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Abstract

Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analy-

sis method which combines short time Fourier transform with wavelet transform, and ST

time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized

spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods

are used to analyze the fault signals, which is reasonable and effective in general Gaussian

noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha

(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribu-

tion in some special cases. The performance of ST-TFR method will degrade under α stable

distribution noise environment, following the ST-TFF method fail. Hence, a new fractional

lower order ST time frequency representation(FLOST-TFR) method employing fractional

lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new

FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and

IFLOST is also proposed, whose simplified method is presented in this paper. The discrete

implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized.

Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the exist-

ing ST-TFR algorithm under α stable distribution noise, which can work better under Gauss-

ian noise environment, and is robust. The FLOST-TFF method can effectively filter out α
stable distribution noise, and restore the original signal. The performance of FLOST-TFF

algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller

when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and

FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault

features under α stable distribution noise, where excellent performances can be shown.

Introduction

The fault signal received by the sensors is non-stationary when the rotating machinery bearing

break down, and time-frequency representation is a effective method to analyze the non-sta-

tionary signal[1–3]. Recently, several time-frequency methods have been applied to fault signal
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analysis[4–7]. The fault feature extraction algorithm based on short-time Fourier transform

(STFT) time-frequency representation and non-negative matrix factorization method were

proposed in [4]. Guoqi etc. proposed a joint time-frequency distribution method which com-

bined Wigner-Ville time-frequency distribution with empirical mode decomposition[5], the

method could effectively reduce the cross-term interference, and which was used in the rotat-

ing machinery fault signal analysis. Several time frequency methods were introduced in [6],

and the application comparisions of the methods to fault signal analysis were summarized.

Stockwell proposed S transform(ST) in 1996[7]. ST is a linear time-frequency distribution

methods, and has good frequency resolution. Recently, ST time-frequency method has been

widely applied to mechanical fault signal analysis[8–11]. Guo Yuanjin et al. applied ST method

for feature extraction of the bearing fault signals, they verified the method could better extract

impact characteristics, its performance advantage was reflected by comparing with STFT and

wavelet transform[8]. Whereafter, http://www.youdao.com/w/whereafter/javascript:void(0);

they put forward an improved S transform time-frequency method based on singular value

decomposition in [9], which applied inverse S transform to extract impact feature of the fault

signal, and better realized the fault diagnosis. A new detection method based on S transform

and zero space was proposed in [10], and which was applied to bearing fault signal detection.

A new method employing morphological wavelet and S-transform was presented in [11],

which had less computational efforts, and could analyze fault signal online. Recently, A time

frequency filtering method which take advantage of ST time-frequency localization and

inverse ST were proposed for data-adaptive filter, and the methods were applied to analyze the

earthquake data[12–13]. A time-frequency filtering method employing normalized window S

transform and TT transform were proposed in [14], which were used to filter out high fre-

quency noise and random noise in radar echo signal. An adaptive time-frequency filtering

method based on generalized S-transform was proposed in [15], the method constructed a

new adaptive time-frequency filtering factor, and was applied to filter out noises and retrieve

LFM signals.

The mentioned methods in [7–15] are based on Gaussian hypothesis, and second order statis-

tics is used in the methods. In most cases, Gaussian hypothesis is reasonable and effective, but in

some special cases, probability density function of the mechanical bearing fault signal and the

noise have an obvious trail. The signal and noise are non-stationary and non-Gaussian process,

and belong to α stable distribution[16–19]. When α = 2, they belong to Gaussian distribution,

and when 0< α< 2, they are low-order α stable distribution. In α stable distribution environ-

ment, the performance of the mentioned methods in [7–15] degenerates when Gaussian model is

employed to analyze the non-Gaussian signals. Hence, the theoretical model and method based

on the fractional lower order can be used for the cases. Recently, α stable distribution was used to

describe the machinery fault signal in [17]. A support vector machine algorithm based on α stable

distribution was proposed in [18], which was applied to the mechanical fault analysis, and it was

proved that the modified method could effectively improve learning and convergence speed of

the samples. Gang Yu et al. further confirmed non-Gaussian characteristics of the machinery

fault signal, and proposed a new signal detection method based on α stable distribution parame-

ter and histogram for mechanical fault diagnosis, whose performance was better than the tradi-

tional method based on Gaussian model. In addition, L Zhang and the others proposed the

fractional-order modeling and filtering techniques in [20–21], which have been applied in state-

of-charge estimation and parameter identification of ultracapacitor.

In α stable distribution environment, the time frequency representation methods based on

ST in literature [7–11] degrade, and even fail. Therefore, we combine the traditional S trans-

form with fractional lower order moment, and propose a fractional lower order S transform

(FLOST) algorithm and inverse fractional lower order S transform(IFLOST) algorithm. The
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corresponding fractional low order ST time frequency representation(FLOST-TFR) method

can effectively demonstrate time frequency distribution of the signal under α stable distribution

noise. Hence, the FLOST-TFR method provides an approach for the special time frequency

analysis cases. IFLOST is inverse transform of FLOST, which provides a computational efficient

way to restore the original signal from its time frequency distribution when the undesired parts

are removed.

Similarly, the time frequency filtering methods in [7–11] degenerate, even fail. Therefore, a

novel fractional lower order S transform time frequency filtering(FLOST-TFF) algorithm is

proposed based on the proposed FLOST and IFLOST methods in this paper. Firstly, time-fre-

quency distribution of the signal is obtained employing FLOST-TFR algorithm, and the effec-

tive signal which is clustered by energy is separated from α stable distribution noise. Finally,

we apply IFLOST method to restore the original signal. Simulation results show that fractional

lower order S transform time frequency algorithm can better work under Gaussian noise and

α stable distribution noise environment, which is robust, and its performance is better than

the existing S transform time frequency method. The proposed FLOST-TFF method can effec-

tively separate out time frequency spectrum of the signal from α stable distribution noise, and

restores the original signal. Mixed mean square error (MSE) of the FLOST-TFF method is sig-

nificantly lower than that of the existing ST-TFF method under different characteristics index

α and generalized signal noise ratio GSNR. Especially, the performance advantage of the

FLOST-TFF method is more obvious when GSNR is low or α is small. Finally, we apply the

proposed FLOST-TFR and FLOST-TFF algorithms to analyze the mechanical bearing outer

race fault signals, the results show that the methods can better extract fault characteristics of

the bearing fault signals, and restore the original signals under α stable noise environment.

In this paper, the improved S transform time-frequency representation and S transform

time-frequency filtering methods based on fractional lower statistical moment are proposed

for machine fault diagnosis. The paper is structured in the following manner. α stable distribu-

tion and the bearing fault signals are introduced in section 2. The modified fractional lower

order S transform time-frequency representation and its inverse transform method are intro-

duced in section 3, and the improved fractional lower order S transform time-frequency filter-

ing method is demonstrated in section 4. Simulation comparisons with the conventional

method based on ST are performed to demonstrate justifiability of the proposed methods

based on FLOST, and the simulations of the outer race fault signals diagnosis are presented in

section 5. Finally, the conclusions and future research are given in Section 6.

α stable distribution and bearing fault signals

α stable distribution

α stable distribution is a generalized Gaussian distribution, its characteristic function is

defined as[22–24]

φðtÞ ¼ expfjmt � gjtja½1þ jbsignðtÞoðt; aÞ�g ð1Þ

Where oðt; aÞ ¼
tanðap=2Þ if a 6¼ 1

ð2=pÞlogjtj if a ¼ 1

(

, signðtÞ ¼

1 t > 0

0 t ¼ 0

� 1 t < 0

8
>><

>>:

, α is characteristic

index, when 0< α< 2, which is lower order α stable distribution, when α = 2, it belongs to

Gaussian distribution, β is the symmetry coefficient, γ is the dispersion coefficient, μ is the

location parameter, if β = 0, which is symmetric α stable(SαS) distribution. Fig 1 is probability

density function(PDF) of SαS under α = 0.5, 1.0, 1.5 and 2.

Applications of FLO-TFF algorithm to machine fault diagnosis
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Bearing fault signals

The signal received by the vibration sensors is a non-stationary mixture when the rolling

machinery bearing breaks down, which includes the fault signal, the other vibration signals,

and the noises, etc. The experimental signals are selected from the case western reserve uni-

versity data center in this paper[25], which are shown in S1, S2, S3 and S4 Mats. The fault

points with 0.007 inches fault diameters are reinstalled into the test motor, the motor speed

is 1797 RPM (revolutions per minute), and digital data is collected at 12,000 samples per

second, the fault points are set up at inner race, outer race, and sphere race, respectively.

Three acceleration sensors are placed to collect the signals in each fault point, which include

base accelerometer (BA), drive end accelerometer(DE), and fan end accelerometer(FE),

respectively.

The time waveforms of the normal signal received by DE and FE accelerometers are

shown in Fig 2(A). Fig 2B–2D are time waveforms of the inner race fault signals, the ball

fault signals and the outer race fault signals, respectively. As can be seen from the figures,

the waveforms of the normal signal in Fig 2(A) are similar with Gaussian process, but the

waveforms of the fault signals in Fig 2B–2D have obvious pulsive character, which are a

non-Gaussian process. To confirm that, We apply α stable distribution model to estimate

the parameters of the normal signal and fault signals, the experimental results are shown in

Table 1. The results demonstrate characteristic index of the normal signal α = 2, which

belongs to Gaussian distribution, and the characteristic index of the fault signals as follows,

inner race fault signals in BA, FE and DE are 1.0607, 1.1096 and 1.5435, respectively, the

ball fault signals BA(α = 1.979), FE(α = 1.8697) and DE(α = 1.998), outer race fault signals

BA(α = 1.6077), FE(α = 1.1096) and DE(α = 1.5435). Hence, it is proved that the bearing

fault signals are non-Gaussian α stable distribution(1 < α< 2). Fig 3A–3C are PDFs of the

normal signal and bearing fault signals, which show that PDFs of the bearing fault signals

have a certain trailing.

Fig 1. PDFs of SαS stable distribution in different α.

https://doi.org/10.1371/journal.pone.0175202.g001
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FLOST and IFLOST method

ST and its inverse transform

S transform of a non-stationary signal can be defined as:

STðt; f Þ ¼
Z 1

� 1

xðtÞ
jf j
ffiffiffiffiffiffi
2p
p e�

ðt� tÞ2 f 2
2 e� j2pftdt ð2Þ

Where τ and t are time variable, and f is frequency parameter. When S transform is integrated to time τ,

then

Z 1

� 1

STðt; f Þdt ¼

Z 1

� 1

xðtÞe� j2pft

(Z 1

� 1

hðt � t; f Þdt

)

dt ð3Þ

Where Gaussian window function

Z 1

� 1

hðt � t; f Þdt ¼ 1, and the Eq (3) is written as

Z 1

� 1

STðt; f Þdt ¼

Z 1

� 1

xðtÞe� j2pftdt ¼ Xðf Þ ð4Þ

After Fourier inverse transform of X(f) is calculated, the original signal x(t) can be got.

xðtÞ ¼
Z 1

� 1

Xðf Þej2pftdf ¼
Z 1

� 1

(Z 1

� 1

STðt; f Þdt

)

ej2pftdf ð5Þ

Fractional lower order S transform

The mechanical fault signal containing α stable distribution noise can be expressed as

yðtÞ ¼ xðtÞ þ vðtÞ ð6Þ

Where x(t) is fault signal, v(t) is SαS distribution noise, t = 1,2,� � �,N. We apply fractional lower

order moment to ST, and define fractional lower order S transform as

FLOSTðt; f Þ ¼
Z 1

� 1

y<p>ðtÞhðt � t; f Þe� j2pftdt ð7AÞ

hðt � t; f Þ ¼
jf j
ffiffiffiffiffiffi
2p
p e�

ðt� tÞ2 f 2
2 ð7BÞ

Where<p> is p order moment operation, p is a real parameter(0� p< α/2)[26–28]. When y(t) is a real

signal, y<p>(t) = |y(t)|p−1�sign[y(t)], sign½yðtÞ� ¼

1 yðtÞ > 0

0 yðtÞ ¼ 0

� 1 yðtÞ < 0

8
>><

>>:

, and when y(t) is a complex signal,

y<p>(t) = |y(t)|p−1�y
�

(t). α is index of SαS distribution, � demonstrate conjugate. h(τ−t,f) in Eq (7B) is a

Gaussian window function related to the frequency, f is the frequency variable. τ and t are time variable,

and τ is the center of the Gaussian window function.

The ST method is proposed based on short-time Fourier transform(STFT) and continuous

wavelet transform (CWT). We assume that the Eq (7B) is only related to time parameter t and

has nothing to do with f, then, the Eq (7A) will change as fractional lower order short time

Fourier transform(FLOSTFT) [29], as shown in the Eq (8).

FLOSTFTðt; f Þ ¼
Z 1

� 1

y<p>ðtÞhðt � tÞe� j2pftdt ð8Þ

Applications of FLO-TFF algorithm to machine fault diagnosis
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If we use mother wavelet function w(t,f) to replace h(τ−t,f)e−j2πft, then, the Eq (7A) becomes as

fractional lower order continuous wavelet transform(FLOCWT)[30]

FLOCWTðt; f Þ ¼
Z 1

� 1

y<p>ðtÞwðt; f Þdt ð9Þ

Comparing the Eqs (7) and (9), then

FLOSTðt; f Þ ¼ FLOCWTðt; f Þe� j2pft ð10Þ

Fig 2. Waveforms of the bearing signals (a) Waveforms of normal signal in DE and FE (b) Waveforms of the inner race fault signals in BA, DE and FE (c)

Waveforms of the ball fault signals in BA, DE and FE (d) Waveforms of the outer race fault signals in BA, DE and FE.

https://doi.org/10.1371/journal.pone.0175202.g002
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Inverse fractional lower order S transform

After FLOST in the Eq (7) is done integral of time τ, we can get

Z 1

� 1

FLOSTðt; f Þdt ¼

Z 1

� 1

y<p>ðtÞe� j2pft

(Z 1

� 1

hðt � t; f Þdt

)

dt

¼

Z 1

� 1

�yðtÞe� j2pft

(Z 1

� 1

hðt � t; f Þdt

)

dt

ð11Þ

Where �yðtÞ ¼ y<p>ðtÞ, the window function

Z 1

� 1

hðt � t; f Þdt ¼ 1, then
Z 1

� 1

FLOSTðt; f Þdt ¼

Z 1

� 1

�yðtÞe� j2pftdt ¼ �Y ðf Þ ð12Þ

Where �Y ðf Þ is fractional lower order Fourier transform(FLOFT) of �yðtÞ. When the Eq (12) is done

inverse operation, thus

�yðtÞ ¼
Z 1

� 1

�Y ðf Þej2pftdf ¼
Z 1

� 1

(Z 1

� 1

FLOSTðt; f Þdt

)

ej2pftdf ð13Þ

The Eq (13) shows that FLOFT of �yðtÞ is the integral of FLOST time τ. Hence, we can get fractional

lower order moment �yðtÞ by calculating inverse Fourier transform of �Y ðf Þ, then, we do inverse

operation of �yðtÞ, and the original signal y(t) is got.

When y(t) is real signal, �yðtÞ ¼ y<p>ðtÞ ¼ jyðtÞjp� 1
� sign½yðtÞ�, according to the Eq (13), y(t) is

written as

yðtÞ ¼ ½�yðtÞ�
1

p� 1sign½�yðtÞ�; yðtÞ is real ð14Þ

Where sign½�yðtÞ� ¼

1 �yðtÞ > 0

0 �yðtÞ ¼ 0

� 1 �yðtÞ < 0

8
>><

>>:

. When y(t) is complex signal, �yðtÞ ¼ y<p>ðtÞ ¼ jyðtÞjp� 1
�

y�ðtÞ, letting �yðtÞ ¼ at þ jbt , t = 1,2,� � �,N, then, y(t) can be got by solving equations �yðtÞ ¼ at þ jbt ,
as shown in the Eq (15).

yðtÞ ¼ jatj
1
p½1þ ðbt=atÞ

2
�

2
pðp� 1ÞsignðatÞ � jjbtj

1
p½1þ ðat=btÞ

2
�

2
pðp� 1ÞsignðbtÞ; yðtÞ is complex ð15Þ

Table 1. α stable distribution parameter estimations of the bearing fault signals.

parameters α β γ μ
Normal DE 2.000 -0.2863 0.0532 0.0121

FE 2.000 1.000 0.0583 0.0236

Inner race BA 1.7682 0.0872 0.0590 0.0062

DE 1.4195 0.0155 0.2407 0.0175

FE 1.8350 0.0322 0.1495 0.0291

Ball BA 1.9790 0.0592 0.0293 0.0055

DE 1.8697 0.1215 0.0772 0.0193

FE 1.998 -0.0371 0.0674 0.0321

Outer race BA 1.6077 -0.1731 0.0530 0.0012

DE 1.1096 0.0433 0.1341 0.0367

FE 1.5435 -0.0169 0.0968 0.0296

https://doi.org/10.1371/journal.pone.0175202.t001
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FLOST-TFF method

ST-TFF method

Fourier transform of x(t) is the integral of ST time τ, which is expressed as:

Xðf Þ ¼
Z 1

� 1

xðtÞe� j2pftdt ¼
Z 1

� 1

Sðt; f Þdt ð16Þ

To get or filter out the partial components in S time-frequency domain, filter strategy F(τ,f)

Fig 3. PDFs of the bearing fault signals (a) PDFs of inner race fault in DE, FE and BA (b) PDFs of ball fault in DE, FE and BA (c) PDFs of outer race fault in

DE, FE and BA.

https://doi.org/10.1371/journal.pone.0175202.g003

Applications of FLO-TFF algorithm to machine fault diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0175202 April 13, 2017 8 / 24

https://doi.org/10.1371/journal.pone.0175202.g003
https://doi.org/10.1371/journal.pone.0175202


can be employed as a data-adaptive time-frequency weight function, as shown in the Eq (17).

X0ðf Þ ¼
Z 1

� 1

Sðt; f ÞFðt; f Þdt ð17Þ

Where F(τ,f) is real, X0(f) is the filtered Fourier transform of x(t), its inverse Fourier transform

is written as

x0ðtÞ ¼
Z 1

� 1

X0ðf Þej2pftdf ¼
Z 1

� 1

Z 1

� 1

Sðt; f ÞFðt; f Þej2pftdtdf ð18Þ

Where x0(t) is the filtered data.

FLOST-TFF method

The traditional ST-TFR method fails under α stable distribution noise environment, and

ST-TFF method based on S transform will degenerate. Hence, we use FLOST time-frequency

method to replace ST method, and propose a fractional lower order S transform time-fre-

quency filtering algorithm, the specific calculation process is as follows.

According to the Eq (12), we can get:

�Y ðf Þ ¼
Z 1

� 1

FLOSTðt; f Þdt ¼

Z 1

� 1

�yðtÞe� j2pftdt ð19Þ

Each signal in FLOST time-frequency domain has a certain region, when we need to filter out

noise or get some signals, we can select weight function F(τ,f) according to time and frequency

characteristics of the signals, then

�Y 0ðf Þ ¼
Z 1

� 1

FLOSTðt; f ÞFðt; f Þdt ð20Þ

Fig 4 is FLOST-TFR of a frequency modulation(FM) signal under α stable distribution

noise environment. In order to filter out α stable distribution noise, we select the regions(t1�
τ� t2, f1� f� f2) as time-frequency passed domain, and the other regions are regarded as

noises.

After F(τ,f) is generated into the Eq (20), fractional lower order Fourier transform �Y 0ðf Þ is

got. Then, we calculate inverse Fourier transform of �Y 0ðf Þ, and fractional lower order moment

�y 0ðtÞ is got, as shown in the Eq (21).

�y 0ðtÞ ¼
Z 1

� 1

�Y 0ðf Þej2pftdf ¼
Z 1

� 1

(Z 1

� 1

FLOSTðt; f ÞFðt; f Þdt

)

ej2pftdf ð21Þ

Finally, let �y 0ðtÞ ¼ a0t þ jb0t , t = 1,2,� � �,N, employing the Eqs 14 and 15, y0(t) is written as

y0ðtÞ ¼
½�y 0ðtÞ�

1

p � 1sign½�y 0ðtÞ�; yðtÞ is real

ja0tj

1

p½1þ ðb0t=a
0
tÞ

2
�

2

pðp � 1Þsignða0tÞ � jjb0tj

1

p½1þ ða0t=b
0
tÞ

2
�

2

pðp � 1Þsignðb0tÞ; yðtÞ is complex

ð22Þ

8
>>>><

>>>>:

We can name the time-frequency filtering method in the Eqs (21 and 22) as fractional lower order S

transform time-frequency filtering algorithm.

Applications of FLO-TFF algorithm to machine fault diagnosis
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Simplified FLOST-TFF method

We assume that a time-time function y1(τ,t) is expressed with p order moment of y(t) multi-

plying a Gaussian window function, as shown in the Eq (23).

y1ðt; tÞ ¼ yðtÞ<p> � e�
ðt� tÞ2 f 2

2 ð23Þ

Then, Fourier transform of y1(τ,t) is expressed as

Y1ðt; f Þ ¼
Z 1

� 1

yðtÞ<p> � e�
ðt� tÞ2 f 2

2 e� jpftdt ð24Þ

Fig 4. The passed domain of weight function F(τ,f).

https://doi.org/10.1371/journal.pone.0175202.g004
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After multiplying
jf jffiffiffiffi
2p
p on both sides of the Eq (24), then

Y1ðt; f Þ �
jf j
ffiffiffiffiffiffi
2p
p ¼

Z 1

� 1

yðtÞ<p> � e
�

ðt � tÞ2f 2

2 e� jpftdt �
jf j
ffiffiffiffiffiffi
2p
p

¼

Z 1

� 1

yðtÞ<p> �
jf j
ffiffiffiffiffiffi
2p
p e

�

ðt � tÞ2f 2

2

8
<

:

9
=

;e� jpftdt

¼

Z 1

� 1

yðtÞ<p> � hðt � t; f Þe� jpftdt

¼ FLOSTðt; f Þ ð25Þ

From the Eq (25), we know the relationship of Y1(τ,t) and S(τ,t) as

Y1ðt; f Þ ¼
ffiffiffiffiffiffi
2p
p

jf j
FLOSTðt; f Þ ð26Þ

We substitute the Eq (24) into the Eq (26), and compute Fourier inverse transform, then

y1ðt; tÞ ¼
ffiffiffiffiffiffi
2p
p

Z 1

� 1

FLOSTðt; f Þ
jf j

�ejpftdf ð27Þ

Assuming τ = t, then

�yðtÞ ¼ y1ðt; tÞ ¼
ffiffiffiffiffiffi
2p
p

Z 1

� 1

FLOSTðt; f Þ
jf j

�ejpftdf ð28Þ

According to the calculation process in section 4.2, we multiply weight function F(t,f) on

both sides of the Eq (28), then, fractional lower order moment �y 0ðtÞ is got, as shown in the Eq

(29).

�y 0ðtÞ ¼
ffiffiffiffiffiffi
2p
p

Z 1

� 1

FLOSTðt; f ÞFðt; f Þ
jf j

�ejpftdf ð29Þ

When �y 0ðtÞ in the Eq (29) is substituted into the Eqs (21 and 22), the filtered y0(t) is got. Com-

paring with the method in section 4.2, the improved FLOST-TFF method in the Eq (29) has

no time parameter τ, and no longer need to compute inverse Fourier transform. We can name

the method in the Eq (29) as simplified fractional lower order S transform time-frequency fil-

tering algorithm.

Discrete calculation of the FLOST method

With y(t) sampling, the discrete y(t) can be written as y[n] = y(nT), n = 0,1,� � �,N−1, T is sam-

pling period, and the corresponding sampling frequency fs = 1/T, let frequency step as f0, m =

−M/2,. . .,M/2−1 is discrete frequency range, M = fs/f0. Then, the discrete FLOST form in the

Eq (7) can be written as

FLOST½l;m� ¼
XN� 1

n¼0

�y½n�
jmj

jMj
ffiffiffiffiffiffi
2p
p e�

m2ðl� nÞ2

2M2 e�
j2pmn
M ð30Þ

Where �y½n� ¼ y<p>½n� is the discrete fractional p order moment of y[n]. FLOST in the Eq (30)
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is defined based on fractional p order moment of the signal in time-domain, according to the

definition of frequency ST based on Fourier transform in [12], then, ST employing fractional

lower order Fourier transform is defined as

FLOSTðt; f Þ ¼
Z 1

� 1

�Y ðuþ f Þe�
2p2u2

f 2 ej2putdu ð31Þ

Where �Y ðuþ f Þ is Fourier transform of y<p>(u + f). The Eq (31) change as

FLOST½l;m� ¼
XM� 1

q¼0

�Y ½
mþ q
M
�e�

4p2q2

m2 e�
j2pql
M ð32Þ

According to fractional lower order Fourier transform in the Eq (19), we can get the dis-

crete calculation formula, as shown in (33), and its discrete inverse fractional lower order Fou-

rier transform is shown in (34).

�Y ½m� ¼
XN� 1

l¼0

FLOST½l;m� ð33Þ

�y½n� ¼
1

M

XM=2� 1

m¼� M=2

�Y ½m�e
j2pmn
M ð34Þ

Substituting the Eq (33) into the Eq (34), then

�y½n� ¼
1

M

XM=2� 1

m¼� M=2

XN� 1

l¼0

FLOST½l;m�e
j2pmn
M ð35Þ

Assuming discrete adaptive time-frequency weight function as F[l,m], then, the discrete filter

strategy with F[l,m] is expressed as

�y 0½n� ¼
1

M

XM=2� 1

m¼� M=2

XN� 1

l¼0

FLOST½l;m�F½l;m�e
j2pmn
M ð36Þ

Similarly, we can get the discrete equation of the simplified FLOST-TFF method in section 4.3,

as shown in (37).

�y 0½n� ¼
XM=2� 1

m¼� M=2

FLOST½l;m�F½l;m�
jmj

e
j2pmn
M ð37Þ

When �y 0½n� in (37) is substituted into the Eqs (21 and 22), the filtered original signal is got.

The steps of FLOST-TFF method

Step 1:Computing FLOST[l,m] employing the Eq (30) or the Eq (32).

Step 2: Selecting appropriate weight function F[l,m] according to FLOST spectrum of the

signals.

Step 3: Computing IFLOST with substituting FLOST[l,m] and F[l,m] into the Eq (36) or (37),

and getting fractional p order moment �y0½n�.

Step 4: Performing inverse operation of �y0½n� employing the Eqs (21 and 22), and getting the

restored original signal y0[n].
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Simulations

We design the following experiments to test the proposed FLOST method, FLOST-TFF algo-

rithm, the existing ST method and ST-TFF algorithm. The test signals y1(n) and y2(n) are

selected as

y1ðnÞ ¼ x1½1 : 128� þ x2½129 : 256� þ x3½160 : 165� þ x4½180 : 185� þ vðnÞ ¼ xðnÞ þ vðnÞð38Þ

y2ðnÞ ¼ x5ðnÞ þ x6ðnÞ þ vðnÞ ð39Þ

Where x1(n) = cos(2πn�36/256), x2(n) = cos(2πn�10/256), x3(n) = cos(2πn�80/256), x4(n) = cos

(2πn�80/256), x5ðnÞ ¼ e� aðn� N1Þ
2þjcðn� N1Þ

2þjoðn� N1Þ, x6ðnÞ ¼ e� aðn� N2Þ
2þjcðn� N2Þ

2þjoðn� N2Þ, a = 0.004,

c = −0.025, ω = 1.72, N1 = 80, N2 = 180, n = 0,1,� � �,256, v(n) is Gaussian noise or SαS distribu-

tion noise. SNR can be used if v(n) is Gaussian noise, but when v(n) is SαS distribution noise,

SNR is no more applicable. Hence, generalized signal noise ratio(GSNR) is given, which is

expressed as GSNR = 10 log10 {E[|x(n)|2]/γα}.

Simulation comparisons of the ST-TFR and FLOST-TFR method

In this simulation, we select y1(n) as the test signal. When v(n) is Gaussian noise, let SNR = 10dB
and p = 0.8, and when v(n) is SαS distribution noise, let α = 1.1, p = 0.1, GSNR = 18dB. We com-

pare the proposed FLOST time-frequency algorithm and the existing ST time-frequency algo-

rithm under Gaussian noise and SαS stable distribution noise environment, respectively. The

experimental results are shown in Fig 5A–5D. Fig 5(A) and Fig 5(B) are the time-frequency rep-

resentations of ST and FLOST algorithms under Gaussian noise environment, the figures show

that both methods can better demonstrate time-frequency distribution of the signal y1(n).

The time-frequency representation of y1(n) employing ST method is shown in Fig 5(C)

under SαS stable distribution noise environment, which shows that ST time-frequency method

fail, and its time-frequency representation is incorrect. The improved FLOST time-frequency

method can better reveal the time-frequency distribution of y1(n), as shown in Fig 5(D). There-

fore, the FLOST time-frequency method has better performance than ST time-frequency

method, and is robust.

Simulation comparisons of ST-TFF and FLOST-TFF algorithm

In this simulation, y2(n) is selected as the test signal, v(n) is SαS distribution noise, α = 1.1,

p = 0.1, and GSNR = 18dB. We apply ST-TFF and FLOST-TFF methods to filter out SαS distri-

bution noise, the simulations are shown in Fig 6A–6D. Fig 6(A) is ST time frequency represen-

tation of y2(n), and Fig 6(B) is time frequency representation of y2(n) employing FLOST-TFR

algorithm. Time frequency distribution of y2(n) which is filtered by ST-TFF method is shown

in Fig 6(C), and the filtered time frequency representation of y2(n) employing the FLOST-TFF

method is shown in Fig 6(D). The experimental results show that ST-TFR and ST-TFF meth-

ods based on ST degrade under SαS distribution noise environment, but the FLOST-TFR

method can effectively suppress SαS distribution noise and clearly demonstrate time frequency

distribution of y2(n), and FLOST-TFF algorithm has good performance to filter out the noise.

Hence, the FLOST-TFF algorithm is better than the ST-TFF method.

In Fig 7 we show from top to bottom: the real waveform of two FM signals in time domain,

two FM signals contaminated by SαS distribution noise, y2(n) IST to time domain from time

frequency domain after ST time frequency filtering, y2(n) IFLOST to time domain after time

frequency filtering employing the Eqs (36) and (37), respectively. The experimental results
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show that the estimated y2(n) employing ST-TFF method in Fig 7(C) has larger deviation, but

y2(n) estimated by FLOST-TFF method in Fig 7D and 7E is alike with the original signal in Fig

7(A), which reveal the preponderance of the improved FLOST-TFF algorithm.

MSE comparisons of ST-TFF and FLOST-TFF method under different α
and GSNR

In this simulation, we select y2(n) as the test signal, and define mixed mean square error (MSE)

as

MSE ¼
1

2K

XK

k¼1

ðx̂5 � x5Þ
2
þ

1

2K

XK

k¼1

ðx̂6 � x6Þ
2

ð40Þ

Fig 5. Time-frequency representations of y1(n) employing the ST and FLOST methods (a) ST Time-frequency representation under Gaussian noise

environment (b) FLOST Time-frequency representation under Gaussian noise environment (c) ST Time-frequency representation under SαS distribution

noise environment (d) FLOST Time-frequency representation under SαS distribution noise environment.

https://doi.org/10.1371/journal.pone.0175202.g005
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K is the number of Monte-Carlo experiment, x5 and x6 are two original LFM signals, x̂5 and x̂6

are their estimations employing ST-TFF or FLOST-TFF.

Let GSNR = 18dB, p = 0.1, K = 20. When α changes from 0 to 2, we apply ST-TFF and

FLOST-TFF methods to restore x5 and x6 in different α, the mixed MSEs are given in Fig 8(A).

The result shows that the mixed MSEs of FLOST-TFF method employing (36) are stable in

−15dB when α changes from 0.4 to 2, and the mixed MSEs employing (37) are about −17dB,

however, the mixed MSEs employing ST-TFF method change from 60dB to −14dB. Hence, the

estimation error of the proposed FLOST-TFF algorithm is lower than the ST filtering algo-

rithm under α stable distribution noise.

Let α = 1.2, p = 0.1, K = 20. When GSNR changes from 14dB to 26dB, the mixed MSEs of

ST and FLOST methods are compared under α stable distribution noise environment. The

experimental simulations are given in Fig 8(B), the result shows that MSEs of the improved

FLOST-TFF methods employing the Eqs (36) and (37) are lower than that of the ST-TFF

method, and which are stable in −10dB to −18dB. Especially, when GSNR< 18dB, the advan-

tage of FLOST-TFF methods is more obvious.

Applications of FLOST time-frequency filtering to machine fault

diagnosis

In this simulation, the experimental signals adopt the out race bearing fault in BA, DE and FE

from S3 Mat in section 2, we select 0.2 seconds data as test signal, then N = 2400. SαS distribu-

tion noise (α = 1.1, GSNR = 15dB) is added as the actual working environment background

noise. The ST-TFR and FLOST-TFR methods are applied to extract fault feature of the out

race fault signals, the simulation results are shown in Fig 9, Fig 10 and Fig 11. Fig 9(A) and Fig

9(B) are time frequency representations of the out race fault signal in BA employing the

ST-TFR and FLOST-TFR methods, respectively. The time frequency representations of the out

Fig 6. Time-frequency filtering employing ST and FLOST under SαS distribution noise environment (a) Time-frequency representation of y2(n) employing

ST method (b) Time-frequency representation of y2(n) employing FLOST method (c) The filtered time-frequency representation employing the ST-TFF

method (d) The filtered time-frequency representation employing the Eq (37).

https://doi.org/10.1371/journal.pone.0175202.g006
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race fault signal in DE and FE are shown in Fig 10 and Fig 11, respectively. The results show

that the time frequency distributions employing the ST-TFR method in Fig 9(A), Fig 10(A)

and Fig 11(A) are incorrect, but the FLOST-TFR method has good performance, as shown in

Fig 9(B), Fig 10(B) and Fig 11(B), and we can know that the fault vibration interval is about 30

ms, the fault characteristic frequency is about 33.333 Hz, transient harmonic vibration compo-

nent is about 3300 Hz.

We apply the ST-TFF and FLOST-TFF methods to restore the original signal from SαS dis-

tribution noise, the simulation results are shown in Fig 12, Fig 13 and Fig 14. In Fig 12, Fig 13

and Fig 14 we show from top to bottom: the out race fault signal in BA, DE and FE, respec-

tively, the out race fault signal in BA, DE and FE contaminated SαS distribution noise, respec-

tively, the filtered out race fault signal IST to time domain from time frequency domain, the

out race fault signal inverse IFLOST to time domain after time frequency filtering with the Eqs

(36) and (37), respectively. The Fig 12 results show that the estimated out race BA fault signal

Fig 7. The real waveforms in time domain (a) Two FM signals (b) Two FM signals + SαS distribution noise (c) y2(n) IST to time domain after ST time

frequency filtering (d-e) y2(n) IFLOST to time domain after time frequency filtering with the Eqs (36) and (37), respectively.

https://doi.org/10.1371/journal.pone.0175202.g007

Applications of FLO-TFF algorithm to machine fault diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0175202 April 13, 2017 16 / 24

https://doi.org/10.1371/journal.pone.0175202.g007
https://doi.org/10.1371/journal.pone.0175202


employing ST-TFF method has larger deviation in Fig 12(C), but the estimated out race BA

fault signal in Fig 12D and 12E is similar to the original signal in Fig 12(A) because of employ-

ing FLOST-TFF method. Hence, the existing ST-TFF method is invalid, but the proposed

FLOST-TFF method can effectively suppress SαS distribution noise and restore the original

signal from time-frequency domain, which has a certain toughness. Similarly, Fig 13 and Fig

14 reveal the same conclusion. Hence, the FLOST-TFF method has better performance to

recovering the original signal from α stable distribution noise.

Fig 8. The mixed MSE comparisons of the ST-TFF method and FLOST-TFF algorithm employing the Eqs (36) and (37) (a) GSNR = 18dB, α changes from

0 to 2 (b) α = 1.2, GSNR changes from 14dB to 26dB.

https://doi.org/10.1371/journal.pone.0175202.g008

Fig 9. Time-frequency representation of the out race fault signal in BA under SαS distribution noise environment (a)Time-frequency representation of the

out race fault signal in BA employing ST-TFR method (b) Time-frequency representation of the out race fault signal in BA employing FLOST-TFR method.

https://doi.org/10.1371/journal.pone.0175202.g009
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The time frequency filtering technology which takes advantage of time-frequency localized

spectra of the data provides an adaptive-filtering method for the non-stationary signals. The

time frequency filtering method applies an adaptive weighting function to separate out the sig-

nals from the noise. The higher weighting parts localize the regions which are expected to be

the signal components, and the lower weighting parts attenuate the noise in the time-fre-

quency domain. The inverse transform of time frequency representation is used to reconstruct

the original signals.We can set the parameter p according to characteristic index of α stable dis-

tribution noise, smaller α is, the smaller p. When p = 2, the FLOST-TFR method degenerates

Fig 10. Time-frequency representation of the out race fault signal in DE under SαS distribution noise environment (a)Time-frequency representation of the

out race fault signal in DE employing ST-TFR method (b) Time-frequency representation of the out race fault signal in DE employing FLOST-TFR method.

https://doi.org/10.1371/journal.pone.0175202.g010

Fig 11. Time-frequency representation of the out race fault signal in FE under SαS distribution noise environment (a)Time-frequency representation of the

out race fault signal in FE employing ST-TFR method (b) Time-frequency representation of the out race fault signal in FE employing FLOST-TFR method.

https://doi.org/10.1371/journal.pone.0175202.g011
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into the ST-TFR method, and IFLOST change into IST method, then, the corresponding

FLOST-TFF method degenerates into ST-TFF method. Hence, the improved FLOST-TFR and

FLOST-TFR methods are generalized algorithm.

Conclusions

This paper proves that bearing fault signals belong to α stable distribution with the range of α
from 1 to 2. The time-frequency analysis method is a key tool for machinery fault diagnosis,

which can be used to identify the constituent components and time variation of the fault sig-

nals. We have presented a fractional lower order S transform time frequency distribution algo-

rithm applied for SαS distribution noise environment, which can effectively suppress SαS
distribution noise, and work under low GSNR. We apply the FLOST time frequency method

to analyze the test signal in Gaussian noise environment and SαS stable distribution noise. It is

Fig 12. Time waveforms of two chirp signals (a) The out race fault signal in BA (b) The out race fault signal in BA + SαS distribution noise (c) The filtered out

race fault signal in BA employing ST-TFF method (d-e) The filtered out race fault signal in BA employing the Eqs (39) and (40), respectively.

https://doi.org/10.1371/journal.pone.0175202.g012
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proved that the FLOST-TFR method has better performance and toughness than the existing

ST-TFR method. The FLOST-TFR method has no cross interference comparing with the sec-

ondary FLO-PWVD time-frequency distribution method, which remedies lack of phase infor-

mation comparing with the fractional lower order continuous wavelet transform method.

FLOST time frequency filtering method is proposed to separate the bearing out race fault

signals from α stable distribution noise in this paper. We also apply the FLOST-TFR method

to analyze time frequency distribution of the fault signal and extract its fault feature. The

FLOST-TFF method is employed to filter SαS distribution noise in time frequency domain,

and inverse FLOST is used to restore the original signal. It is verified that the mixed MSE of

the FLOST-TFF method is smaller than that of the existing ST-TFF method, also its perfor-

mance is better than ST-TFF method. In some practical applications, when the mechanical

bearing fault signals or noises belong to α stable distribution process(1 < α< 2), we can

extract the fault features from time frequency representation of the mechanical fault signals

Fig 13. Time waveforms of two chirp signals (a) The out race fault signal in DE (b) The out race fault signal in DE + SαS distribution noise (c) The filtered

out race fault signal in DE employing ST-TFF method (d-e) The filtered out race fault signal in DE employing the Eqs (39) and (40), respectively.

https://doi.org/10.1371/journal.pone.0175202.g013
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employing FLOST-TFR method, filter out α stable distribution noise employing FLOST-TFF

method, and restore the original fault signal with inverse FLOST. Furthermore, we can also

use the FLOST-TFR and FLOST-TFF methods to analyze the signals even when the mechani-

cal bearing fault signals or the noises belong to Gaussian distribution process(α = 2), just set-

ting up reasonable parameter p according to characteristic index of α stable distribution noise

is needed.

Supporting information

S1 Mat. The data is the bearing normal signal from the case western reserve university

data center [25], which is used as the experimental signals in “Bearing fault signals” sec-

tion.

(MAT)

Fig 14. Time waveforms of two chirp signals (a) The out race fault signal in FE (b) The out race fault signal in FE + SαS distribution noise (c) The filtered out

race fault signal in FE employing ST-TFF method (d-e) The filtered out race fault signal in FE employing the Eqs (39) and (40), respectively.

https://doi.org/10.1371/journal.pone.0175202.g014
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S2 Mat. The data is the bearing ball fault signal from the case western reserve university

data center [25], which is used as the experimental signals in “Bearing fault signals” sec-

tion.

(MAT)

S3 Mat. The data is the bearing out race fault signal from the case western reserve univer-

sity data center [25], which is used as the experimental signals in “Bearing fault signals”

and “Applications of FLOST time-frequency filtering to Machine Fault Diagnosis” section.

(MAT)

S4 Mat. The data is the bearing inner race fault signal from the case western reserve uni-

versity data center [25], which is used as the experimental signals in “Bearing fault signals”

section.

(MAT)
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