between the same traits, PL and

PBN; their values were 0.992 and 0.262 in BIL196b-156 and BIL196b respectively, and they

were all significantly positively correlated at the 0.01 level.

QTLs for panicle traits in the BILs

Three populations, BIL152, BIL196a, and BIL196b, were used for QTL analysis of panicle-

related traits, and the results are shown in Table 3.

In BIL152, four QTLs for GN, PL, PBN, and SBN were detected on chromosome 6 (S1 Fig).

QTL PL6-1 had the highest LOD value (LOD = 5.71) and explained 12.43% of the phenotypic

variation for panicle length among the all four genetic regions, and the HR1128 allele had an

increase in PL. The other three QTLs, GN6-1, PBN6-1, and SBN6-1, shared the same interval

between RM7213 and RM19962 with LOD values of 4.15, 4.70, and 3.07 and explained

11.08%, 12.42%, and 8.04% of phenotypic variations, respectively. The positive alleles of QTLs

GN6-1, PBN6-1, and SBN6-1 were all from the donor parent HR1128, and the GN6-1 allele

with the biggest additive effect could increase the grain number by 7.09.

Table 2. Correlation coefficients among four panicle traits, GN, PL, PBN and SBN for BIL152 (upper),

BIL196a (secondary), BIL196b (tertiary) and BIL196b-156 (lower) populations.

GN PL PBN

SBN 0.874** 0.596** 0.481**

0.918** 0.692** 0.538**

0.905** 0.586** 0.479**

0.872** 0.966** 0.968**

PBN 0.687** 0.486**

0.655** 0.585**

0.589** 0.262**

0.776** 0.992**

PL 0.654**

0.748**

0.491**

0.769**

** is significant at p < 0.01.

https://doi.org/10.1371/journal.pone.0175692.t002

Table 3. QTL analysis of panicle related traits in populations.

Population Environment Trait Name QTL Name Position (cM) Left Marker Right Marker LOD PVE (%) Add Dom

BIL152 Sanya,2014 GN GN6-1 109.00 RM7213 RM19962 4.15 11.08 -7.09 -4.04

PL PL6-1 121.00 RM20118 RM20210 5.71 12.43 -0.75 0.16

PBN PBN6-1 106.00 RM7213 RM19962 4.70 12.42 -0.53 -0.35

SBN SBN6-1 110.00 RM7213 RM19962 3.07 8.04 -1.36 -0.43

BIL196a Sanya,2014 GN GN6-2 6.00 RM20118 RM20210 4.63 10.66 -7.11 -1.53

PL PL6-2 6.00 RM20118 RM20210 5.98 12.69 -0.60 -0.08

PL PL6-3 65.00 RM412 RM20595 2.98 6.12 -0.10 -0.54

PBN PBN6-2 0.00 RM20000 RM6818 5.69 12.34 -0.45 -0.29

SBN SBN6-2 6.00 RM20118 RM20210 2.63 6.18 -1.04 -0.40

BIL196b Changsha,2014 PL PL6-4 40.00 RM20210 RM20018 3.06 12.67 -1.22 0.40

SBN SBN6-3 16.00 RM20000 RM20210 2.77 17.18 -3.20 -3.95

BIL196b-156 Sanya,2015 PL PL6-5 3.00 RM20118 RM003 2.54 3.10 -0.26 -0.31

https://doi.org/10.1371/journal.pone.0175692.t003
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Five QTLs for the four traits GN, PL, PBN, and SBN were identified in the BIL196a popula-

tion at Shanya in 2014. The three QTLs for traits GN, PL, and SBN, GN6-2, PL6-2, and SBN6-
2, were detected in the same chromosomal interval at the same position (S2 Fig). Among

these, the QTL PL6-2 had the highest LOD score (5.98) and explained the largest percentage of

phenotypic variation (12.69%), similar to PL6-1 detected in the BIL152 population at Shanya

in 2014. All three QTLs had an increasing effect on their traits, and the positive alleles were

from the male parent HR1128 as well. In addition, two other QTLs, PL6-3 and PBN6-2, were

also detected in this population in different genomic regions, and they had LOD values of 2.98

and 5.69, respectively. These two QTLs had a positive impact on PL and PBN, explaining

6.12% and 12.34% of the phenotypic variation separately, and the positive alleles came from

the same parent, HR1128.

In the BIL196b population, there were only two QTLs for PL and SBN detected at Changsha

in 2014 (S3 Fig). PL6-4 with the higher LOD value (3.06) was mapped to the interval between

markers RM20210 and RM20018, and explained 12.67% of the phenotypic variation explana-

tion (PVE) for panicle length. The other QTL, SBN6-3, had a smaller LOD score (2.77) and

was located between marker loci RM20000 and RM20210, but had larger phenotypic variation

ratio (17.18%). It is noteworthy that the two QTLs mapped to nearly the same region on chro-

mosome 6 as determined by the marker loci RM20000 and RM20018, and they both had a pos-

itive additive effect, with the positive alleles originating from the donor HR1128.

Validation of the QTL for panicle length between marker loci RM20118

and RM20210

A segregating population, BIL196b-156, which consisted of 384 individuals, was developed to

validate the genetic interval RM20118 to RM20210 for the panicle length QTL. As shown in

Table 3 and S4 Fig, the QTL PL6-5, with LOD value 2.54 and 3.10% PVE, was detected in this

population at Shanya in 2015. The QTL region was from marker loci RM20118 to RM003,

which was located between marker loci RM20118 and RM20210. The genetic interval contain-

ing PL6-5 was narrowed down to a physical region of 1.3 Mb on chromosome 6 that was

smaller than the range for QTLs PL6-1, PL6-2, and PL6-4. The positive allele of PL6-5 came

from the cultivated variety HR1128 and it had an increasing effect on panicle length.

Discussion

QTL detection in advanced backcross overlapping rice populations

Panicle-related traits in rice include GN per panicle, PL, PBN, and SBN. All are typical quanti-

tative traits that are controlled by major and minor genes and influenced by genetic back-

ground and the external environment. Because of these confounding factors, it is necessary to

detect the QTLs in different environments and genetic backgrounds in order to validate the

existence of actual QTLs. Comparison of QTLs detected in advanced backcross and overlap-

ping populations of defined pedigree could improve the reliability of QTL detection [40–43].

In this research, four advanced backcross and overlapping populations (BIL152, BIL196a,

BIL196b and BIL196b-156) were developed for the detection of panicle trait QTLs at Changsha

and Sanya in 2014 and 2015. For example, the panicle length QTL PL6-1, which was detected

in population BIL152, and PL6-2, which was detected in the BIL196a population, could sup-

port the existence and effects of each other, because the population BIL152 contained nearly

all the heterozygous segments of chromosome 6 which were partially duplicated compared

with BIL196a, and the QTL interval was located in the overlapping region. Another fact may

certify the QTL PL6-1 could be detected in different environments. Populations BIL196a and

QTL analysis and dissection of panicle components in rice
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BIL196b, two parts of the same segregating population, and BIL196b-156, which was derived

from BIL196b, were grown at Sanya, Changsha, and Sanya in 2014, 2014, and 2015 respec-

tively. The data obtained from two regions and three seasons gave strong support to the notion

that the panicle length QTLs PL6-2, PL6-4, and PL6-5 are the same, and that PL6-2 had the

highest LOD value of 5.98 along with the maximum 12.69% PVE.

Comparison and analysis of QTLs

Twelve QTLs for the four panicle components GN, PL, PBN, and SBN were detected on chro-

mosome 6 in this study. Based on the QTL physical positions, the QTLs were tightly linked

with three chromosomal regions described as RM7213 to RM19962, RM20000 to RM20210,

and RM412 to RM20595 (Table 4).

Three QTLs, GN6-1, PBN6-1, and SBN6-1, were mapped to the first interval and they were

all from the same population, BIL152, grown at Sanya in 2014. Compared with the results

of previous studies, qSPN-6 [44], qSPN-6 [45], gp6 [46], and qgn6-3 [28] for grain number

shared the common regions with GN6-1 detected in this study. Among the four QTLs, qSPN-
6 and gp6 had much larger intervals than GN6-1 with LOD values of 3.0 and 6.7, and

explained variance of 15.3% and 7.9%, respectively. The QTL qgn6-3 mapped to the smallest

physical region (0.4 cM), and was detected in our previous research using an F2 population

derived from the same cross between HR1128 and ‘Nipponbare’, and it had a high LOD

score (LOD = 15.62) and normal 8.9% PVE compared to GN6-1. The other QTL, qsbn6-2
[28], located in the same region as SBN6-1 and the PBN6-1, was not available from previous

research, and it may be a novel QTL for primary branch number. Further studies should be

focused on the grain number QTL GN6-1 in consideration of the indirect verification from

previous studies.

Eight QTLs, including GN6-2, PL6-1, PL6-2, PL6-4, PL6-5, PBN6-2, SBN6-2, and SBN6-3,

mapped to the same chromosomal interval between marker loci RM20000 and RM20210.

Among these, GN6-2 was found in the area of gp6 [46], SBN6-2 and SBN6-3 shared the overlap-

ping interval that contained qsbn6-3 [28], and originated from the same donor, HR1128. PL6-
1, PL6-2, and PL6-4 were detected in three different populations in two environments, which

strongly supported this QTL having a stable genetic effect, and the validation of PL6-5 pro-

vided further proof that all four panicle-length QTLs could be the same, with the highest LOD

score of 5.98 and maximum PVE of 12.69%. It is noteworthy that four panicle-length QTLs

(PL6-1, PL6-2, PL6-4, and PL6-5) and one branch number QTL 9PBN6-2) were not identified

in previous studies, implying that they may be novel.

In the third chromosomal interval between marker loci RM412 and RM20595, only one

panicle-length QTL, PL6-3, was mapped to this region which contains a previously mapped PL

Table 4. Comparison and analysis of QTLs for panicle traits in three genetic regions.

Genetic regions QTLs detected in this study Common regions shared with previous studies

RM7213--RM19962 GN6-1 qSPN-6 [44]; qSPN-6 [45]; gp6 [46]; qgn6-3 [28]

PBN6-1 N/A

SBN6-1 qsbn6-2 [28]

RM20000--RM20210 GN6-2 gp6 [46]

PL6-1,PL6-2,PL6-4,PL6-5 N/A

PBN6-2 N/A

SBN6-2,SBN6-3 qsbn6-3 [28]

RM412--RM20595 PL6-3 RM6811 [16]

https://doi.org/10.1371/journal.pone.0175692.t004
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QTL linked to the SSR marker RM6811 [16]. In this study, a population consisting of 540 rice

accessions were used for association mapping of panicle length. MLM (mixed linear model)

analysis showed that SSR marker RM6811 on chromosome 6 was associated with panicle

length (p< 0.05) in 2011 and 2012. The QTL PVE ranged from 3.96 to 4.51% compared to

PL6-3, where the PVE was 6.12%.

QTL detection in the pericentromeric region

Although map-based cloning has been used successfully in the dissection and identification of

many complex quantitative traits in rice, several obstacles, such as depression of meiotic

recombination in the centromeric region, can make map-based cloning very difficult [47].

The important yield gene Ghd7 was initially fine mapped between marker loci RM5436 and

C39 in the centromeric region on chromosome 7, and severe recombination suppression was

observed in the targeted interval which complicated cloning of the gene. To solve this problem,

the candidate gene method was used, which resulted in the cloning of Ghd7 [48]. Some studies

have implied that depression of meiotic recombination occurs not only around the centro-

mere, but could also be present in the pericentromeric region. One putative QTL, qSPP7,

which controls the number of spikelets per panicle, was identified in the pericentromeric

region of rice chromosome 7. In order to isolate the QTL, 1,082 plants with extremely small

panicles from a BC3F2 population containing 8,400 individuals were further used to fine map

the QTL. This showed that qSPP7 co-segregated with two marker loci, RM5436 and RM5499,

that spanned a physical distance of 912.4 kb. Overall, these results suggested that recombina-

tion suppression occurs in the region, and that a positional cloning strategy is not feasible for

isolating qSPP7 [49]. A similar phenomenon may have occurred in our study. The panicle

length QTLs PL6-1, PL6-2, and PL6-4 were initially mapped to the same region between

marker loci RM20118 and RM20210, and a larger population, BIL196b-156 (BC3F4), consist-

ing of 385 individuals, was then used to narrow down the PL6-5 locus to a physical interval of

1.3 Mb between RM20118 and RM003. We found it strange that the LOD score and PVE in

the BIL196b-156 (LOD = 2.54, PVE = 3.1%) were much smaller than in the other three popula-

tions. Possible explanations include the occurrence of severe recombination suppression in the

BIL196b-156 population, because the RM20118 locus is close to the pericentromeric region of

rice chromosome 6 (Fig 4), or that the QTL effect was altered in the different environments

under various genetic backgrounds. However, existence of the QTL PL6-5, that has a signifi-

cant effect on panicle length in rice, is supported by the fact that it was detected by QTL

analyses in four populations. Strategies such as large-scale NIL (near-isogenic line) and F2 seg-

regating populations combined with bioinformatics prediction may be required for the isola-

tion and cloning of PL6-5.

Fig 4. Map position of QTL PL6-5 in the pericentromeric region on chromosome 6. The abbreviations S6 and L6 denote the short arm

and long arm region of chromosome 6 respectively. C6 indicates the centromere region from 13.2 Mb to 17.6 Mb. The physical position of QTL

PL6-5 was mapped between 18.2 Mb and 19.5 Mb and this region is close to the centromere, separated by only 600 kb.

https://doi.org/10.1371/journal.pone.0175692.g004
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