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Abstract

This paper studies the non-fragile mixed H,, and passive synchronization problem for Mar-
kov jump neural networks. The randomly occurring controller gain fluctuation phenomenon
is investigated for non-fragile strategy. Moreover, the mixed time-varying delays composed
of discrete and distributed delays are considered. By employing stochastic stability theory,
synchronization criteria are developed for the Markov jump neural networks. On the basis of
the derived criteria, the non-fragile synchronization controller is designed. Finally, an illustra-
tive example is presented to demonstrate the validity of the control approach.

Introduction

There have been significant attentions on dynamic behaviors of neural networks, since they
have various current and future potential applications, i.e., signal processing, optimization
problems, pattern recognition and so forth. [1-9]. In particular, the study of Markov jump
neural networks has been a significant topic during the past years, since this model can better
describe the neural networks with different structures in real life. Generally speaking, the
mode jumps displayed in the Markov jump neural networks are commonly considered to be
governed by an ideal homogeneous Markov chain. With the help of analysis and synthesis for
Markov jump systems, some remarkable results on Markov jump neural networks have been
reported in the literature and the references therein [10-19].

On another research line, the synchronization problem has become a hot topic in the fields
of neural networks [9, 12]. When one neural network can synchronize the other neural net-
work, they can display complicated dynamic behaviors, which can give an insight into the
characteristics of neural network. As is well known, time delays exist in neural networks, such
that there is a need for the synchronization problem with time delays [20, 21]. Moreover, it is
noted that another unavoidable factor affecting the synchronization in neural networks is the
disturbance. As a result, several effective synchronization strategies for neural networks with
disturbances have been proposed, especially for some finite-time cases [22-28].
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It is worth mentioning that the theory of passivity has provided a powerful tool in analyzing
and synthesis of complex dynamic systems [29, 30]. Note that some initial researches are on
the mixed H,,, and passive filtering design, which can provide a more flexible design than com-
mon H,, approach [31]. In addition, the non-fragile synchronization controller should be
designed for controller gain fluctuation attenuation [32]. Furthermore, it can be found that the
controller gain fluctuation can happen in a stochastic way [33]. Consequently, a natural ques-
tion arises: how to solve the synchronization problem for Markov jump neural networks?
Unfortunately, up to now, such a question has not been fully addressed and remains open.

This paper is to deal with the above question. In this paper, a stochastic variable is adopted
for describing the controller gain fluctuation. Based on stochastic methods, synchronization
criteria are first established, such that the drive and response Markov jump neural networks
can be synchronized in the presence of mixed time-varying delays and disturbance. Base on
the derived results, a design procedure is given for the synchronization controller.

The remainder of the paper is arranged as follows. The Markov jump neural network
model is first introduced, and the non-fragile synchronization problem is formulated. The
main results of the synchronization problem are then provided. Moreover, the simulation
results are given and this paper is concluded in the end.

Notation: R" denotes the n dimensional Euclidean space, R™*" denotes the set of m x n
matrices. £,[0, 00) denotes the space of square-integrable vector functions over [0, c0).

(Q, F,P) is a probability space, Q is the sample space, F is the o-algebra of subsets of the sam-
ple space and P is the probability measure on F. Pr{oa} means the occurrence probability of
the event ¢, and Pr{c|f} means the occurrence probability of & conditional on 8. E{x} means
the expectation of the stochastic variable x and E{x|y} means the expectation of the stochastic
variable x conditional on the stochastic variable y. * denotes the ellipsis in symmetric block
matrices and diag{- - -} denotes a block-diagonal matrix.

Methods
Consider the Markov jump neural networks with mixed time-varying delays in (Q, F, P):

x(t) = =Cr(t))x(t) + A(r(t))f (x(t)) + B(r(£))f (x(t — (1))

/ I (1)

where x(¢) = [x,(£), x5(2), . . ., x,,(t)]" denotes the state of the neuron; Sx(®)) = [fi(r (1)),
JEE210)) N MEN(3)) Tis the neuron activation function; C(r(t)) =

diag{c, (r(¢)), ¢, (r(t)),...,c,(r(t))} is a diagonal matrix with positive entries; Matrices A(r(t))
= (aii(r(£))) s B(r(2)) = (byj(r(£))) s and D(r(t)) = (d;j(r(£))) xn represent the connection
weight matrix, the discretely delayed connection weight matrix and the distributively delayed
connection weight matrix, respectively; 7(f) and d(¢) denote the discrete delay and distributed
delay, respectively, which satisfy

0<t(t)<t,i()<pu<l, (2)
0<d(t)<d, (3)

where 7, 4, and d are known positive constants. The initial condition of Eq (1) is given by x(s)

= ¢(s), s € [— max {f>a}70]-

PLOS ONE | https://doi.org/10.1371/journal.pone.0175676  April 14,2017 2/16


https://doi.org/10.1371/journal.pone.0175676

@° PLOS | ONE

Non-fragile synchronization of Markov jump neural networks with mixed time-varying delays

{r(t), t > 0} is a right continuous continuous-time Markov process with ® = {r,},Vi,j € T

described as

m, At + o(At) if ij
Pr(r(t+At) =j:r(t) =i) = { (4)

1+ m, At + o(At) ifi=j
with At > 0, lim(o(At)/At) = 0 and 7;; > 0 (i,j € Z,j # i) is the transition rate from mode i at

N
time ¢ to mode j at time ¢ + At, whilen, = — > =, forVie Z.
j=1, i
Assumption 1. The activation function f(x(t)) in Eq (1) is continuous and bounded, and sat-
isfies

F[§M<F+i*12 o, (5)

oc—ﬁ =Lt —= Ly 4ay .

where f(0) =0, a, f € R, a # Band F; and F' are known real constants.

Denote Eq (1) as the drive neural network. For the sake of simplicity, we denote the Markov
process () by i indices. Moreover, it is assumed that the mode of the drive and the response
neural networks can be identical all the time [34]. Then, the response neural network can be

given by
y() = —Cy(t) + Af(y(1) + Bf((t —<(1)))
+D, / fly(s))ds + u(t) + w(1), (©)
t—d(t)
where u(t) denotes the control input and w(t) € £,[0, co) is the disturbance.
Define synchronization error as
e(t) = y(t) = x(t), (7)
then it follows that
e(t) = —Ce(t) + A (f(y(1) — f(x(1)))
+B(f(y(t — (1)) — f(x(t — (1))
: (8)
4D, [ (7015 ~ fx(s))ds
t—d(t)
+u(t) + w(t).
We develop the following mode-dependent controller as:
u(t) = (K; + 0(£)AKe(t), ©)

where K; € R"" is the mode-dependent controller gain and AK; is the controller gain fluctua-
tion with

AK; = H/Y,(t)E, (10)

where H; and E; are known constant matrices, Y,(t) € R"" satisfies

TI(Y(1) < L, (11)
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0(t) € Ris defined by

1, controller gain fluctuation happens,

S(t) = { (12)

0, controller gain fluctuation does not happen,
with

Prid(t) =1} = o, (13)

Pr{d()=0 = 1-0, (14)

where 6 € [0, 1] is a known constant.
Consequently, System (8) can be rewritten as

e(t) = (K +0o(t)AK, — Ce(t) + A, (f(y(1)) — f(x(t)))
+B(f(y(t — 7(1))) — f(x(t = 2(1))))

t (15)
D, / (FO(5)) — F(x(s)))ds + o1(t).
t—d(t)

The following definitions and lemmas are introduced.
Definition 1. [31] System (15) is said to have mixed H,, and passive performance v, if there
exists a constant y > 0 such that

/ T 0T (S)els) + 2(1 — 0)" () m(s))ds
' , (16)
> [ = s,

for all t, > 0 and any non-zero w(t) € IL,, where 0 € [0, 1] represents the parameter that defines
the trade-off between H and passive performance.

Definition 2. The mixed H.,, and passive synchronization of the Markov jump neural net-
works Eqs (1) and (6) is said to be achieved if System (15) can achieve the mixed H, and passive
performance with the prescribed y.

Lemma 1. [35] For any positive symmetric constant matrix Q € R"™", scalars hy, h, satisfying
hy < hy, a vector function ¢ : [y, h,] — R”, such that the integrations concerned are well
defined, then

T

(/ o) o [ otsa)

< (h, = hy) (/:2 ¢>T(S)Q¢(S)d5> T~

Lemma 2. [36] For any matrix M > 0, scalars T > 0, 7(t) satisfying 0 < 7(t)<t, vector func-
tion x(t) : [—7,0] — R" such that the concerned integrations are well defined, then

-1 /t %7 (s)Mx(s)ds < (" (£)QL(t), (18)
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where
(o = B0),x" (=), x"(t = 1), (19)
-M M 0
Q = | x —-2M M |. (20)
.

Lemma 3. [37] Let LT = L, H and E be real matrices of appropriate dimensions with F(t) satis-
fying F'(t)F(t) < I Then, L + HFE + E" F" H' < 0, if and only if there exists a scalar € > 0 such
that L+ & " HH" + eE" E < 0, or equivalently

L H €ET
x* —el 0 <0. (21)
* * —el

Results

In this section, delay-dependent synchronization conditions will be developed, based on
which the non-fragile synchronization controller is designed.

Theorem 1. For given upper bounds of mixed time-varying delays T and d, and given scalars
0 and vy, the mixed H,, and passive synchronization of the Markov jump neural networks Eqs (1)
and (6) can be achieved in the sense of Definition 1 and 2, if there exist mode-dependent symmet-
ric matrices P; > 0, symmetric matrices Q > 0, R > 0 and a constant € > 0 such that

Hi] Hi?
I, .= <0 (22)
LI | PN
hold for all i € T, respectively, where
F := diag{F, F{ ,F,Ef,... ,F F}, (23)
. F, +F F, +F} F + Ff
F = diag 1+1,2+2,...,"+", (24)
2 2 2
Hill i12
Hzl = ) (25)
* i13
_ N -
PK,+K'P! — P.C,— C'PI + ) "m,P,
=1 R
Hrll = 9 (26)

+Q—R—FEA, + 77101

* —2R—ﬁA2i_
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0 P—(1—-0)I PA,+FA,

IT,, == B ) (27)
R 0 FA,,
I, := diag{—Q — R, —yI, =A, + d*W}, (28)
[P.B, P.D, TKiTPl. — fC!.TP,. 0 oPH, eEiT 7
0 0 0 0 0 0
I, := 0 0 0 0 0 01, (29)
0 0 TP, 0 0 0
L O 0 TATP, 0 0 0 |
[—A,, 0 TBTP, 0 0 0 T
* -W fDiTPi 0 0 0
* * R—2P, 0 TO0P.H, 0
IT, := . (30)
* * * R —2P, 0(1-0)TP,CH, 0
* * * * —el 0
| = * * * * —&l |

proof. Choose the Lyapunov-Krasovskii function as:

Vi = YoV, (31)
where
V(1) := ' (t)Pe(t), (32)
Vi = [ gacods. &
Vi =2 [ [ eterelg)dgan, (34)
V() = d / a / F7(e(9)) WT (e(9))dpdn, (35)
Fle(t)) = FO(1)) — f(x(t)). (36)
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The infinitesimal operator £ of V(¢) is defined by

LV(t) = Alijg%{E{V(t A — V(D).

(37)

Then for each mode i, by taking the derivative of Eq (31) along the solution of System (15),

one has

E{LV, (1)} = E{e"(t)Pe(t)+ e"(t)Pe(t) + ZnﬁeT(t)Pje(t)},

N

~f(x(9)))dp +w(t)) + D _me’ (1)Pe(t)}

j=1

= E{2¢"()P,((K, + 6AK, — C)e(t) + Af (e(t))

t

+Bf (e(t — ©(t))) + D, » )f(e(sv))dsv

+w(t) + Y me' (H)Pe(t)},
E{LV,(t)} = E{e"(t)Qe(t) — e'(t — T)Qe(t — 7)},

B{LV,(0) = B Rl —7 [ & gIRelg)dg,

E{LV,(1)} = E{d*f"(e(t)) W (e(t)) — d /ttdfT(e(<P))Wf(6(<P))d¢}-

By Lemma 1 and Lemma 2, it holds that:

t

—d [ f'(e(p)Wf (e(p))dg

t—d

(38)

(43)
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It follows from Assumption 1 that

pr ADIEO) p, »
- SO =) — fix(t = (1) _ o
s e(t —2(1)) = E (45)
such that the following inequality holds
e(t) 1" [FA, —EA,]T et
l~ _ ‘| <0, (46)
fle)l [ = A, | Lf(e(r)
e(t—c(t) 1" [EA, —FA[ elt—=(t))
l~ - ] <0. (47)
flet—<®N] | = A, | Lf(e(t—(1))
Define
J= /Op[y’IGeT(s)e(s) —2(1 = 0)e"(s)w(s) — yw" (s)ww(s)]ds. (48)

Noting that E{(6(t) — 8)*} = (1 — &), it can be deduced that
E{LV(¢) +y70e"(s)e(s) — 2(1 — O)e" (s)wm(s) — yw'(s)w(s)}

= E{ZVI(t) + 770" (s)e(s) — 2(1 — 0)e" (s)wo(s) — wa(s)w(s)} (49)

where
[2(K, + 0AK, — C)"| [%(K +6AK, —C)']"

0 0

0 0

o, =1, + zl R Tl
TA] TA]
TB! B!
i D! 1 L D!

[ /30 —8)eAKICT] [/3(1 = d)zAKICT]"

o O O o o o
o O©oO o o o O
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~ I:Iil I:IiQ
II, = 0, (51)
* 3
- N -
2P,(K, + 6AK, — C) + > _m,P,
~ = R
IT; (52)
+Q—R—FA, +y7'0I
L * —2R — ﬁAZi i
5 0 P—(1—-6) PA+FA, PB, PD,
Hi’z = . 9 (53)
R 0 FA,, 0 0
1:[1'3 = dlag{_Q —R, _VI, _Ali + aQ w, _A2i7 _W}a (54)
IORSUHONHGI (55)
M (t) = [eT(t)v eT(t - T(t))a eT(t - T)v wT(t)]T7 (56)
m,(8) = | (e(6)),f " (e(t — T(t))),/d()fT(E(ﬁv))dsv] : (57)
t—d(t
By Schur complement [38], it can be obtained that IT, < 0 is equivalent to IT, < 0, where
R R Pt
Hi _ A , (58)
* 3
- N -
2P,(K, + 0AK, — C) + > _m,P,
=1 R 0 P—(1-0)I
) +Q—R—FA, + 77101
I, = ) , (59)
x —2R—FA,, R 0
* * —Q—R 0
L * * * —yI ]
PA,+FA, PB, PD, ©(K +6AK,—C)" /3(1—8)TAKC’
. EA,, 0 0 0 0
I, = ) (60)
0 0 0 0 0
0 0 0 7l 0
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https://doi.org/10.1371/journal.pone.0175676

@° PLOS | ONE

Non-fragile synchronization of Markov jump neural networks with mixed time-varying delays

—A,+d*W 0 AT 0
* —A,, TB! 0
= * *x —W @' 0 |. (61)
* * —R7! 0
* * * —R!

By performing congruence transformation of diag{f,I,I,1,1,I,I, P, P,} to Eq (58) and

considering the inequality —P; R P; < R — 2P, 1, can be further rewritten as

:<

where

I oPH, T

o O O o O

6P H,
5(1 - 5)fPiCiHi_
i OPH, 1

o O o o O

0
T6PH,

LV 5(1 - 5)fPiCiHi_

N
2P(K,— C)+ > _m,P,

=1

= | +Q—R—FA,+y'0I

*

T,(t)[E,

Y,([E 0 0 0 0

0000 O0O0O0 O]

000 0]f,

(63)

—2R — FA,, R
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P,—(1-0I PA,+FA, PB, PD, tK'P,—zC'P, 0

I, = 0 EA,, 0 0 0 0], (65)
0 0 0 0 0 0
[ —yI 0 0 0 TP, 0
x  —A,+d*W 0 0 zAP, 0
5 * * —A,, TBIP, 0
I, = (66)
* * * -W zDIP, 0
* * * *  R—2P, 0
| * * * * * R—2P, |

Then, it can be derived by Lemma 3 that E{ LV () + 7y~ !0 (s)e(s) — 2(1 — 0)e" (s)w(s) —
yww’ (s)w(s)} < 0 holds, if IT; < 0. Therefore, under zero initial condition, it can be obtained
by integrating both sides of Eq (48) that J < 0 holds, which means that the mixed H, and pas-
sive synchronization of the Markov jump neural networks is well achieved according to Defi-
nition 2 and completes the proof.

Theorem 2. For given upper bounds of mixed time-varying delays T and d, and given scalars
0 and vy, the mixed H,, and passive synchronization of the Markov jump neural networks Eqs (1)
and (6) can be achieved in the sense of Definition 1 and 2, if there exist mode-dependent symmet-
ric matrices P; > 0, mode-dependent matrices V;, symmetric matrices Q > 0, R > 0 and a con-
stant € > 0 such that
\Pil \PiQ
Y, = l ] <0 (67)
Wy

hold for all i € T, respectively, where

N
T T pT
V,+ VI —PC —C'Pl +> P,
j=1 R

+Q—R—FA, +y'0I

* —2R—ﬁA2i_

0 P.—(1-0) PA +FA,

R 0 FA

2i

¥, = diag{—Q — R, —yI, —A, + d*W}, (71)
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rPB, PD, ©VI—7C'P, 0 OPH, eE'T
0 0 0 0 0 0
¥ o=|0 0 0 o o0 o0 |, (72)
0 0 TP, 0 0 0
L O 0 ‘fAiTPi 0 0 0 J
[—A, O TB!'P, 0 0 0 7
* -W 1DIP, 0 0 0
« % R—2P, 0 0P H, 0
LPH - ) (73)
* * * R—2P, o(l-9)TP.CH, 0
* * * * —el 0
| * * * * —&l |

E, F are defined in Eq (22) and the controller gain can be obtained as K, = P;' V..
proof. Let V; = P; K;. The rest of the proof can follow from the proof of Theorem 1 directly.

Discussion

In order to verify our designed synchronization scheme, the following simulation example is
presented.
Consider the Markov jump neural networks with two modes, where

21 0 0.2 0.3 0.3 0.5 0.2 -0.3

0 2 04 0.1 0.6 0.4 0.3 1.1

23 0 0.3 -0.2 0.8 0.7 0.4 0.1
¢ = l Ay = ]sz_[ Dy = ‘|7

0 24 0.1 0.3 —0.5 0.2 —0.6 0.5

and the neuron activation function is taken as
fi(x(t)) = fo(x(t)) = tanh(x(t)),

which satisfies Assumption 1 with F;, = F; = 0and F” = F; = 1, such that

>

= diag{0,0},
diag{0.5,0.5}.

My«
I

In the simulation, the transition probability matrix is given as

@:

06 0.6]
04 —04]

where the time step is set as At = 0.01.
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The time-varying delays are assumed to be 7(f) = 0.25 + 0.05 sin t and d(#) = 0.15 + 0.05 cos
t,such that T = 0.3 and d = 0.2. The disturbance c(t) is supposed to be w(t) =
diag{0.05sint,0.05 cost.} The parameters &, 6 and y are set by § = 0.5, 0 = 0.4 and y = 0.2.

The controller gain fluctuation satisfies the condition Eq (9) with

H, = diag{0.1,0.1},
T, (¢) = diag{sint, cost},
E, = diag{0.5,0.5},
H, = diag{0.2,0.2},
T,(¢) = diag{ cost, sint},
E, = diag{0.4,0.4}.

By solving W; < 0, i = 1, 2 in Theorem 2, the mode-dependent controller gains can be
obtained as follows:

—2.4702 —0.6356
al |
—0.6956 —2.8230
—3.0688  0.2705
K, - [ ]
0.0876  —2.7356

Set the initial values as x(t) = [1, -1]” and y(t) =[5, 5] T respectively. Under the modes
evolution shown in S1 Fig, it can be seen from S2 and S3 Figs that the synchronization can be
achieved with the designed mode-dependent controllers, which demonstrates our control
scheme.

Conclusion

The non-fragile mixed H,,, and passive synchronization problem of Markov jump neural net-
works with mixed time-varying delays is addressed. By utilizing the stochastic stability theory,
delay-dependent criteria are derived for ensuring that the desired synchronization is achieved
and the non-fragile synchronization controller is designed. An interesting further research
direction is extending the derived results to the uncertainty cases.

Supporting information

S1 Fig. The jumping modes of the neural networks.
(TIF)

S2 Fig. The controlled synchronization error of the neural networks.
(TIF)

S3 Fig. The control input of the neural networks.
(TTF)
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