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Abstract

The impact of anthropogenic activities on coastal waters is a cause of concern because

such activities add to the total suspended sediment (TSS) budget of the coastal waters,

which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a

powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal

managers should be mindful that the satellite-derived TSS concentrations are dependent on

the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial

resolution and the limitations of specific TSS algorithms. In this study, we investigated the

impact of different spatial resolutions of satellite sensor on the quantification of TSS concen-

tration in coastal waters of northern Western Australia. We quantified the TSS product

derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8

Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250

m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quan-

tify the impact of spatial resolution on the derived TSS product in different turbidity condi-

tions. The results from the study show that in the waters of high turbidity and high spatial

variability, the high spatial resolution WV2 sensor reported TSS concentration as high as

160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concen-

tration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spa-

tially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68%

and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this

work are particularly relevant in the situation of compliance monitoring where operations

may be required to restrict TSS concentrations to a pre-defined limit.
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Introduction

Global coastal marine ecology is at ever increasing risk because of the increase of impacts due

to the demands of maritime trade, supporting population growth which necessitates land rec-

lamation, maintenance and capital dredging for ports, dredging for offshore resources, and

placing of sub-sea transport pipelines [1, 2]. The Australian economy is heavily dependent on

maritime links because of its geographical remoteness from other continents. One third of its

GDP is based on sea-borne trade, and the existing ports that support this high volume of ship-

ping traffic require constant maintenance dredging of existing shipping channels and frequent

large capital dredging projects [3]. The environmental effects of dredging on the costal marine

ecology are diverse, with dredging potentially resulting in either partial reduction or complete

loss of marine habitat through the physical removal of substratum biota from the sub-sea sur-

face and immediate burial due to sedimentation of the dredged materials [4]. Further, increase

in turbidity caused by dredging significantly attenuates the amount of light reaching the ben-

thic habitat for primary productivity [5–7]. The environmental cost of dredging and the need

for coastal development poses a challenge to environmental monitoring agencies, marine ecol-

ogists and coastal infrastructure developers who aim to find a balance between the two [4].

Coastal water quality monitoring of the effects of anthropogenic processes aims to provide

immediate and appropriate responses, but often requires continuous ground based monitor-

ing, which is typically resource intensive, to maintain and only provides information on lim-

ited specific geographical locations [8, 9]. The availability of satellite remote sensing platforms

has provided coastal managers with tools and capabilities to effectively monitor the coastal

environment at spatial and temporal scales previously unconceivable from the perspective of

traditional in situ based observation methods [10]. Coastal water quality in the form of water

turbidity or Total Suspended Sediment (TSS) concentration has been widely studied across

diverse geographical locations [11–20] by using a suite of remote sensing sensors such as,

Landsat [21–30], MEdium Resolution Imaging Spectrometer (MERIS) [7, 31–33], MODerate

resolution Imaging Spectroradiometer (MODIS) [16, 17, 20, 29, 34–44], and Sea-viewing

Wide Field-of-view Sensor (SeaWiFS) [13, 45–49]. In addition to these most commonly used

and “free to ground” sensors, commercial high spatial resolution sensors such as Systèm Pour

l’Observation de la Terra (SPOT) [22, 50, 51], IKONOS [14] and WorldView-2 (WV2) [52]

are also employed to map the TSS.

The high spatial resolution commercial satellite sensors such as IKONOS, WV2, and

GeoEye-1 can provide data at spatial resolutions of approximately 0.5 m—4.0 m with temporal

resolutions of ~1–8 days [53]. The freely available remote sensing data of MODIS and MERIS

from the National Aeronautics and Space Administration can provide near-daily TSS esti-

mates at 250 m—300 m resolution and Landsat at 30 m but with a monitoring frequency of 16

days. Previous studies [1, 9, 54, 55] conducted in mapping TSS for water quality monitoring

have studied the spatial extent of suspended sediment plumes using one or more satellite sen-

sors and the common consensus is that the higher spatial resolution satellite sensors are able to

resolve finer details of suspended sediment plumes while the lower spatial resolution sensors

lose the finer details. However, only a few studies [54, 55] have been conducted to study the

impact of using different spatial resolution sensors in estimation of TSS in sediment plumes

where the water can be spatially variable in TSS concentration, even at sub-pixel level. Ody

et al. [54] showed that in the Gulf of Lion, France, the variability in the TSS concentration at

the turbid fronts and edges of the river plume was estimated to be around 7 mg L-1 and 10 mg

L-1 for 250 m and 1.0 km spatial resolution respectively. Further, the lower spatial resolution

sensor SERVI (Spinning Enhanced Visible and Infrared Imager) at 3.0 x 5 km2 was shown to

have TSS concentration variability due to different spatial resolution were as high as 20 mg L-1.

Satellite spatial resolution and quantification of total suspended sediment concentration
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The two studies [54, 55] indicated that the quantification of TSS concentrations using remote

sensing sensors are not only determined by the spatial resolution of the sensors, but also the

TSS variability of the region itself. Generally, the coarser spatial resolution sensors would pro-

duce higher TSS variability but the magnitude of TSS variability depended on the variability of

the TSS concentration of the sampled region.

In Western Australia, specifically the Pilbara region, the last decade and a half has seen sub-

stantial capital dredging projects with the total volume of dredged material in excess of ~70

million m3 and the recent Wheatstone gas field project is expected to add another ~45 million

m3 of dredge spoils to this total [56]. Compliance monitoring of large volume capital dredging

and/or frequent maintenance dredging is typically carried out using in situ data loggers that

measure a range of water quality parameters (TSS concentration, turbidity, light, and sedimen-

tation rate) [57]. In compliance monitoring of dredge operations in Western Australia, it is

required of dredging companies to perform environmental impact assessment studies using

hydrodynamic modelling of sediment plumes to identify zones of impact and trigger values

derived in relation to a water quality parameter and sensitivity to benthic communities [58].

For instance, in the Wheatstone gas field project, a zone of high impact (mortality rate> 50%)

was identified along the dredge channels and spoil area. The hydrodynamic model was used to

identify trigger values to prompt management responses, with thresholds of TSS> 25 mg L-1

for more than 14% of the time,>10 mg L-1 for more than 38% of the time, and> 5 mg L-1 for

more than 63% [58]. The TSS levels set to trigger a management response are monitored using

point measurement from the in situ data loggers, accepted as providing very accurate and reli-

able data. However, in situ data loggers cannot provide a synoptic view of TSS concentration

at reasonable costs over a large spatial extent, which has led environmental managers adopting

remote sensing technologies which can provide a synoptic view of plume dynamics and TSS

concentration at reasonable costs [59].

Despite the benefits of satellite remote sensing in water quality monitoring, the environ-

mental protection agencies tasked with monitoring the coastal water quality should be aware

of potential discrepancies in satellite derived TSS concentration as a result of different satellite

sensors and different spatial resolutions. The impact of significant spatial variability in the TSS

concentration can affect the results of the satellite derived TSS concentration used in monitor-

ing the water quality. In effect, the monitoring of dredging activity with different satellite-

based remote sensing sensors can produce different TSS concentrations even in the same spa-

tial region and depends on which satellite sensor is employed for the compliance monitoring.

Thus, this work was carried out to study the variability in TSS concentration at different spatial

resolutions in the waters of the Onslow region in northern Western Australia using WV2,

Landsat-8 OLI (Operational Land Imager) and MODIS-Aqua data. Specifically, first we tested

the capabilities of WV2, Landsat-8 OLI and MODIS-Aqua in resolving the spatial features in

areas of sediment plumes caused by dredging activities and river outflows. Second, we quanti-

fied the range of TSS concentration variability in the region of the sediment plumes and back-

ground waters by degrading the native spatial resolution of each sensor to coarser spatial

resolutions. Finally, we discuss the impact of using different spatial resolution sensors in moni-

toring of water quality as a result of findings from this study.

Materials and methods

Study site and context

The study area, the coastal waters of Onslow, fall within the Pilbara region, in Western Austra-

lia (see Fig 1). The coastal area of Onslow generally experiences a mean annual temperature of

29.2˚C and mean annual rainfall of 296 mm [60]. The study area is generally sheltered from

Satellite spatial resolution and quantification of total suspended sediment concentration
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the prevailing south-west winds and sea-swells from the Indian ocean by Barrow Island and

the shoals of Lowendal and Montebello Islands, however, the area experiences locally wind-

driven waves and seasonal tropical cyclones [61]. The topography of the coastal area generally

drives the ebb and flood tides easterly and westerly along the coastline with the flow occasion-

ally disturbed by the locally wind-driven currents. The tides around the shoreline are semi-

diurnal with the spring tide ranging from a mean high of 2.5 m to a mean low of 0.6 m [61].

The discovery of the Wheatstone gas field, located at the edge of the continental shelf 200

km off the coast of Onslow (located approximately 1390 km from Perth, Western Australia),

has led to the construction of offshore platforms and onshore gas processing plants [61]. The

turbidity of the coastal waters of Onslow was previously only affected by natural processes,

including seasonal tropical cyclones and episodic river outflows from the Ashburton river

which can range the TSS concentration from 15 mg L-1 to 5000 mg L-1 (with higher TSS con-

centration closer to the river mouth) with river flow rates of 30 m3 s-1 to 250 m3 s-1 [62]. The

dredging activity in the near-shore waters of Onslow occurred from May 2013 to December

2015 with an estimated 45 million m3 of dredge spoil generated [63]. Such large volumes of

dredge spoil are expected to have immediate impact in the immediate area of the dredging and

also have some level of impact on the marine habitat in the vicinity of the dredging locations.

Field remote sensing reflectance and TSS measurements

As part of the Dredging Science Node project 2/3 [65] funded by the Western Australian Marine

Science Institution three field campaigns were carried out in October 9th– 31th, 2013, June 7th–

21st, 2014 and July 3rd– 13th 2015 onboard RV Linnaeus operated by the Commonwealth

Fig 1. Study site. True color Landsat OLI image showing the locations of field sites in the waters off the coast of

Onslow, Western Australia. True color image of the study site is reprinted from Figure 1 in Dorji et al [64] under a

Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). The black

polygon added in Fig 1 represents the area where Worldview 2 data were captured on June 13th 2014. The

colored dots represent locations of in situ data with colors indicating the year of data acquisition.

https://doi.org/10.1371/journal.pone.0175042.g001
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Scientific and Industrial Research Organization and RV Solander operated by the Australian

Institute of Marine Science. The ship-based “Dynamic Above-water radiance (L) and irradiance

(E) Collector” (DALEC) [66] was used to measure the remote sensing reflectance (Rrs, in sr-1)

and in situ water sampling methods were used in measuring TSS concentrations. A brief

description of the in situ Rrs measurements using the DALEC and sampling of TSS concentra-

tion are provided below. Further details of the Rrs and TSS concentration data used in this

study, including the data collection procedure and data quality control measures, are discussed

in depth in Dorji et al. [64].

DALEC and TSS data collection and analysis. The DALEC, developed by “In situ

Marine Optics”, is an autonomous ship based hyperspectral upwelling radiance (Lu), sky radi-

ance (Lsky) and downwelling irradiance (Ed) collector which takes coincident measurements in

256 spectral bins in the 380 nm to 900 nm spectral range. The Lu, Lsky and Ed measurements

from the DALEC can be used to compute Rrs using an ad-hoc Rrs formulation from Mobley

[67] for a uniform sky condition and wind speed less than 5 m s-1, as presented in Eq (1).

RrsðlÞ ¼
LuðlÞ � 0:022 LskyðlÞ

EdðlÞ
ð1Þ

The quality of DALEC data were maintained at two stages. 1) During the data collection

stage, we positioned the DALEC instrument at an azimuth angle of ~135˚ relative to solar

direction while the viewing angle of the Lu and Lsky sensors were maintained at 40˚ off nadir

and zenith respectively to minimize the sun glint and instrument shading. 2) During the data

analysis stage, we visually inspected the Lu and Lsky spectra and removed any spectra that were

contaminated by sun glint. The remaining spectra free of sun glint were averaged within ± 3

min from TSS sample collection time to generate an average Rrs spectrum corresponding to

that TSS sample.

For in situ TSS concentration measurement, we collected a minimum of two 1-liter samples

of sea water at a depth of approximately 0.5 m to 1 m at each TSS sample location (see Fig 1).

The TSS samples were filtered using Whatman GF/F filters (47 mm diameter, nominal pore

size of 0.7 μm) pre-prepared in the laboratory by flushing the filters with 50 mL of deionized

water and drying in an oven at 60˚C for 24 hrs. The filtered TSS samples were flushed with 50

mL of deionized water to remote salt from the seawater, then dried in the oven at 60˚C for 24

hrs and repeatedly measured and dried until consistent measurements were obtained within

the tolerance limit of 0.001 mg L-1. After performing the quality checks of the in situ data there

were 48 (Rrs and TSS) match-up pairs that were selected to establish a TSS algorithm. The

range of TSS concentrations used in the algorithm development varied from a low of 2.5 mg L-

1 to a high of 69.9 mg L-1.

Satellite remote sensing data

Satellite data acquisition and atmospheric correction. The satellite data used in this

study comprise MODIS-Aqua, Landsat-8 OLI and WV2 acquired around the time when the

second field campaign was carried out in June 7th–21st 2014. Due to the temporal limitation of

the Landsat-8 OLI of 16 days we could not acquire data for all three satellites contemporane-

ously. However, we acquired three concurrent sets of Landsat OLI and MODIS-Aqua data for

May 23rd July 10th and July 26th 2014 that were free of clouds and sun glint. The MODIS-Aqua

and WV2 data were acquired for June 13th, 2014, which was when the WV2 image was requisi-

tioned over the study region. The spectral bands and the spatial resolutions used in mapping

the TSS concentrations were band 1 (620–670 nm) at 250 m, band 4 (640–670 nm) at 30 m

Satellite spatial resolution and quantification of total suspended sediment concentration
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and the ‘red band’ (630–690 nm) at 2 m for MODIS-Aqua, Landsat-8 OLI and WV2

respectively.

For this study we used the top of the atmosphere radiance data from MODIS-Aqua avail-

able from the NASA LAADS web (http://ladsweb.nascom.nasa.gov/) as geo-located Level 1B

data in all 36 spectral bands. All the MODIS-Aqua Level 1B data were atmospherically cor-

rected using the MUMM [49] atmospheric correction as implemented in SeaDAS (version

7.2) [68]. The MUMM atmospheric correction, based on the spatial homogeneity of water

leaving radiance and constant aerosol ratios in MODIS 748 nm and 869 nm bands [54], was

demonstrated to perform well in the waters over our study region [64].

Radiometrically and geometrically corrected Level 1T Landsat-8 OLI data were obtained

from USGS archives using the EarthExplorer (http://earthexplorer.usgs.gov/). The Level 1T

Landsat-8 OLI data were atmospherically corrected to marine remote sensing reflectance

using the ACOLITE software (available at https://odnature.naturalsciences.be/remsem/

software-and-data/acolite) [69]. Two atmospheric correction algorithms are available in ACO-

LITE, the NIR and SWIR algorithm: the NIR algorithm is based on the selection of the red

(655 nm) and NIR (865 nm) bands to account for the aerosol contributions, the SWIR algo-

rithm uses the SWIR1 (1608.5 nm) and SWIR2 (2200.5 nm) bands available on the Landsat-8

OLI sensor. For this study, we selected the SWIR algorithm because it is valid for turbid waters

[70], which is the case for our study site where in situ TSS concentration was measured as high

as 69.6 mg L-1 in the vicinity of dredging areas and it is likely higher in the area of the dredge

plumes [71]. Further, the SWIR algorithm was shown to be an improvement over the NIR

band based atmospheric correction algorithm [69] that was valid for only moderately turbid

waters [54, 70].

The WV2 image covered an area of 331 km2 over the study area (see Fig 1 for the spatial

extent in the study area and the WV2 image). The WV2 data comprise spectral bands in the

blue (450–510 nm), green (510–580 nm), red (630–690 nm) and NIR1 (770–895 nm) and are

supplied as ortho ready standard WV2 satellite image data at 2 m spatial resolution. The Sea-

DAS and ACCOLITE platforms were specifically designed and adapted to process, among oth-

ers, MODIS and Landsat-8 OLI satellite sensor data, but they are not designed to process WV2

data. A study by Martin et al. [72] demonstrated the success of 6S (Second Simulation of a Sat-

ellite Signal in the Solar Spectrum) radiative transfer code in the atmospheric correction of sat-

ellite data captured in turbid coastal waters. The 6S code predicts the satellite signals at the top

of atmosphere between 250–4000 nm based on geometrical conditions, atmospheric models

for gaseous components, the aerosol model, spectral conditions, and ground reflectance [73].

Thus, we applied the 6S atmospheric correction method of Kotchenova et al. [74] and obtained

the marine surface reflectance using the following input parameters: 1) geometrical conditions

were obtained from the solar zenith angle, solar azimuth angle, satellite zenith angle, satellite

azimuth angle, image acquisition day and month that was supplied with the WV2 image, 2)

the atmospheric model was selected as the Tropical atmospheric model, 3) the aerosol model

was selected as the ‘Continental’ aerosol model with visibility of 15 km, 4) The spectral band

used was equivalent to the red band of WV2 and ground reflectance was modeled as a homog-

enous ocean BRDF model with wind speed of 5 m s-1, wind azimuth of 220˚, salinity of 35 psu

and pigment concentration of 0.5 mg/m3. The input parameters in 6S were selected to match

closely with the conditions over the study region.

Validation of atmospheric correction methods. For the in situ validation of the atmo-

spheric correction method, only MODIS-Aqua provided concurrent measurements to the

DALEC-measured Rrs. The MODIS-Aqua overpass time over the study region on July 13th

2014 was at 06:30 hrs (UTC) while in situ TSS and DALEC Rrs were collected between 02:00–

07:30 hrs (UTC). The WV2 and Landsat-8 OLI data were not concurrent with the DALEC-

Satellite spatial resolution and quantification of total suspended sediment concentration
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measured Rrs during any of the Landsat-8 OLI and WV2 overpass times in the study region,

thus no in situ validation is performed for Landsat-8 OLI and WV2-derived Rrs. The time dif-

ference between DALEC Rrs measurements and MODIS-Aqua overpasses used in the valida-

tion was constrained to ±90 min. As a validation of atmospheric correction for Landsat-8 OLI

and WV2-derived Rrs, an inter comparison of Rrs with reference to MODIS-Aqua was per-

formed for the WV2 and Landsat-8 OLI derived Rrs over the study site for selected locations

(see light cross marks in Fig 2a and 2c–2e) representing a range of TSS concentrations. An

inter satellite sensor comparison can show significantly different Rrs values over the same

region due to the time difference of data acquisition and the dynamic water conditions where

Fig 2. The atmospherically corrected Rrs (red band) product. (a) and (b) WV2 and MODIS-Aqua on June 13th 2014; (c)-(e)

Landsat-8 OLI and (f)-(h) MODIS-Aqua on May 23rd, July 10th and July 26th 2014 respectively. The white cross mark on (a), (c)-(e)

are the locations of the central pixel of 2.5 km square used in Rrs product validation. The black cross mark are locations

corresponding to Dredged Areas (DA and DA2), Spoil Ground (SG), Clean Area (CA), River Plume (RP) and Moderate Turbid Area

(MTA) in each image.

https://doi.org/10.1371/journal.pone.0175042.g002
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water masses can move and evolve rapidly [54], thus to minimize the effect of satellite data

acquisition time difference we used the aggregates of pixel values in a selection of square boxes

of 2.5 km in length that represented waters ranging from clear to highly turbid in the image.

The length of 2.5 km was chosen because the minimum size of the plumes in the area of study

were at least 5 km in length, and the intent was to incorporate pixels within the plumes which

are expected to display a small range in Rrs values. For the MODIS-Aqua and WV2-derived Rrs

comparison, we selected 12 square box regions after visually identifying the areas that ranged

in different turbidity from the WV2 image for June 13th, 2014 (see white cross marks for cen-

tral locations of each box in Fig 2a). For the MODIS-Aqua and Landsat-8 OLI derived Rrs

comparison, we selected 12 square boxes per image after visually identifying the areas repre-

senting a range of different turbidity levels using Landsat-8 OLI imagery for May 23rd, July

10th and July 26th, 2014 (see white cross marks in Fig 2c–2e).

Degrading the satellite spatial resolution. Quantification of the variability in TSS con-

centration derived from sensors with different spatial resolutions was assessed by spatially

degrading the satellite sensor’s derived TSS products to coarser spatial resolutions than their

respective native resolutions of 250 m, 30 m and 2 m for MODIS-Aqua, Landsat-8 OLI and

WV2 data respectively. The degradation of the spatial resolution depended on the respective

sensor’s native resolution, the MODIS-Aqua TSS data were degraded to 500–5000 m at 500 m

intervals, the Landsat-8 OLI TSS data were degraded to 60–4800 m at 60 m intervals, and the

WV2 TSS data were degraded to 4–5000 m at 2 m intervals. The spatial resolution was

degraded using the aggregate of all available pixel values in a selected region. For example, if

MODIS-Aqua 250 m data were to be degraded to 1000 m spatial resolution then all pixels con-

fined within the 1000 m by 1000 m (equivalent to 4 × 4 250 m spatial grids) would be averaged.

The locations and size of each selected area were determined visually by assessment of the uni-

formity of TSS in the region and the spatial resolution of degradation. For each MODIS-Aqua

and Landsat-8 OLI TSS image we selected 5 locations, the 1) the center of the dredge area

(DA), 2) center of the spoil ground (SG), 3) moderately turbid but spatially uniform area

(MTA), 4) clean area (CA) and 5) center of the river plume (RP). For the WV2 TSS image, we

also selected 5 locations, but replaced the location of the river plume with the second dredge

area (DA2) because the area of the river plume was not covered by the WV2 image (see black

cross marks in Fig 2 for the locations).

In addition, the data to visually examine the spatial characteristic of the sediment plumes

were generated by spatially degrading the TSS product for all of the study regions from each

sensor’s native spatial resolution. The high spatial resolution 2 m WV2 TSS product was

degraded to 30 m, 250 m, 500 m, and 1000 m, the spatial resolution of the 30 m Landsat-8 OLI

TSS product was degraded to 250 m, 500 m, and 1000 m, and the coarser 250 m spatial resolu-

tion of MODIS-Aqua was degraded to 500 m and 1000 m. For the examination of the plume

features we focused on the area where the plume was visually evident (see red box in Fig 2a, 2c,

and 2h) for the TSS product of June 13th 2014 for WV2, May 23rd for Landsat-8 OLI and July

10th 2014 for MODIS-Aqua.

Calibration and validation of Multi-Sensor TSS algorithm

The TSS algorithm used in this study is the Semi-Analytic Sediment Model (SASM) from

Dorji et al. [64] where the physical form of SASM is based on the principle of radiative transfer

and it has been shown that the SASM performs better in the study region compared with sim-

ple linear and exponential models. Further, SASM is based on a red spectral band which suits

our purpose because all three satellite sensors considered here have red bands which are

proven to be effective in mapping TSS concentrations in the turbid region where reflectance

Satellite spatial resolution and quantification of total suspended sediment concentration
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does not necessarily co-vary linearly with reflectance. To calibrate the SASM model, the

DALEC measured Rrs was convolved to the respective sensors band’s spectral response func-

tions and then converted to equivalent sub-surface remote sensing reflectance (rrs). Then all

the 48 (rrs and TSS) match-up pairs were used in re-calibration of the general form of the

SASM in Equation (14) of Dorji et al. [64]. The recalibrated model was validated using the

method of Leave-one-out cross-validation (LOOCV) [75] where all but one (rrs and TSS)

match-up pairs were used in calibration and the remaining one was used in validation until all

the match-up pairs were exhausted. The SASM re-calibrated to the respective red bands of

MODIS-Aqua, Landsat-8 OLI and WV2 are presented below in Eqs (2), (3) and (4) for

MODIS-Aqua in band 1, Landsat-8 OLI in band 4 and WV2 in the red band respectively.

TSS¼
23:47�

x
1 � x

� �

1 � 0:69�
x

1 � x

� � ð2Þ

TSS¼
25:34�

x
1 � x

� �

1 � 0:69�
x

1 � x

� � ð3Þ

TSS¼
26:37�

x
1 � x

� �

1 � 0:69�
x

1 � x

� � ð4Þ

where x ¼ � g1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1Þ

2þ4g2rrsðlÞ
p

2g2
, and rrs (λ) = rrs (band 1) for MODIS-Aqua, rrs (band 4) for Land-

sat-8 OLI and rrs (red band) for WV2, g1 = 0.084 and g2 = 0.17

Mapping of TSS concentration

The Rrs derived from the atmospherically corrected reflectance of MODIS-Aqua in band 1,

Landsat-8 OLI in band 4 and WV2 in the red band for all the corresponding dates of image

acquisition were used in mapping the TSS concentration. The respective satellite derived Rrs

were converted to rrs using Eq (5) [76] then, the resultant rrs was used in the respective satellite

sensor’s TSS algorithm given by Eqs (2), (3) and (4) for MODIS-Aqua, Landsat-8 OLI and

WV2 respectively.

rrsðlÞ ¼
RrsðlÞ

ð0:52þ 1:7RrsðlÞÞ
ð5Þ

Accuracy assessment

The common accuracy assessment methods, Mean Absolute Relative Error (MARE), Absolute

Relative Error (ARE) and Root Mean Square Error (RMSE) employed in remote sensing by

numerous studies [77–79] were used in this study to compare model-derived and ‘true’ Rrs

and TSS values. In this study we refer to ‘true’ value as the in situ measurements or MODIS-A-

qua derived Rrs or TSS values. We also considered the correlation coefficient (r) defined in Eq

(9), although r cannot be strictly used in assessing the accuracy between two models because a

high r value does not necessarily mean a better prediction because the systematic model error

can also lead to over and/or under prediction [79]. We used r to gauge the presence of positive
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correlation between the models. RMSE, as defined in Eq (8), is the most common accuracy

assessment used to indicate average error of a model. Because of its susceptibility to outliers we

resorted to using RMSE to evaluate in situ validation of TSS algorithms only, where in the in
situ model validation the model-derived TSS concentration is not expected to deviate signifi-

cantly from the in situ TSS measurements. However, in the accuracy assessment of TSS con-

centration derived from the satellite images, the TSS concentration can be highly variable and

possibly include outliers, which can limit the use of RMSE accuracy assessment in such cases.

Thus, the MARE and ARE as defined in Eqs (6) and (7) respectively, were deemed more

appropriate for satellite image derived TSS comparison. Further, the MARE and ARE are scale

independent and provide errors in percentages, which better facilitates the comparative study

of TSS concentrations produced by different satellite sensors. Thus, accuracy assessment for

quantitative comparison of TSS concentration derived from different sensors was performed

using MARE and ARE. However, it should be noted that negative or zero, model-derived or

‘true’ values can result an unreliable accuracy estimates in MARE and ARE calculation. In this

study, in the atmospheric correction process of the satellite images, the Rrs values were tested

for negative or zero values to be flagged as ‘bad’ pixels and removed from subsequent analysis.

MARE ¼

Xn

i¼1

jðxi � yiÞ=yij

n
� 100% ð6Þ

ARE ¼
jxi � yij

yi
� 100% ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðxi � yiÞ
2

n

v
u
u
u
t

ð8Þ

r ¼
n
X

xiyi

X
xi

X
yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

xi
2 ð

X
xiÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

yi
2 ð

X
yiÞ

2
q ð9Þ

where n is the total number of samples, xi is the model-derived TSS and yi is the ‘true’ TSS.

Results

Validation of TSS algorithms

The result from the LOOCV method used in calibration and validation of the TSS algorithms

in Eqs (2), (3) and (4) are presented in Table 1. Further, the corresponding TSS model curves

for MODIS-Aqua in band 1, Landsat-8 OLI in band 4 and WV2 in the red band are shown in

Fig 3. The results from all three sensor’s TSS algorithms produce similar results in terms of

MARE, RMSE and r values. The similar results between all three TSS algorithm’s validation

Table 1. Validation results for MODIS-Aqua, Landsat-8 OLI, and WV2 TSS algorithms.

SASM Model MARE (%) RMSE (mg L-1) r

Modis-Aqua 33.33 5.75 0.89

Landsat-8 OLI 33.36 5.73 0.89

WorldView 2 33.34 5.68 0.89

https://doi.org/10.1371/journal.pone.0175042.t001
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are expected because all three algorithms use the respective sensor’s red band with slight varia-

tion in spectral response function of each sensor.

Multi-Sensor atmospheric correction validations

Validation of the atmospheric correction methods for the different satellite sensors involved

two methods: 1) in situ validation for MODIS-Aqua atmospheric correction methods and 2)

inter-sensor Rrs validation between MODIS-Aqua, WV2 and Landsat-8 OLI. In both the vali-

dation methods, type-II linear regression from [80] was used because type-I regression typi-

cally assumes the dependent (‘true’) variable is error free, but this is not the case even in in situ
measurements [81].

The validation result for in situ atmospheric correction for MODIS-Aqua using the

DALEC-derived Rrs is shown in Fig 4. The error bars on the data points in Fig 4 indicate the

minimum and maximum values of Rrs within 3 × 3 and 5 × 5 pixel extents. In Fig 4 we observe

that the majority of the data points were within the 1:1 line considering the error bars from Rrs

variability in a 5 by 5-pixel window. However, there are also a few data points whose error bars

do not overlap with the 1:1 line and resulted in ARE as high as 109.64% between the in situ
DALEC Rrs measurement and MODIS-Aqua derived Rrs. The overall MARE of all data points

was 34.82% with slope of 0.67, intercept of 0.0018 and R2 of 0.54 as obtained from Type-II

regression. Additional observation we can make from Fig 4 are that as the pixel window

increases from a 3 × 3 to a 5 × 5 pixel window, the upper and lower error bounds also increase,

showing that the water is highly variable in Rrs values. This spatial variability in Rrs is associated

with the spatial variability in TSS.

Fig 3. The TSS model curves for MODIS-Aqua (blue), Landsat-8 OLI (green) and WV2 (red). The in situ

data points are shown by filled circles with the same colour profile as respective TSS model curves. The data

for TSS < 10 mg L-1 and rrs < 0.025 sr-1 are also shown in the blow out version of the plot.

https://doi.org/10.1371/journal.pone.0175042.g003
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The result of the inter-sensor validation of the Rrs product is shown in Fig 5a and 5b. From

Fig 5a and 5b we observe that the inter-sensor Rrs product validation of MODIS-Aqua vs

Landsat-8 OLI (Fig 5a) with MARE of 44.85% showed a better result than MODIS-Aqua vs

WV2 (Fig 5b) with a MARE of 55.99%. In addition, the ARE results in Fig 5a were also better

with the smallest ARE and largest ARE of 0.15% and 158.11% while in Fig 5b the smallest ARE

and largest ARE were 1.20% and 332% respectively. Further, in Fig 5a the type-II linear regres-

sion indicates that there is high correlation, with R2 = 0.87, between MODIS-Aqua and Land-

sat-8 OLI derived Rrs, with most data points falling along the 1:1 line, considering the Rrs

variability within a 2.5 km width square box (indicated by error bars in Fig 5a and 5b with the

17.5 and 82.5 percentile Rrs values). The correlation between MODIS-Aqua and WV2, as

shown in Fig 5b, was lower, with R2 = 0.61 with some data points failing to fall within the 1:1

line even after considering the errors from Rrs variability in the 2.5 km square box. However,

the majority of the data points in both Fig 5a and 5b show that MODIS-derived Rrs are lower

than either WV2 or Landsat-8 OLI derived Rrs for Rrs > 0.005 sr-1.

Sediment plume features examination

Few selected regions within the study sites in Fig 1 (shown by red boxes in Fig 2a, 2c and 2h)

which are spatially degraded to lower spatial resolutions are shown in Fig 6a–6c for WV2,

Fig 4. In situ validation of DALEC-measured Rrs and MODIS-Aqua derived Rrs for match-up data within ± 90 min from the

satellite overpass. The error bars indicate the maximum and minimum MODIS Rrs values in 3 × 3 and 5 × 5 pixel extents.

https://doi.org/10.1371/journal.pone.0175042.g004
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Landsat-8 OLI and MODIS-Aqua sensors respectively. Subsequent images from the top row to

bottom row in Fig 6a–6c are spatially degraded to a coarser spatial resolution. In Fig 6a, show-

ing WV2 at 2 m spatial resolution, we are able to visually identify even the fine spatial features

in the sediment plumes adjacent to the large turbidity features which are very evident. Similar

spatial features as those observed at 2 m spatial resolution are still evident in the degraded

lower spatial resolution of 30 m. As the spatial resolution is degraded to 250 m and 500 m the

fine spatial features which were evident at 2 m and 30 m spatial resolution are no longer visible,

but we can still identify the two large distinct plume regions (DA and DA2 in Fig 6a) which

are visible enough to be distinguished as two separate regions of plume when compared with

the surrounding areas in DA and DA2. In the lowest spatial resolution of 1000 m, we can no

longer clearly discern even the two distinct DA and DA2 plumes observed at the 250 m and

500 m spatial resolutions. The separate regions of DA and DA2 are fused together to appear as

one large region of turbid plume when compared with the surrounding background data. In

Fig 6b, showing Landsat-8 OLI data at 30 m spatial resolution, we can distinguish the fine fea-

tures of the river plume, but as the spatial resolution is degraded to 250 m, 500 m and 1000 m

only the larger boundaries of the sediment plumes remain visible as the finer features are

replaced by the coarser grids at degraded spatial resolutions. Similarly, in Fig 6c showing

MODIS-Aqua data, we can clearly observe the dredge plume in the 250 m and 500 m spatial

resolution images, but the 1000 m spatial resolution image loses the details that are observed at

the higher spatial resolutions.

Quantification of TSS in sediment plumes

Fig 7a and 7b show the histograms of TSS concentrations derived from pixels located within

the clean area (CA) which represents the background water to the turbid dredged area (DA)

for all the images at MODIS-Aqua and WV2 sensor’s native spatial resolution as well as spa-

tially degraded resolutions respectively. The degraded resolutions encompass more pixels and

the histogram shows the average TSS value of each area, with the error bars indicating the

maximum and minimum TSS values of the native resolution pixels within each area. The

comparative results between MODIS-Aqua and WV2 for the June 13th 2014 show that

Fig 5. Inter-satellite Rrs product validation results. (a) 2014 MODIS-Aqua vs Landsat-8 OLI Rrs product validation from May 23rd,

July 10th and July 26th 2014; (b) MODIS-Aqua vs WV2 Rrs product validation for Rrs from June 13th. The error bars indicate the 17.5

percentile (lower limit) and 82.5 percentile (upper limit) of pixel values from a 2.5 km width box for each respective satellite sensors

derived Rrs. Dashed lines indicate the 1: 1 relationship.

https://doi.org/10.1371/journal.pone.0175042.g005
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Fig 6. Spatially degraded images of the Dredge Area (DA) and River Plume (RP). Extracted from images

in Fig 2a, 2d and 2i corresponding to (a) WV2, (b) Landsat-8 OLI and (c) MODIS-Aqua.

https://doi.org/10.1371/journal.pone.0175042.g006
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MODIS-Aqua derived average TSS values are relatively lower than WV2 derived average TSS

for the regions DA, RP, SG and MTA. At sensor native resolution (2 m for WV2 and 250 m

for MODIS-Aqua) the MODIS-Aqua derived TSS for the turbid regions (DA, SG and RP)

were ~8.5 times less than WV2 derived TSS concentrations. In terms of average TSS derived at

different spatial resolutions for the WV2 image (Fig 7b) we observe that in the plume/turbid

areas (DA), the average TSS concentration decreased as the spatial resolution became coarser

and the MARE between average TSS derived from 2 m and 2000 m spatial resolution in DA

was 114.46%. Likewise, a similar trend was observed for the MODIS-Aqua images, with the

MARE between 250 m and 5000 m spatial resolutions of 30.80% for MODIS-Aqua.

The variability in TSS concentration in different regions is represented by error bars (mini-

mum and maximum TSS concentration in each spatial grid) in Fig 7a and 7b. The error bars

in Fig 7a and 7b show that for all regions considered, the range of TSS variability increases as

spatial resolution gets coarser and the area encompassed increases. In the region of the dredge

plume (DA) the TSS concentration ranged from a low of 2.3 mg L-1 to a high of 160 mg L-1 for

the WV2 image at the spatial resolution of 2000 m while for MODIS-Aqua, at a spatial resolu-

tion of 5000 m, by contrast only displayed TSS in the range of 1.4 mg L-1 to 6.6 mg L-1.

Fig 8a–8f show histograms of the TSS concentration derived using Landsat-8 OLI and

MODIS-Aqua data for May 23rd, July 10th and July 26th 2014 for regions DA, CA, MTA, RP

and SG at native and degraded spatial resolutions. For all three dates, the TSS concentration

derived using Landsat-8 OLI images were higher than the MODIS-Aqua for the turbid (DA,

SG and RP) and moderately turbid (MTA) regions while the MODIS-Aqua derived TSS was

higher than the Landsat-8 OLI for the clean area (CA). For the turbid regions (DA, RP and

SG) the ARE between MODIS-Aqua and Landsat-8 OLI derived TSS ranged from 2.3% to

304.68% with higher ARE at the higher spatial resolution for all Landsat-8 OLI and MODIS-A-

qua image pairs. For the regions of moderately turbid (MTA) and clean area (CA) the ARE in

TSS concentration ranged from 44.22% to 82.08% with a maximum of 4% variability in ARE

for all different spatial resolutions within any Landsat-8 OLI and MODIS-Aqua image pair.

In general, apart from the MODIS-Aqua image of the May 23rd 2014 (Fig 8d) all TSS

concentrations derived for turbid regions (DA, SG and RP) show general trends in which

the mean TSS concentrations of the coarser spatial resolution grid are lower than the mean

TSS concentrations derived at higher spatial resolution. Further, the variability in TSS

Fig 7. Average TSS concentration. (a) MODIS-Aqua and (b) WV2 at their respective native and degraded spatial resolutions,

averaged over the areas: dredge plume (DA and DA2), Spoil Ground (SG), River Plume (RP), Moderate Turbid Area (MTA) and

Clean Area (CA). The error bars indicate the minimum and maximum TSS concentrations in each spatial grid.

https://doi.org/10.1371/journal.pone.0175042.g007
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concentration as represented by minimum and maximum TSS concentrations in the spatial

grid increases as the spatial grids get coarser and cover a larger extent. The range of TSS con-

centration as derived by Landsat-8 OLI and MODIS-Aqua varied from 5.59 mg L-1 to 29.15

mg L-1 and 3.9 mg L-1 to 6.31 mg L-1 in the turbid regions (DA, SG and RP) respectively

while the TSS concentration ranged from 0.38 mg L-1 to 0.43 mg L-1 for MODIS-Aqua and

0.14 mg L-1 to 0.30 mg L-1 for Landsat-8 OLI in the background waters (CA).

Discussion

Data and methodological limitations

The results presented demonstrate the differences observed in remotely sensed TSS concentra-

tions for three different sensors and for varying spatial scales of monitoring. The remote sens-

ing instruments, WV2, MODIS-Aqua and Landsat-8 OLI considered in this study have their

Fig 8. Average TSS concentration. (a)—(c) Landsat-8 OLI and (d)—(f) MODIS-Aqua at their respective native and degraded

spatial resolutions in the dredge plume (DA), Spoil Ground (SG), River Plume (RP), Moderate Turbid Area (MTA) and Clean Area

(CA). The error bars indicate the minimum and maximum TSS concentrations in each spatial grid.

https://doi.org/10.1371/journal.pone.0175042.g008
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own radiometric characteristics and atmospheric correction methods that are best suited to

each individual sensor. Apart from the radiometric and atmospheric correction methodologies

considered for each sensor we also have to take into account the different image acquisition

times when attempting to compare the results of the different sensors. The miss-match

between the different sensor image acquisition times leads to the situation where the water

mass, or the feature of interest such as a sediment plume, may move and alter in spatial distri-

bution, thus the comparison of the Rrs was based on a spatial subset of pixels contained within

a square region of length 2.5 km, the average distance the surface current for June 13th 2014 in

the study region was estimated to move a water mass within the acquisition time differences

(P. Branson, personal communication, July 4th 2016). Further, the effect of pixel resolution

and the size of the spatial domain on the TSS product was studied by degrading the spatial res-

olution of the TSS products for each sensor to coarser and larger grids.

The inter-sensor TSS algorithms considered in this study were all calibrated using the same

in situ TSS and Rrs measurements in the red bands of the respective sensors and the in situ vali-

dation result of the TSS algorithms for all three satellite sensors were within MARE of 33.33%

to 33.36%. Fig 3 shows the close similarity in the algorithm curves for each sensor, with a maxi-

mum relative difference of ~10% between TSS values occurring at higher Rrs. However, com-

parison between TSS algorithm curves should take into account the differences in the spectral

response of each sensor, thus the Rrs value for the same body of water would be expected to be

slightly different for each sensor, as indicated by the horizontal displacement of the individual

data points in Fig 3. Nonetheless, the value of 10% is a reasonable estimate of the upper limit of

the differences in TSS to be expected simply due to differences between sensor algorithms. The

use of different atmospheric correction methods for different sensors can cause discrepancies

in the final derived TSS products, thus it is vital to account for such discrepancies in atmo-

spheric correction methods. The Rrs results for the MODIS-Aqua which were validated using

the in situ Rrs data showed that MODIS-Aqua had MARE of 33.82%. The WV2 and Landsat-8

OLI atmospheric correction results which were “validated” against the MODIS-Aqua Rrs data

had MARE of 55.99% for WV2 vs. MODIS-Aqua, and 44.85% for MODIS-Aqua vs. Landsat-8

OLI. The high MARE values of inter sensor validation may be expected because of the acquisi-

tion time differences between satellite sensor data that were in excess of 3 hrs between MODI-

S-Aqua and WV2, and 3.75 hrs between MODIS-Aqua and Landsat-8 OLI. In areas of the

turbid dredged plumes (DA and DA2 in Fig 2a) the MODIS-Aqua Rrs derived using the

MUMM atmospheric correction method is particularly low when compared with Rrs derived

from WV2 using the 6S atmospheric correction method. The highest ARE were between the

Rrs derived from the MUMM and 6S atmospheric correction methods at 332% while the lowest

ARE of 1.2% were observed in the region of the background waters (CA in Fig 2a). The under-

estimation of Rrs by the MUMM atmospheric correction method could be because it was

designed for moderately turbid waters [69] and fails to retrieve Rrs correctly in highly turbid

waters of the dredge plumes. Similar under estimation of Rrs in the turbid region (DA in Fig

2c–2h) by the MUMM atmospheric correction method applied to the MODIS-Aqua image

was observed when compared with Rrs derived from the SWIR atmospheric correction applied

to the Landsat-8 OLI which was adapted for the turbid waters [70].

General observation and recommendations

The effect of different spatial resolutions of the satellite sensors on identifying and mapping

the fine features in the dredge plumes are evident from the results. The higher spatial resolu-

tion satellite sensors, no doubt, have the benefit of identifying even the fine features in the sedi-

ment plumes. For the size and scale of images displayed, the 30 m Landsat-8 OLI and 2 m
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WV2 TSS products shows similarly fine features, but as the spatial resolution is degraded to

larger pixel sizes the fine features are no longer visible, as seen in images with the spatial reso-

lution greater than 250 m (see Fig 6). The fine details observed with the high spatial resolutions

of WV2 at 2 m and Landsat-8 OLI and 30 m native spatial resolution makes these two sensors

capable of resolving fine spatial details in the surface turbidity features and shows the capability

of their application in spatial features/extent mapping of the sediment plumes when compared

with MODIS-Aqua sensors. From the perspective of dredge plume monitoring for environ-

mental impact assessment or compliance, the finer details available in the higher resolution

satellite data provide better resolution of the spatial extent of dredge plumes, and this in turn

translates to a higher confidence in the product. For instance, the extent of the dredge plume

in the lateral direction when measured with the high resolution WV2 image was ~6 km, while

the MODIS-Aqua derived measurement was ~10 km. However, marine and environmental

protection agencies should carefully weigh the cost and benefit of using different spatial resolu-

tion sensors. Both the WV2 and Landsat-8 OLI data are able to identify the fine features of the

dredge plume, but users should be mindful that the WV2 data are not freely accessible, as is

Landsat-8 OLI. Further, if the requirement of the agencies were just to map the extent of

dredge plume then MODIS 250 m spatial resolution shows similar capability in mapping the

larger TSS spatial features, but not the fine features and details as seen in the high resolution

WV2 and Landsat-8 OLI images.

The general trend observed in quantified TSS concentration (Figs 7 and 8) is that as the spa-

tial resolution gets coarser and the spatial extent increases the mean TSS concentration

decreases for all three different sensors for turbid regions (DA, SG and RP) while the mean

TSS concentrations for CA and MTA remain relatively uniform. Depending on the spatial res-

olution, the mean TSS concentration results for different spatial resolutions by the same satel-

lite sensors are different and it is shown to decrease as spatial resolution gets coarser for turbid

regions. The decrease in TSS concentration with coarser spatial resolutions are observed

because of the inclusion of background and lower turbid waters in averaging as the spatial

grids get larger. In monitoring of TSS concentration in turbid regions it is important for envi-

ronmental agencies to be mindful of the result from this study where it shows the effect of the

coarser spatial resolution sensors in inclusion of background and lower TSS concentration

neighboring pixels producing a lower average TSS concentration than the TSS concentration

of the sediment plume over a small spatial extent, particularly when the size of the sediment

plume is smaller than the spatial resolution of the satellite sensor. However, our results did not

show that such an effect is observed in regions where the turbidity is uniformly distributed

over a relatively large spatial extent.

The quantification of TSS concentrations variability results (see S1 Text for details) show

that in the background, CA (see S3 Fig), spatially uniform and moderately turbid waters, MTA

(see S2 Fig), the TSS variability remains similar across different spatial resolutions for each sen-

sor. The TSS variability across different spatial resolutions (250 m– 2000 m) for CA and MTA

were mostly below ~5% from the mean TSS concentrations of the respective region, with the

exception of Landsat-8 OLI in MTA which had TSS variability of 10.39%. The low TSS varia-

tion is expected in the CA and MTA regions because the CA, which is approximately 30 km

from the dredge region, is expected to remain undisturbed by the dredging activities and has a

natural background level of TSS concentration without disturbance from anthropogenic pro-

cesses. Further, the MTA region, which has spatially uniform TSS concentration, is expected

to show minimum variance when spatially degraded to represent coarser spatial resolution.

However, in the turbid regions (DA, SG and RP) the TSS variability was higher, with 16.96%,

54.09%, and 12.05% for MODIS-Aqua, Landsat-8 OLI and WV2 respectively. The higher TSS
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variability in the turbid regions, the regions of dredge and river plumes, can be associated with

higher TSS gradient in each region. The mean TSS concentration derived by different satellite

sensors was also different for each sensor.

The MODIS-Aqua sensor produced mean TSS concentrations of 12.67±2.15 mg L-1,

1.89±0.04 mg L-1, and 0.51±0.02 mg L-1 for the DA, MTA and CA regions respectively. Like-

wise, for Landsat-8 OLI and WV2 sensors, the mean TSS concentrations in the DA, MTA and

CA regions were quantified to be 11.34±6.13 mg L-1, 1.61±0.07 mg L-1, and 0.16±0.02 mg L-1

for Landsat-8 OLI and 22.04.34±2.65 mg L-1, 3.85±0.19 mg L-1, and 1.84±0.06 mg L-1 for

WV2. Thus, in monitoring TSS concentration, it should be noted that the TSS variability

observed by the satellite sensors is not only associated with the different satellite sensor’s spa-

tial resolution, but also the horizontal spatial distribution of TSS as well.

Conclusion

The aim of this study was to highlight the effect of the sensor spatial resolution on quantifica-

tion of TSS concentration in turbid sediment plumes. Results from this study show that dif-

ferent satellite sensors with different spatial resolutions can produce different TSS

concentrations, particularly in regions of spatially variable TSS. The WV2 sensor, with 2 m

spatial resolution, was shown to generate TSS concentrations as high as 160 mg L-1 in the

region of the dredge plumes while the highest TSS concentration generated by MODIS-Aqua

with 250 m spatial resolution was 23.6 mg L-1. Even for the same satellite sensor degraded to

different spatial resolutions, the TSS concentrations in the non-uniform turbid regions var-

ied by 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively

as the sensor resolution was degraded and the spatial extent increased. In the region of back-

ground water and uniformly turbid waters, the mean TSS concentration was observed to be

uniform as the sensor resolution was degraded and the spatial extent was increased. Thus, in

the context of TSS monitoring of the coastal waters, and particularly for environmental com-

pliance monitoring for dredge operations, users must be mindful of the fact that different

satellite sensors produce different TSS concentrations with higher spatial resolution satellite

sensors reporting higher TSS values. Also, higher spatial resolution sensors are able to resolve

fine turbidity features while lower spatial resolution sensors are only able to resolve the larger

spatial extent of the sediment plumes.
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27. Östlund C, Flink P, Strömbeck N, Pierson D, Lindell T. Mapping of the water quality of Lake Erken, Swe-

den, from Imaging Spectrometry and Landsat Thematic Mapper. Science of The Total Environment.

2001; 268(1–3):139–54. http://dx.doi.org/10.1016/S0048-9697(00)00683-5. PMID: 11315737

Satellite spatial resolution and quantification of total suspended sediment concentration

PLOS ONE | https://doi.org/10.1371/journal.pone.0175042 April 5, 2017 21 / 24

http://www.ncbi.nlm.nih.gov/pubmed/11351792
http://dx.doi.org/10.1016/j.rse.2004.11.002
http://dx.doi.org/10.1016/j.rse.2004.11.002
http://dx.doi.org/10.1007/s11270-007-9373-5
http://dx.doi.org/10.1007/s11270-007-9373-5
http://dx.doi.org/10.1016/j.csr.2006.10.006
http://dx.doi.org/10.1016/j.rse.2004.07.012
http://dx.doi.org/10.1016/j.rse.2004.07.012
http://dx.doi.org/10.1016/j.marpolbul.2011.10.025
http://dx.doi.org/10.1016/j.marpolbul.2011.10.025
http://www.ncbi.nlm.nih.gov/pubmed/22136763
http://www.ncbi.nlm.nih.gov/pubmed/19495144
http://dx.doi.org/10.1007/s00254-008-1209-0
https://doi.org/10.1007/s00267-008-9146-y
http://www.ncbi.nlm.nih.gov/pubmed/18509700
http://dx.doi.org/10.1016/S0034-4257(02)00022-6
http://dx.doi.org/10.1016/S0034-4257(02)00022-6
http://dx.doi.org/10.1016/j.rse.2007.12.013
http://dx.doi.org/10.1016/j.rse.2007.12.013
http://dx.doi.org/10.1016/j.scitotenv.2008.02.044
http://dx.doi.org/10.1016/j.scitotenv.2008.02.044
http://www.ncbi.nlm.nih.gov/pubmed/18433839
http://dx.doi.org/10.1016/S0048-9697(00)00683-5
http://www.ncbi.nlm.nih.gov/pubmed/11315737
https://doi.org/10.1371/journal.pone.0175042


28. Wang J-J, Lu XX, Liew SC, Zhou Y. Retrieval of suspended sediment concentrations in large turbid riv-

ers using Landsat ETM+: an example from the Yangtze River, China. Earth Surface Processes and

Landforms. 2009; 34(8):1082–92.

29. Wu G, De Leeuw J, Skidmore AK, Prins HHT, Liu Y. Comparison of MODIS and Landsat TM5 images

for mapping tempo–spatial dynamics of Secchi disk depths in Poyang Lake National Nature Reserve,

China. International Journal of Remote Sensing. 2008; 29(8):2183–98.

30. Zhou W, Wang S, Zhou Y, Troy A. Mapping the concentrations of total suspended matter in Lake Taihu,

China, using Landsat-5 TM data. International Journal of Remote Sensing. 2006; 27(6):1177–91.

31. Koponen S, Pulliainen J, Kallio K, Hallikainen M. Lake water quality classification with airborne hyper-

spectral spectrometer and simulated MERIS data. Remote Sensing of Environment. 2002; 79(1):51–9.

http://dx.doi.org/10.1016/S0034-4257(01)00238-3.

32. Kratzer S, Brockmann C, Moore G. Using MERIS full resolution data to monitor coastal waters—A case

study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sensing of Environ-

ment. 2008; 112(5):2284–300. http://dx.doi.org/10.1016/j.rse.2007.10.006.

33. Odermatt D, Heege T, Nieke T, Kneubuhler M, Itten KI. Water quality monitoring for Lake Constance

with a physically based algorithm for MERIS data. Sensors. 2008; 8(8):4582–99. https://doi.org/10.

3390/s8084582 PMID: 27873774

34. Chen J, Cui T, Tang J, Song Q. Remote sensing of diffuse attenuation coefficient using MODIS imagery

of turbid coastal waters: A case study in Bohai Sea. Remote Sensing of Environment. 2014; 140(0):78–

93. http://dx.doi.org/10.1016/j.rse.2013.08.031.

35. Chen Z, Hu C, Muller-Karger F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery.

Remote Sensing of Environment. 2007; 109(2):207–20. http://dx.doi.org/10.1016/j.rse.2006.12.019.

36. Doxaran D, Froidefond J-M, Castaing P, Babin M. Dynamics of the turbidity maximum zone in a macroti-

dal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuarine, Coastal

and Shelf Science. 2009; 81(3):321–32. http://dx.doi.org/10.1016/j.ecss.2008.11.013.

37. Hu C, Chen Z, Clayton TD, Swarzenski P, Brock JC, Muller–Karger FE. Assessment of estuarine

water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL.

Remote Sensing of Environment. 2004; 93(3):423–41. http://dx.doi.org/10.1016/j.rse.2004.08.007.

38. Petus C, Chust G, Gohin F, Doxaran D, Froidefond J-M, Sagarminaga Y. Estimating turbidity and total

suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Conti-

nental Shelf Research. 2010; 30(5):379–92. http://dx.doi.org/10.1016/j.csr.2009.12.007.

39. Wang F, Zhou B, Xu J, Song L, Wang X. Application of neural network and MODIS 250 m imagery for

estimating suspended sediments concentration in Hangzhou Bay, China. Environmental Geology.

2009; 56(6):1093–101.

40. Li J, Gao S, Wang Y. Delineating suspended sediment concentration patterns in surface waters of the

Changjiang Estuary by remote sensing analysis. Acta Oceanol Sin. 2010; 29(4):38–47.

41. Wang JJ, Lu XX. Estimation of suspended sediment concentrations using Terra MODIS: An example

from the Lower Yangtze River, China. Science of The Total Environment. 2010; 408(5):1131–8. http://

dx.doi.org/10.1016/j.scitotenv.2009.11.057. PMID: 20022078

42. Wang M, Son S, Shi W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms

using SeaBASS data. Remote Sensing of Environment. 2009; 113(3):635–44. http://dx.doi.org/10.

1016/j.rse.2008.11.005.

43. Wu M, Zhang W, Wang X, Luo D. Application of MODIS satellite data in monitoring water quality param-

eters of Chaohu Lake in China. Environ Monit Assess. 2009; 148(1–4):255–64. http://dx.doi.org/10.

1007/s10661-008-0156-2. PMID: 18231871

44. Zhang M, Tang J, Dong Q, Song Q, Ding J. Retrieval of total suspended matter concentration in the Yel-

low and East China Seas from MODIS imagery. Remote Sensing of Environment. 2010; 114(2):392–

403. http://dx.doi.org/10.1016/j.rse.2009.09.016.

45. Binding CE, Bowers DG, Mitchelson-Jacob EG. An algorithm for the retrieval of suspended sediment

concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery. International Journal of

Remote Sensing. 2003; 24(19):3791–806.

46. Fettweis M, Nechad B, Van den Eynde D. An estimate of the suspended particulate matter (SPM) trans-

port in the southern North Sea using SeaWiFS images, in situ measurements and numerical model

results. Continental Shelf Research. 2007; 27(10–11):1568–83. http://dx.doi.org/10.1016/j.csr.2007.01.

017.

47. Gordon HR, Wang M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans

with SeaWiFS: a preliminary algorithm. Applied Optics. 1994; 33(3):443–52. https://doi.org/10.1364/

AO.33.000443 PMID: 20862036

Satellite spatial resolution and quantification of total suspended sediment concentration

PLOS ONE | https://doi.org/10.1371/journal.pone.0175042 April 5, 2017 22 / 24

http://dx.doi.org/10.1016/S0034-4257(01)00238-3
http://dx.doi.org/10.1016/j.rse.2007.10.006
https://doi.org/10.3390/s8084582
https://doi.org/10.3390/s8084582
http://www.ncbi.nlm.nih.gov/pubmed/27873774
http://dx.doi.org/10.1016/j.rse.2013.08.031
http://dx.doi.org/10.1016/j.rse.2006.12.019
http://dx.doi.org/10.1016/j.ecss.2008.11.013
http://dx.doi.org/10.1016/j.rse.2004.08.007
http://dx.doi.org/10.1016/j.csr.2009.12.007
http://dx.doi.org/10.1016/j.scitotenv.2009.11.057
http://dx.doi.org/10.1016/j.scitotenv.2009.11.057
http://www.ncbi.nlm.nih.gov/pubmed/20022078
http://dx.doi.org/10.1016/j.rse.2008.11.005
http://dx.doi.org/10.1016/j.rse.2008.11.005
http://dx.doi.org/10.1007/s10661-008-0156-2
http://dx.doi.org/10.1007/s10661-008-0156-2
http://www.ncbi.nlm.nih.gov/pubmed/18231871
http://dx.doi.org/10.1016/j.rse.2009.09.016
http://dx.doi.org/10.1016/j.csr.2007.01.017
http://dx.doi.org/10.1016/j.csr.2007.01.017
https://doi.org/10.1364/AO.33.000443
https://doi.org/10.1364/AO.33.000443
http://www.ncbi.nlm.nih.gov/pubmed/20862036
https://doi.org/10.1371/journal.pone.0175042


48. Myint SW, Walker ND. Quantification of surface suspended sediments along a river dominated coast

with NOAA AVHRR and SeaWiFS measurements: Louisiana, USA. International Journal of Remote

Sensing. 2002; 23(16):3229–49.

49. Ruddick KG, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and

inland waters. Applied Optics. 2000; 39(6):897–912. PMID: 18337965

50. Dekker AG, Vos RJ, Peters SWM. Analytical algorithms for lake water TSM estimation for retrospective

analyses of TM and SPOT sensor data. International Journal of Remote Sensing. 2002; 23(1):15–35.

51. Doxaran D, Froidefond J-M, Lavender S, Castaing P. Spectral signature of highly turbid waters: Applica-

tion with SPOT data to quantify suspended particulate matter concentrations. Remote Sensing of Envi-

ronment. 2002; 81(1):149–61. http://dx.doi.org/10.1016/S0034-4257(01)00341-8.

52. Eugenio F, Martin J, Marcello J, Bermejo JA, editors. Worldview-2 high resolution remote sensing

image processing for the monitoring of coastal areas. 21st European Signal Processing Conference

(EUSIPCO 2013); 2013 9–13 Sept. 2013.

53. DigitalGlobe. Resources: Satellite Information: DigitalGlobe; 2017 [cited 2016 12/21/2016]. https://

www.digitalglobe.com/resources/satellite-information.

54. Ody A, Doxaran D, Vanhellemont Q, Nechad B, Novoa S, Many G, et al. Potential of High Spatial and

Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal

River Plume. Remote Sensing. 2016; 8(3):245.

55. Miller RL, Liu C-C, Buonassissi CJ, Wu A-M. A Multi-Sensor Approach to Examining the Distribution of

Total Suspended Matter (TSM) in the Albemarle-Pamlico Estuarine System, NC, USA. Remote Sens-

ing. 2011; 3(5):962.

56. Hanley JR. Environment monitoring programs on recent capital dredging projects in the Pilbarra (2003–

10): a review. APPEA Journal. 2011:273–93.

57. SKM. Improved Dredge Material Management for the Great Barrier Reef Region; Appendix B. Towns-

ville 2013.

58. WA EPA. Environmental Assessment Guideline for Marine Dredging Proposals Western Australia Envi-

ronmental Protection Authority, Perth: 2011.

59. Islam MA, Lan-Wei W, Smith CJ, Reddy S, Lewis A, Smith A. Evaluation of satellite remote sensing for

operational monitoring of sediment plumes produced by dredging at Hay Point, Queensland, Australia.

APPRES. 2007; 1(1):011506–15.

60. Bureau of Meteorology. Climate Statistics for Australian Location 2015 [cited 2015 04/11/2015]. http://

www.bom.gov.au/climate/averages/tables/cw_005094.shtml.

61. Chevron. Dredging and dredge spil placement environmental monitoring and management plan. 2014

30th October 2014. Report No.: WSO-000-HES-RPT-CVX-000-00086-000.

62. URS. Onslow Water Infrastructure Upgrade Project. Perth: 2014.

63. WAPC. Onslow regional hotspot land supply update. Perth WA: 2011.

64. Dorji P, Fearns P, Broomhall M. A Semi-Analytic Model for Estimating Total Suspended Sediment Con-

centration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data.

Remote Sensing. 2016; 8(7):556.

65. WAMSI. Dredging Science Node Western Australia Western Australian Marine Science Institution;

2014 [cited 2016 10/10/2016]. http://www.wamsi.org.au/dredging-science-node-0.

66. Brando V, Lovell J, King E, Boadle D, Scott R, Schroeder T. The Potential of Autonomous Ship-Borne

Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data. Remote Sensing. 2016;

8(2):150.

67. Mobley CD. Estimation of the remote-sensing reflectance from above-surface measurements. Appl

Opt. 1999; 38(36):7442–55. PMID: 18324298

68. Feldman GC, McClain CR. l2gen, Ocean Color SeaDAS: NASA Goddard Space Flight Center; 2010

[cited 2015 06/11/2015]. http://seadas.gsfc.nasa.gov/doc/l2gen/l2gen.html.

69. Vanhellemont Q, Ruddick K. Turbid wakes associated with offshore wind turbines observed with Land-

sat 8. Remote Sensing of Environment. 2014; 145:105–15. http://dx.doi.org/10.1016/j.rse.2014.01.009.

70. Vanhellemont Q, Ruddick K. Advantages of high quality SWIR bands for ocean colour processing:

Examples from Landsat-8. Remote Sensing of Environment. 2015; 161:89–106. http://dx.doi.org/10.

1016/j.rse.2015.02.007.

71. Passang D, Peter F, Mark B. A Semi-Analytic Model for Estimating Total Suspended Sediment Concen-

tration in Turbid Coastal Waters of Northern Western Australia using MODIS-Aqua 250m data. 2016.

72. Martin J, Eugenio F, Marcello J, Medina A. Automatic Sun Glint Removal of Multispectral High-Resolu-

tion Worldview-2 Imagery for Retrieving Coastal Shallow Water Parameters. Remote Sensing. 2016;

8(1):37.

Satellite spatial resolution and quantification of total suspended sediment concentration

PLOS ONE | https://doi.org/10.1371/journal.pone.0175042 April 5, 2017 23 / 24

http://www.ncbi.nlm.nih.gov/pubmed/18337965
http://dx.doi.org/10.1016/S0034-4257(01)00341-8
https://www.digitalglobe.com/resources/satellite-information
https://www.digitalglobe.com/resources/satellite-information
http://www.bom.gov.au/climate/averages/tables/cw_005094.shtml
http://www.bom.gov.au/climate/averages/tables/cw_005094.shtml
http://www.wamsi.org.au/dredging-science-node-0
http://www.ncbi.nlm.nih.gov/pubmed/18324298
http://seadas.gsfc.nasa.gov/doc/l2gen/l2gen.html
http://dx.doi.org/10.1016/j.rse.2014.01.009
http://dx.doi.org/10.1016/j.rse.2015.02.007
http://dx.doi.org/10.1016/j.rse.2015.02.007
https://doi.org/10.1371/journal.pone.0175042


73. Zhao W, Tamura M, Takahashi H. Atmospheric and spectral corrections for estimating surface albedo

from satellite data using 6S code. Remote Sensing of Environment. 2001; 76(2):202–12. http://dx.doi.

org/10.1016/S0034-4257(00)00204-2.

74. Kotchenova SY, Vermote EF, Matarrese R, Klemm JFJ. Validation of a vector version of the 6S radia-

tive transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied Optics.

2006; 45(26):6762–74. PMID: 16926910

75. Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Sta-

tistical Society Series B (Methodological). 1974; 36(2):111–47.

76. Lee ZP, Carder KL, Mobley CD, Steward RG, Patch JS. Hyperspectral remote sensing for shallow

waters: 2. Deriving bottom depths and water properties by optimization. Applied Optics. 1999; 38.

77. Shi K, Zhang Y, Zhou Y, Liu X, Zhu G, Qin B, et al. Long-term MODIS observations of cyanobacterial

dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Scientific

Reports. 2017; 7:40326. http://www.nature.com/articles/srep40326#supplementary-information. PMID:

28074871

78. Sun D, Li Y, Wang Q, Gao J, Le C, Huang C, et al. Hyperspectral Remote Sensing of the Pigment C-

Phycocyanin in Turbid Inland Waters, Based on Optical Classification. IEEE Transactions on Geosci-

ence and Remote Sensing. 2013; 51(7):3871–84.

79. Forkuor G, Hounkpatin OKL, Welp G, Thiel M. High Resolution Mapping of Soil Properties Using

Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and

Multiple Linear Regression Models. PLOS ONE. 2017; 12(1):e0170478. https://doi.org/10.1371/journal.

pone.0170478 PMID: 28114334

80. Glover DM, Jenkins WJ, Doney SC. Modeling methods for marine science. Cambridge: Cambridge

University Press; 2011.

81. Brewin RJW, Sathyendranath S, Müller D, Brockmann C, Deschamps P-Y, Devred E, et al. The Ocean

Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms.

Remote Sensing of Environment. 2015; 162:271–94. http://dx.doi.org/10.1016/j.rse.2013.09.016.

Satellite spatial resolution and quantification of total suspended sediment concentration

PLOS ONE | https://doi.org/10.1371/journal.pone.0175042 April 5, 2017 24 / 24

http://dx.doi.org/10.1016/S0034-4257(00)00204-2
http://dx.doi.org/10.1016/S0034-4257(00)00204-2
http://www.ncbi.nlm.nih.gov/pubmed/16926910
http://www.nature.com/articles/srep40326#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/28074871
https://doi.org/10.1371/journal.pone.0170478
https://doi.org/10.1371/journal.pone.0170478
http://www.ncbi.nlm.nih.gov/pubmed/28114334
http://dx.doi.org/10.1016/j.rse.2013.09.016
https://doi.org/10.1371/journal.pone.0175042

