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Abstract

Hemoglobin glycation index (HGI), defined as the difference between the observed HbA1c

value and the value of HbA1c predicted from plasma glucose levels, represents a measure

of the degree of non-enzymatic glycation of hemoglobin and it has been found to be posi-

tively associated with micro- and macro-vascular complications in subjects with type 2 dia-

betes. To investigate the pathophysiological abnormalities responsible for the increased

cardiovascular risk of patients with higher HGI, we evaluated the association of HGI with

cardio-metabolic characteristics in nondiabetic offspring of type 2 diabetic individuals. Insu-

lin sensitivity, measured by a hyperinsulinemic-euglycemic clamp, cardio-metabolic risk fac-

tors including lipid profile, uric acid and inflammatory factors, and ultrasound measurement

of carotid intima–media thickness (IMT) were assessed in 387 nondiabetic individuals. Par-

ticipants were stratified in tertiles according to HGI (high, moderate and low). As compared

with subjects with low HGI, those with high HGI displayed an unfavorable cardio-metabolic

risk profile having significantly higher values of BMI, waist circumference, triglycerides, uric

acid, fasting insulin, inflammatory markers, such as high sensitivity C reactive protein, eryth-

rocytes sedimentation rate, complement C3, fibrinogen, and white blood cell count, and

carotid IMT, and lower HDL and insulin-stimulated glucose disposal. In a linear regression

analysis model including several atherosclerotic risk factors such as gender, age, BMI,

inflammatory factors, lipid profile, insulin-stimulated glucose disposal, fasting insulin, uric

acid, and blood pressure, HGI was the major predictor of IMT (β = 0.35; P = 0.001). In a

logistic regression analysis adjusted for confounders, individuals with high HGI showed a

2.7-fold increased risk of vascular atherosclerosis (OR 2.72, 95%CI 1.01–7.37) as com-

pared with subjects with low HGI. The present findings support the notion that HGI may be a

useful tool to identify a subset of nondiabetic individuals conceivably harboring a higher risk

of cardiovascular disease.
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Introduction

Glycated hemoglobin (HbA1c) test is an indirect measure of average glycemia over approxi-

mately the previous 3 months that has been recommended not only for monitoring glucose

control among persons with diabetes but also as a diagnostic test for both type 2 diabetes and

conditions of increased risk of diabetes (the so-called prediabetes) [1]. Compared with fasting

glucose or 2-h post load glucose values, HbA1c has some advantages as a diagnostic test since

it has higher repeatability and pre-analytical stability, it can be measured in the nonfasting

state, and has less day-to-day perturbations during illness conditions. In addition, HbA1c has

been shown to be a better predictor of cardiovascular disease than fasting plasma glucose even

in nondiabetic populations [2,3]. Nonetheless, discordances between HbA1c values and other

measures of glycemic control have been observed [4–7]. Indeed, inter-individual variations in

HbA1c caused by factors other than blood glucose concentration have been reported in sub-

jects with type 2 diabetes [8–10], and in nondiabetic individuals [11–18]; these variants were

likely due to genetic factors [15,16] or to differences in hemoglobin glycation rates or in red

cell survival among different ethnic groups [17,18].

A statistical method to measure the disparity between actual HbA1c and the predicted

value of HbA1c based on plasma glucose levels has been developed and termed hemoglobin

glycation index (HGI) [19–22]. HGI is calculated as the difference between the observed

HbA1c value and the predicted HbA1c derived by inserting the individual fasting plasma glu-

cose concentration into a population regression equation expressing the linear association

between HbA1c and plasma glucose levels [19,22]. HGI may help to identify diabetic subjects

with a greater risk of micro- and macro-vascular complications [21,22]. Applying HGI analysis

to the Diabetes Control and Complications Trial (DCCT), it has been observed that type 1 dia-

betic patients with a high HGI exhibited a greater risk for retinopathy and nephropathy [21].

Accordingly, in patients with type 2 diabetes participating to the Action to Control Cardiovas-

cular Risk in Diabetes (ACCORD) trial, a higher HGI value was found to be associated with

retinopathy and nephropathy at baseline, and with greater mortality in the intensive treatment

group [22].

The question arises whether disparities between HbA1c and fasting plasma glucose as

assessed by HGI may unveil a different cardio-metabolic risk profile within nondiabetic

individuals.

To gain a deeper insight into the pathophysiological abnormalities responsible for the

increased risk of cardiovascular complications observed in type 2 diabetic patients with higher

HGI [22], we evaluated the associations of HGI with cardio-metabolic characteristics including

insulin sensitivity, assessed by the hyperinsulinemic-euglycemic clamp technique, lipid profile,

inflammatory factors, and carotid intima-media thickness (IMT) in a cohort of non-diabetic

offspring of type 2 diabetic individuals.

Materials and methods

Study subjects

Two different samples of White nondiabetic adults (�18 years of age) were studied.

Sample 1 comprises 2,055 nondiabetic individuals consecutively recruited at the Depart-

ment of Systems Medicine of the University of Rome-Tor Vergata and at the Department of

Medical and Surgical Sciences of the University “Magna Graecia” of Catanzaro [23]. This sam-

ple was used to estimate the linear relationship between fasting plasma glucose and HbA1c

in the study population to calculate the predicted HbA1c value [22]. The inclusion criteria

were: age�20 years, absence of diabetes, defined as HbA1c�6.5% or fasting plasma glucose
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�126mg/dl, and presence of one or more cardio-metabolic risk factors including elevated

blood pressure, dyslipidemia, overweight/obesity, and family history for diabetes. Exclusion

criteria encompassed: history of any malignant disease, end stage renal disease, heart failure,

gastrointestinal diseases associated with bleeding or malabsorption, autoimmune diseases,

acute or chronic infections, acute or chronic pancreatitis, haemoglobinopathies including

beta thalassemia trait, erythrocyte disorders, accumulation diseases such as amyloidosis and

hemochromatosis, history of drug abuse, self-reporting alcohol consumption of>20 g/day,

positivity for antibodies to hepatitis C virus (HCV) or hepatitis B surface antigen (HBsAg),

treatments able to modulate glucose metabolism, including lipid-lowering and hypoglycemic

agents, corticosteroids, and use of antiplatelet or anticoagulant medications.

Sample 2 comprises 387 non-diabetic offspring subjects participating in the European Net-

work on Functional Genomics of Type 2 Diabetes (EUGENE2) project [24] who had only one

parent with type 2 diabetes. Subjects were consecutively recruited at the Department of Medi-

cal and Surgical Sciences of the University ‘Magna Graecia’ of Catanzaro and at the Depart-

ment of Systems Medicine, University of Tor Vergata, Rome as previously described [25].

Participants underwent anthropometrical evaluation including measurements of body mass

index (BMI), waist circumference, body composition evaluated by bioelectrical impedance,

and three consecutive measurements of clinic blood pressure were obtained in the sitting posi-

tion, after five minutes of quiet rest. Resting heart rate was measured in the morning with sub-

jects in the supine position, after at least 30 min of quiet rest, by electrocardiography. After

12-h fasting, a 75 g OGTT was performed with sampling for plasma glucose and insulin deter-

minations. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp study, as

previously described [26]. Briefly, a priming dose of insulin (Humulin, Eli Lilly & Co., India-

napolis, IN) was administrated during the initial 10 min to acutely raise plasma insulin fol-

lowed by continuous insulin infusion fixed at 40 mU/m2 x min. The blood glucose level was

maintained constant during the 2-h clamp study by infusing 20% glucose at varying rates

according to blood glucose measurements obtained with a glucose analyzer at 5 minute inter-

vals (mean coefficient of variation of blood glucose was < 5%). Glucose disposal (M) was cal-

culated as the mean rate of glucose infusion measured during the last 60 min of the clamp

examination (steady-state) and it is expressed as milligrams per minute per kilogram fat-free

mass (MFFM) measured with the use of electrical bioimpedance. High resolution B-mode ultra-

sound was used to measure IMT of the common carotid artery using an ATL HDI 3000 ultra-

sound system (Advanced Technology Laboratories, Bothell, WA) equipped with a 7.5 MHz

transducer, as previously described [27]. A value of IMT >0.9 mm was used as index of vascu-

lar atherosclerosis according to the 2013 Guidelines for the management of arterial hyperten-

sion released by the Task Force for the Management of Arterial Hypertension of the European

Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) [28].

The protocol was approved by Institutional Ethics Committees and written informed con-

sent was obtained from all participants in accordance with principles of the Declaration of

Helsinki.

Analytical determinations

HbA1c was measured with high performance liquid chromatography using a National Glyco-

hemoglobin Standardization Program (NGSP) certified automated analyzer (Adams HA-8160

HbA1C analyzer, Menarini, Italy). Total and high lipoprotein density (HDL) cholesterol, tri-

glycerides, and glucose levels were assayed by enzymatic methods (Roche, Basel, Switzerland).

Serum insulin concentrations were determined with a chemiluminescence-based assay

(Immulite1, Siemens, Italy). Serum uric acid was measured by the URICASE/POD method
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implemented in an autoanalyzer (Boehringer Mannheim, Mannheim, Germany). High sensi-

tivity C reactive protein (hsCRP) levels were assessed by an automated instrument (Cardio-

Phase1 hsCRP, Milan, Italy). White blood cell count was determined using an automated

particle counter (Siemens Healthcare Diagnostics ADVIA1 120/2120 Hematology System,

Italy). Erythrocytes sedimentation rate (ESR) was measured automatically by the stopped-flow

technique in a capillary microphotometer (Alifax Test 1 System Polverara, Italy). Fibrinogen

and complement C3 were measured by an automated nephelometric technology using the

BN™II System analyzer (Siemens Healthcare, Italy).

Statistical analysis

Variables with skewed distribution including triglycerides, fasting insulin, hsCRP, and ESR

were natural log transformed for statistical analyses. Continuous data are expressed as

means ± SD. Categorical variables were compared by χ2 test. Anthropometric and metabolic

differences between groups were assessed after adjusting for age, gender and BMI using a gen-

eralized linear model with post hoc Fisher’s least significant difference correction for pairwise

comparisons. A multivariable linear regression analysis was performed in order to evaluate the

independent contribution of HGI and other cardio-metabolic risk factors to IMT. A logistic

regression analysis adjusted for confounders was used to determine the association between

the study groups and vascular atherosclerosis (IMT >0.9 mm) [28]. A P value <0.05 was con-

sidered statistically significant. All analyses were performed using SPSS software programme

Version 17.0 for Windows.

Results

Calculation of HGI

Sample 1 consisting of 2,055 nondiabetic adult individuals (mean age 47.8±14.6 years) was

used to estimate the linear relationship between fasting plasma glucose and HbA1c. As shown

in Fig 1, fasting plasma glucose and HbA1c were highly correlated (r = 0.55) in a cohort with

widely varying glycemic control: mean HbA1c was 5.4 ±0.4%, and fasting plasma glucose 93±
11 mg/dl. The degree of correlation is very similar to the one observed in previous studies in

type 2 diabetic individuals [22]. Despite the good correlation, it is evident that there is a sub-

stantial scatter as well. Next, predicted HbA1c was calculated for 387 non-diabetic offspring

subjects included in sample 2 by inserting fasting plasma glucose concentration into the sam-

ple 1 linear regression equation (HbA1c = 0.0158 � fasting glucose levels (mg/dl) +4.0311).

HGI was calculated by subtracting the predicted value of HbA1c from the observed HbA1c

levels, as previously described [22]. Study participants were stratified into tertiles (low, moder-

ate, or high HGI groups) according to their HGI value. The use of a tertile classification system

is consistent with previous HGI studies [22].

Cardio-metabolic characteristics

The mean age of the whole study sample was 37±10 years, 530 (47%) individuals were male,

and mean BMI was 29±6 kg/m2. Anthropometric and metabolic features of the study sample 2

stratified according to tertiles of HGI value are shown in Table 1. No significant differences

between the three study groups were observed with respect to gender. Subjects with high HGI

were older and heavier than individuals with low or moderate HGI. By design, individuals

with high HGI exhibited higher values of HbA1c, and lower concentrations of fasting plasma

glucose; however, no differences in 2h-post load glucose levels were observed amongst the

three study groups.
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After adjusting for age, gender and BMI, subjects with high HGI displayed higher levels of

triglycerides, uric acid, and fasting plasma insulin, and lower HDL cholesterol and insulin-

stimulated glucose disposal in comparison with individuals with low HGI. Additionally, after

adjusting for age, gender and BMI, subjects with high HGI displayed a significant increase of

all the inflammatory markers measured i.e. hsCRP, ESR, complement C3, fibrinogen and

white blood cell count in comparison with individuals with low HGI.

Atherosclerosis can be detected noninvasively in preclinical stages by measuring carotid

IMT, a well-established measure of early atherosclerosis that is largely utilized as a surrogate

marker for cardiovascular disease [29].

To estimate the independent contributor of HGI to IMT levels, we performed a linear

regression analysis in a model including gender, age, BMI, systolic and diastolic blood pres-

sure, total and HDL cholesterol, triglycerides, inflammatory markers, uric acid, fasting insulin

and insulin sensitivity, estimated by the insulin-stimulated glucose disposal. Comparison of

standardized coefficients allowing the determination of the relative strength of the association

of each variable with IMT (listed from strongest to weakest) is reported in Table 2. HGI was

the major contributor to IMT (β = 0.35; P = 0.001) followed by hsCRP (β = 0.34; P = 0.007),

ESR (β = 0.28; P = 0.02), and age (β = 0.17; P = 0.05). The full model explained 28% of IMT

variation.

After adjusting for age, gender, and BMI subjects with high HGI displayed a significant

increase in IMT as compared with individuals with low HGI (Table 1 and Fig 2A). A logistic

regression analysis adjusted age, gender, and BMI was used to determine the association

between the HGI values and subclinical vascular atherosclerosis, defined as IMT >0.9 mm

according to the ESH/ESC guidelines [28]. Subjects with high HGI showed a 2.7-fold increased

risk of having vascular atherosclerosis (OR 2.72, 95%CI 1.01–7.37) as compared with subjects

with low HGI (Table 1 and Fig 2B). When in the logistic regression model HGI values were

analyzed as continuous variable rather than a categorical variable (tertiles), we observed that

Fig 1. Linear relationship between HbA1c and fasting plasma glucose in the study sample 1.

https://doi.org/10.1371/journal.pone.0175547.g001
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each unit increase in HGI value was associated with a 5.2-fold increased risk of having vascular

atherosclerosis (OR 5.20, 95%CI 1.84–14.72).

Discussion

The risk of developing micro- and macro-vascular complications of both type 1 and type 2 dia-

betes is closely related to the chronic level of plasma glucose [30,31]. HbA1c is an integrated

measure of mean glycemia over the preceding 2–3 months, and is considered as the gold stan-

dard for measurement of glycemic control in subjects with diabetes. In addition, HbA1c is a

very good predictor of cardiovascular disease even in nondiabetic populations [2,3], and

recently, the ADA recommended the adoption of the HbA1c test for the diagnosis of diabetes

and prediabetes [1]. It is well established that HbA1c levels result from a posttranslational

modification of hemoglobin by glucose, and that the main factor influencing the rate of glyca-

tion in vivo is the prevailing concentration of plasma glucose. Nonetheless, discordances

between HbA1c levels and other measures of glycemic control have been reported [4–7].

Table 1. Anthropometric and metabolic characteristics of the study subjects stratified according to HGI tertiles.

Variables Low HGI

(1)

Moderate HGI

(2)

High HGI

(3)

P P

1 vs. 2

P

1 vs. 3

P

2 vs. 3

n (Male/Female) 129 (51/78) 129 (41/88) 129 (55/74) 0.18 0.24 0.70 0.09

Age (yr) 36±10 37±10 39±10 0.01* 0.32* 0.004* 0.07*

BMI (kg/m2) 29.0±7.6 29.5±7.4 32.9±8.6 0.001** 0.77** <0.0001** 0.001**

Waist circumference (cm) 94±17 947±16 103±18 <0.0001** 0.94** <0.0001** <0.0001**

SBP (mmHg) 121±13 121±18 124±17 0.31 0.37 0.12 0.50

DBP (mmHg) 77±9 78±11 79±11 0.12 0.81 0.10 0.06

HbA1c (%) [mmol/mol] 4.9±0.3

[30 mmol/mol]

5.3±0.2

[34 mmol/mol]

5.8±0.3

[40 mmol/mol]

<0.0001 <0.0001 <0.0001 <0.0001

Fasting glucose (mg/dl) 93±11 90±9 88±11 <0.0001 <0.0001 <0.0001 0.74

2-h glucose (mg/dl) 113±29 114±31 119±34 0.18 0.96 0.10 0.11

Fasting insulin (μU/ml) 10±5 11±7 15±9 0.005 0.89 0.005 0.003

Total cholesterol (mg/dl) 190±39 193±38 198±39 0.86 0.98 0.62 0.64

HDL (mg/dl) 53±13 52±13 48±11 0.07 0.70 0.03 0.08

Triglycerides (mg/dl) 102±52 103±58 134±82 0.03 0.96 0.02 0.02

Uric acid (mg/dl) 4.70±1.30 4.85±1.27 5.18±1.49 0.02 0.10 0.006 0.23

hsCRP (mg/l) 1.5±1.7 2.7±3.1 5.0±5.0 <0.0001 <0.0001 <0.0001 0.07

Fibrinogen (mg/dl) 274±68 286±62 309±70 0.002 0.27 0.001 0.01

Complement C3 (g/l) 1.07±0.18 1.15±0.22 1.25±0.23 0.07 0.22 0.02 0.22

ESR (mm/h) 12±11 14±11 16±13 0.02 0.16 0.008 0.15

White blood cell count (x109/l) 6358±1763 6800±2130 7698±2069 <0.0001 0.06 <0.0001 0.002

Insulin-stimulated glucose disposal (mg/min x Kg FFM) 10.6±3.7 10.5±4.4 8.4±4.7 0.03 0.89 0.02 0.02

Intima-media thickness (mm) 0.69±0.13 0.70±0.13 0.77±0.14 0.03 0.81 0.03 0.01

Vascular atherosclerosis

(OR 95%CI)

1

(Reference)

1.15

(0.37–3.57)

2.72

(1.01–7.37)

Data are means ± SD. Triglycerides, hsCRP, ESR, fasting, 1-h and 2-h insulin were log transformed for statistical analysis, but values in the table represent

a back transformation to the original scale. Categorical variables were compared by χ2 test. Comparisons between the three groups were performed using a

generalized linear model with post hoc Fisher’s least significant difference correction for pairwise comparisons. P values refer to results after analyses with

adjustment for age, gender, and BMI.

*P values refer to results after analyses with adjustment for gender.

**P values refer to results after analyses with adjustment for gender, and age. BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic

blood pressure; HDL = high density lipoprotein; hsCRP = high sensitivity C-reactive protein; ESR = erythrocyte sedimentation rate.

https://doi.org/10.1371/journal.pone.0175547.t001
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Indeed, a number of individuals exhibit consistently higher or lower HA1c levels than those

that would be anticipated on the basis of fasting plasma glucose [22, 32], mean blood glucose

(self-monitored) [19,33] or continuous glucose monitoring [34, 35]. Differences in the glyca-

tion of hemoglobin between individuals with the same fasting plasma glucose values can be

assessed by the calculation of HGI [22,32]. HGI is a measure of the disagreement between the

observed value of HbA1c and the one predicted on the basis of blood glucose levels. Individu-

als with low and high HGI have HbA1c levels that are lower or higher than predicted, respec-

tively, compared with other individuals with similar blood glucose levels. It has been shown

that higher HGI is associated with increased risk of developing nephropathy and retinopathy

in patients with type 1 diabetes [21, 36], and with a greater risk of diabetic complications,

hypoglycemia and total mortality in a subgroup of the ACCORD population [22].

Overall, these data support the idea that a higher degree of non-enzymatic glycation of

intracellular proteins may play a pathogenic role in micro- and macro-vascular complications

related to hyperglycemia. If this is the case, it is conceivable that a higher HGI affecting intra-

cellular protein glycation process may increase the individual cardio-metabolic risk burden

among nondiabetic individuals. In the present study, we investigated the association between

HGI with insulin sensitivity, assessed by the gold standard euglycemic hyperinsulinemic

clamp, and carotid IMT, a validated measure of early stage of atherosclerosis [28,29], in a Cau-

casian cohort of nondiabetic offspring of type 2 diabetic patients. Impaired insulin sensitivity

is considered an important risk factor for atherosclerotic disease [37–39], and a key determi-

nant of cardiovascular risk factors, including visceral obesity, atherogenic dyslipidemia, and

hypertension, clustering within the metabolic syndrome [40]. We found that individuals with

high HGI exhibited a worse metabolic risk profile including higher whole body and visceral

adiposity, triglycerides, uric acid, fasting insulin, and lower HDL cholesterol and insulin-stim-

ulated glucose disposal in comparison with individuals with low HGI, independently of con-

founders such as age and gender. Notably, no significant differences in post-load glucose

concentrations were observed between the study groups, suggesting that the association

between HGI and cardo-metabolic risk factors were independent of other measures of glucose

Table 2. Multiple regression analysis evaluating IMT as dependent variable.

Dependent variable Independent contributors Coefficient β P

IMT HGI

hsCRP

ESR

Age

BMI

Gender

DBP

White blood cell count

Triglycerides

Fibrinogen

Total cholesterol

Fasting insulin

HDL

SBP

Complement C3

Insulin-stimulated glucose disposal

Uric acid

0.35

0.34

0.28

0.17

0.20

0.19

0.16

0.07

0.05

0.03

-0.06

-0.06

-0.04

-0.03

-0.03

0.006

0.002

0.001

0.007

0.02

0.05

0.11

0.11

0.26

0.43

0.74

0.76

0.59

0.61

0.71

0.84

0.74

0.96

0.98

Linear regression analysis in a model including gender, age, BMI, systolic and diastolic blood pressure, total and HDL cholesterol, triglycerides,

inflammatory markers, uric acid, fasting insulin, and insulin sensitivity, estimated by the insulin-stimulated glucose disposal.

IMT = intima-media thickness; BMI = body mass index; HGI = hemoglobin glycation index; hsCRP = high sensitivity C-reactive protein; ESR = erythrocyte

sedimentation rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; HDL = high density lipoprotein.

https://doi.org/10.1371/journal.pone.0175547.t002
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homeostasis. Furthermore, we found a significant association between higher HGI and inflam-

matory status as subjects with high HGI displayed increased levels of inflammatory biomarkers

including hsCRP, complement C3, ESR, fibrinogen, and white blood cell count in comparison

to individuals with low HGI independently of age, gender, and BMI. As a result of the higher

cardio-metabolic risk burden, subjects with high HGI presented a significant increase in

carotid intima media thickness, a well validated indicator of subclinical atherosclerosis.

The mechanism by which elevated HGI are associated with increased risk of vascular ath-

erosclerosis is unsettled. One way for non-enzymatic glycosylation to cause both insulin resis-

tance and vascular atherosclerosis is by fostering advanced glycation end products (AGEs)

[41–43]. Notably, in subjects with diabetes increased HGI has been associated with higher lev-

els of AGEs [44]. AGEs interacting with their receptors (RAGE) on the cell membrane can

damage target cells by several mechanisms including altered function of intracellular proteins

modified by AGEs, activation of nuclear factor κ-B, causing a raise in gene expression of

Fig 2. IMT values (A), and OR 95%CI for vascular atherosclerosis, defined as IMT >0.9 (B), in the study

sample 2 stratified according to tertiles of HGI.

https://doi.org/10.1371/journal.pone.0175547.g002
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inflammatory mediators, and increased production of reactive oxygen species [41,42]. There is

evidence in animal models that oral advanced AGEs induce insulin resistance by altering insu-

lin receptor signaling leading to impaired glucose-uptake [45]. Moreover, in subjects with type

2 diabetes, it has been shown that baseline serum AGEs correlate with fasting insulin, and

indexes of insulin resistance, and an AGE-restricted diet for 4-months improves insulin sensi-

tivity [46]. Accordingly, we observed that individuals with high HGI had lower insulin sensi-

tivity and consequently higher levels of fasting insulin as compared with individuals with low

HGI independently of age, gender, and BMI.

In addition, chronic sub-clinical inflammation could be a unifying mechanistic factor link-

ing elevated HGI with vascular atherosclerosis. We found that individuals with higher HGI

displayed increased levels of a cluster of inflammatory markers including hsCRP, ESR, fibrino-

gen, white blood cell count, and complement C3 suggesting that a greater degree of non-enzy-

matic glycation may play a pathogenic role in inducing chronic sub-clinical inflammation.

Indeed, compelling evidence suggests that RAGE has a considerable role in innate immunity

[47], and inflammatory response is known to play a role in the development of atherosclerotic

cardiovascular disease [48,49]. It has been observed that subjects with diabetes treated with a

low AGEs diet for 6 weeks exhibit a significant reduction of serum AGEs levels and markers of

inflammation as hsCRP, and TNFα [50], thus reinforcing the role of AGEs in promoting sub-

clinical inflammation. Moreover, it has been reported that RAGEs are upregulated in the ath-

erosclerotic plaques of subjects with type 2 diabetes, and their overexpression is associated

with enhanced inflammatory reaction [50–53]. Because HGI has been shown to reflect the bur-

den of AGEs in the tissues, it is conceivable that activation of RAGE system may play a role in

the increased risk of vascular atherosclerosis observed in individuals with high HGI.

The present study has several strengths including the use of the gold standard hyperinsuli-

nemic euglycemic clamp for insulin sensitivity assessment, the demographically homogeneous

group of Italian subjects from European ancestry comprising both men and women, wealth of

detailed clinical, anthropometric and biochemical variables collected by trained professionals

according to a standardized protocol, the exclusion of confounding conditions potentially

affecting red cell turnover, such as anemia and major blood loss, the exclusion of subjects

treated with corticosteroids, lipid-lowering and anti-hypertensive drugs, the centralization of

laboratory analyses, the use of OGTT and HbA1c data to carefully exclude type 2 diabetes, the

use of a rigorously standardized HbA1c assay, and the ultrasound measure of carotid IMT per-

formed by an experienced examiner who was blinded to the clinical and biochemical data of

the participants.

Nevertheless, some limitations should be considered in the interpretation of the present

results. A first limitation of the study is that each diagnostic test including HbA1c and OGTT

was only performed once. Although such an approach reflects clinical practice, and is common

in epidemiological studies, the intra-individual variability of glucose parameters cannot be

taken into account, and some individuals might have been misclassified. In addition, the

observed differences in cardio-metabolic risk factors may be, in part, due to differences in age

and BMI between the HGI groups; however, all comparisons between groups were adjusted

for these potential confounders. Another limitation of the present study is its cross-sectional

design, making causal interpretations of associations between higher non-enzymatic glycation

of intracellular proteins assessed by HGI and risk of cardiovascular disease difficult. Indeed,

the current results reflect only an association with early atherosclerosis and not incident car-

diovascular disease. Moreover, it can also be argued that our results might have been affected

by the presence of a family history of type 2 diabetes. However, type 2 diabetes and cardiovas-

cular disease share common genetic determinants, and many individuals who develop cardio-

vascular disease have a family history of diabetes. Furthermore the study sample used to
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estimate the linear relationship between fasting plasma glucose and HbA1c displayed a mean

age higher than the one observed in the analysed cohort. It has been demonstrated that HbA1c

levels were positively associated with age in subjects without diabetes [54]. However in consid-

eration that a 0.014- and 0.010-unit increase in HbA1c per year has been descried in non-dia-

betic individuals participating to the Framingham Offspring Study and National Health and

Nutrition Examination Survey, respectively, we believe that the impact of the difference in the

age distribution between the two study samples (about 10 years) in HGI calculation was mar-

ginal. Finally, caution in generalizing these results is warranted since the current results are

only based on White individuals, and could not be extendible to other ethnic groups. Indeed,

previous studies have shown that HbA1c levels are higher among Blacks, Hispanics, American

Indians, and Asian Americans compared to Whites likely due to differences in hemoglobin

glycation or red cell survival [17,55].

In conclusion, the present findings support the notion that HGI may be a useful tool to

identify a subset of nondiabetic individuals conceivably harboring a higher risk of cardiovascu-

lar disease.
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