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Abstract

Aim

The aim of this study is to prove that facial surface electromyography (sEMG) conveys suffi-

cient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could

train a neural control model for activation of biomechanical models by simultaneously

recording sEMG signals and their associated motions.

Materials and methods

With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed

sEMG measurements of the facial muscles, applying principal component analysis (PCA)

and a modified general regression neural network (GRNN) to link the sEMG measurements

to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers,

evaluating several sEMG features and window lengths in unipolar and bipolar configurations

in search of the optimal settings for facial sEMG.

Conclusions

The errors of the two methods were comparable. We managed to predict 3D lip shapes with

a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modi-

fied GRNN. Whereas performance improved with shorter window lengths, feature type and

configuration had little influence.

Introduction

Treatment choice for oral cavity carcinoma still depends on the subjective judgements of treat-

ing physicians and multidisciplinary tumour boards. The primary choice of treatment will
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normally be surgery, with or without adjuvant radiotherapy [1]. If the functional consequences

of surgery would reduce the quality of life to an unacceptable extent, the tumour is considered

‘functionally inoperable’ [2], and organ-sparing chemoradiation treatment will provide a bet-

ter alternative. Yet, ‘functional inoperability’ is a subjective label and as such not very reliable

[3].

To predict functional consequences more objectively, we have been developing a virtual-

therapy tool that comprises a patient-specific biomechanical model of the oral cavity and oro-

pharynx [4]. To further individualise this model, we proposed implementing electromyo-

graphic (EMG) signals to estimate volunteer-specific muscle activations during specific tongue

movements. Since surface EMG (sEMG) of the tongue is difficult to perform, we decided first

to look at lip shapes, which are easier to capture in 3D images, while their underlying muscle

activation patterns are easy to assess with sEMG, yet the facial musculature is still complex

enough to prove our concept.

Most research efforts with facial EMG have focussed on speech interfaces, mostly silent-

speech interfaces [5] and multimodal speech synthesis models [6]. Their general aim has been

to categorise phonemes, words, articulatory features, or gestures by facial and tongue EMG sig-

nals [7–14]. Honda et al. [15] and Lucero & Munhall [16] have both published on predicting

lip shapes. Honda et al. [15] used video imaging to estimate lip shapes, but the images were in

2D, and their model did not account for jaw movements. Lucero & Munhall’s [16] finite-ele-

ment model (FEM) of the face and lips estimated 3D lip positions, but their lip marker correla-

tion coefficients were relatively low (mean<0.71).

We are now taking a step forward by investigating two methods to estimate 3D lip shapes.

Our first objective was to show that facial sEMG can adequately estimate volunteer-specific 3D

lip shapes. If sEMG conveys sufficient information to estimate lip shapes, we could use that

information together with simultaneous video recordings of the pertaining motions to train a

neural control model for the activation of a personalised biomechanical model that in the end

will present the effects of treatment in a virtual-therapy environment. Furthermore, this could

perhaps bring us closer to solving the load-sharing problem of inverse dynamics [17]. Finally,

accurate sEMG-based lip modelling would also be helpful in other fields, such as silent-speech

interfaces and multimodal speech synthesis [5,6,11].

Our second objective was to see if we could identify any volunteer-independent settings for

sEMG feature extraction, which would greatly benefit our future application: an individualised

biomechanical simulation model for lip and oral cancer patients. Not having to optimise the

settings per patient would save us a lot of time and effort.

Materials and methods

Volunteers and data acquisition

To test reproducibility, we recruited five volunteers (four males and one female) aged between

24 and 25. In our recruiting e-mail, we briefly explained about our experiment and on the test

day itself, we once again informed them of the procedure and of their rights as volunteers,

including the right to withdraw at any moment without stating a reason. All volunteers gave

their informed consent and their approval for publication of anonymised results. This experi-

ment was approved by the Medical Research Ethics Committee of the Netherlands Cancer

Institute and conducted in accordance with Dutch legislation, including the Agreement on

Medical Treatment Act, Personal Data Protection Act, and the Code of Conduct for Responsi-

ble Use of the Federa (Dutch Federation of Biomedical Scientific Societies).

With a black skin marker, we marked ten points on the lips for measuring 3D lip positions

and six on the face (two infraorbitally, two supraorbitally, and two on the nose) to compensate

Predicting 3D lip shapes using facial surface EMG

PLOS ONE | https://doi.org/10.1371/journal.pone.0175025 April 13, 2017 2 / 16

https://doi.org/10.1371/journal.pone.0175025


for head movements, see Fig 1. Our camera set-up consisted of two consumer cameras

(Casio1 EX-FC100), which we calibrated with a 10x10x10 cm wireframe cube with 27 nodes

at known positions before placing it in front of the volunteer. To quantify the measurement

error of our camera measurement device, we calculated the root mean square (RMS) of the dis-

tances between the actual 3D node positions and their 3D positions as calculated from the two

stereo images. Using a leave-one-out method, we calibrated with 26 nodes and rotated the

remaining node so that we obtained 27 error distances, from which we calculated the RMS

measurement error, being 0.63 mm.

Led by human lip anatomy and a paper by Lapatki et al. [18], we decided to perform sEMG

measurements of the zygomaticus major (ZYG), the risorius (RIS), the orbicularis oris supe-

rior (OOS) and inferior (OOI), the mentalis (MEN), the depressor anguli oris (DAO), and the

levator labii superioris (LLS) muscles. We further included the digastric muscle (DIG) to rep-

resent jaw opening in our model.

Fig 1. Surface electrode and facial marker positions. Volunteer with sEMG electrodes in bipolar configuration

placed on the zygomaticus major, risorius, orbicularis oris superior and inferior, mentalis, depressor anguli oris,

levator labii superioris, and digastric muscles, and showing ten markers on the lips and six infraorbitally, supra-

orbitally, and on the nose (muscle anatomy adapted from [19]).

https://doi.org/10.1371/journal.pone.0175025.g001
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For performing sEMG measurements, we used a Porti-system from TMSi (Oldenzaal, the

Netherlands) with sintered disc-shaped sEMG micro-electrodes (1.5 mm diameter, Ag/AgCl)

with shielded cables, see Fig 1. As the size of the electrodes prohibited interelectrode distances

(IEDs) smaller than 10 mm, we used 10-mm IEDs. Because of individual differences in face

dimensions, we could not use a ruler to apply the electrodes, so we placed them according to

Fig 1 and then fine-tuned their positions by searching for maximum sEMG output. Finally, we

placed a self-adhesive common ground reference electrode on the left wrist.

Instructions to volunteers

We asked our volunteers to adopt thirteen poses (including a rest pose) by making seven facial

expressions (voluntary smiling, pursed lips, raised upper lip, mouth open, depressed mouth

corners, blowing, and pouting; see Fig 2) and five vowel sounds (/a/, /e/, /i/, /o/, /u/) for four

seconds each, in random order. Between each pose, they were to adopt a rest pose with closed

mouth and relaxed muscles to serve as our reference when defining the magnitude of marker

position displacements in the other poses, since only displacements can be inferred from

sEMG signals.

The seven facial expressions correspond with isolated facial muscle contractions [18]. For

non-trained volunteers, it is very difficult to perform the poses without any cocontractions of

other muscles. Since multiple variables are involved in model training, these cocontractions

are embedded in the model and automatically disentangled during the prediction phase. We

took pictures of each pose with both cameras and simultaneously performed sEMG measure-

ments, repeating our data acquisition four times with a pause between repetitions.

Data processing and analysis

After manually selecting the marker positions in the images and coming up with a set of 40 lip

pixel coordinates for each pose (ten markers, 2D positions with two cameras), we recon-

structed these coordinates into a vector, X(p,r) 2 R30, which held the 30 coordinates of the ten

markers in 3D space. Here, p = 0, ���, 12 gives the pose number, and r = 1, ���, 5 the repetition

number. Referring to the facial markers, we used them to register all poses to the same refer-

ence frame to correct for head motion.

Our manual selection of the image points induced an error. To assess this error, as well as

the error induced by imperfect head motion compensation, we estimated the RMS of the dif-

ferences between two selection runs, the so-called intraobserver error (eobs). Let xm,1 (p), m = 1,

���, 30 denote the coordinates of the marker position of pose p in the first selection run and xm,2

(p) the ones in the second run, then we defined eobs as the RMS of the Euclidean length of the

Fig 2. Rest pose and seven facial expressions as instructed to the volunteers. A: rest, B: voluntary

smiling, C: pursed lips, D: raised upper lip, E: mouth open, F: depressed mouth corners, G: blowing, H:

pouting.

https://doi.org/10.1371/journal.pone.0175025.g002
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differences, calculating it over the ten markers and thirteen poses (including the rest pose) as

follows:

eobs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

130

X12

p¼0

X30

m¼1

ðxm;1ðpÞ � xm;2ðpÞÞ
2

v
u
u
t ð1Þ

The RMS intraobserver error turned out to be eobs = 2.34 mm, which implies that the mea-

surement error (0.63 mm) will not have had a large impact on our position estimation. After

all, the measurement and observer errors are independent. Therefore, the total of errors fol-

lows from the root of the sum of squares. Neglecting the measurement error would result in an

underestimation of the total error of
p

(2.342 / (0.632 + 2.342)) = 0.97.Notably, the intraobser-

ver error involved two selection runs, which implies that the error of a single run would equal

eobs /
p

2, with the assumption of uncorrelated errors.

To assess the magnitude of marker position variations, we calculated the RMS of the Euclid-

ean distance between the ten markers of a pose and the corresponding markers in the rest posi-

tion (p = 0), which we then averaged over the twelve poses and the five repetitions:

dRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

600

X5

r¼1

X12

p¼1

X30

m¼1

ðxmðp; rÞ � xmð0; rÞÞ
2

v
u
u
t ð2Þ

Here, xm (p,r) denotes the mth element from the vector X(p,r). We also corrected the magni-

tude of variation (dRMS) for the intraobserver error (eobs) between two selection runs to correct

the two selections xm (p,r) and xm (0,r) as follows:

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dRMS

2 � eobs
2

p
ð3Þ

To estimate lip positions from our sEMG recordings, we used two methods: nonlinear

regression with principal component analysis (PCA) and nonlinear regression with a modified

version of general regression neural network (GRNN). We have described these methods

below. To assess the accuracy of the positions X̂ðp; rÞ as estimated by both regression methods,

we calculated the RMS of the Euclidean length of the differences between marker positions of

the estimated pose and the reference pose:

eRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

600

X5

r¼1

X12

p¼1

X30

m¼1

ðx̂mðp; rÞ � xmðp; rÞÞ
2

v
u
u
t ð4Þ

where x̂m ðp; rÞ is the mth element of the vector X̂ðp; rÞ. We corrected this eRMS for the manual

selection error by applying the factor eobs /
p

2, introducing the factor 1/
p

2 because the eobs

was based on two manual selections runs, whereas in Eq (4), we have only one selection run:

ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eRMS
2 �

1

2
eobs

2

r

ð5Þ

To compare between volunteers, we defined the ratio of the error to position deviation (er)

as follows:

er ¼
ec

dc
ð6Þ
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To compare our results with literature [16], we calculated correlation coefficients between

x̂m ðp; rÞ and xm (p,r) per volunteer and per coordinate, coming up with a total of 30 correla-

tion coefficients, which we then averaged to find the mean correlation coefficient of each

volunteer.

sEMG preprocessing. The sEMG signals were recorded with a sample frequency of 2048

Hz. We applied a fourth-order Butterworth bandpass filter with 15 and 500 Hz cut-off fre-

quencies. Thanks to the actively shielded electrode cables, which significantly reduced the

mains interference and motion artefacts, we found no significant AC power line interference.

Therefore, we omitted a 50 Hz notch filter.

We recorded the signals in two configurations: unipolar and bipolar, extracting four types

of sEMG features: mean absolute value (MAV), root mean square (RMS), waveform length

(WL), Willison amplitude (WAMP) with thresholds at slim = 10 mV and slim = 20 mV. Table 1

shows the equations for all features, which we chose because they had performed well in a

recent experiment [20].

We defined the features for six window lengths: 50, 100, 150, 200, 250, and 300 ms and used

a sliding window with maximum overlap (all-but-one sample) to calculate the features: if there

were n sEMG samples in a record and the window length was p samples, the resulting EMG

feature record had n – p + 1 samples. Our reason for using a maximum overlap was to get a

maximum number of feature vectors per record. Notwithstanding the inevitable autocorrela-

tion within the features, maximising the number of features results in better performance of

both estimation methods.

We decided to truncate the calculated features of approximately four seconds to three sec-

onds exactly (i.e. 6145 samples) to achieve an equal amount for each feature set g(i,p,r). There

are 60 feature sets g(i,p,r) containing the features of 8 sEMG channels with i = 1, ���, 6145 (the

samples), p = 1, ���, 12 (the poses), and r = 1, ���, 5 (the repetitions).

Principal component analysis based estimation. We trained our PCA-based regression

method using a database that included observed marker positions and associated feature vec-

tors. As we used static poses, we considered the raw sEMG signals to be stationary during each

pose. Consequently, the statistics of features calculated for a sliding window were considered

constant. Therefore, for each lip position X(p,r), we needed only one sEMG feature vector

rather than the whole set of 6145 sEMG feature vectors g(i,p,r), thus avoiding a huge dimen-

sion of the measurement space.

Table 1. sEMG feature types and their equations.

Feature Equation

MAV

gðjÞ ¼ 1

N

Xjþ
1
2
ðN� 1Þ

i¼j� 1
2
ðN� 1Þ

jsðiÞj

RMS

gðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

Xjþ
1
2
ðN� 1Þ

i¼j� 1
2
ðN� 1Þ

sðiÞ2
v
u
u
t

WL

gðjÞ ¼
Xjþ1

2
ðN� 1Þ� 1

i¼j� 1
2
ðN� 1Þ

jsði þ 1Þ � sðiÞj

WAMP

slim = 10

slim = 20

gðjÞ ¼
Xjþ1

2
ðN� 1Þ� 1

i¼j� 1
2
ðN� 1Þ

½vðjsði þ 1Þ � sðiÞjÞ�

vðsÞ ¼
1; if s � slim

0; otherwise

8
<

:

https://doi.org/10.1371/journal.pone.0175025.t001
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We first averaged the vectors in a set over the time samples to yield a single 8D feature vec-

tor ḡ(p,r). As we figured we could not perform a linear mapping from this 8D feature space to

the 30D position space, we decided to apply nonlinear regression. We did try using linear

regression at first, but ended up with large errors. The simplest way of approximating a nonlin-

ear mapping is using a truncated Taylor series expansion of only the quadratic terms. So, to

implement nonlinear regression, we augmented these feature vectors with the ½×8×9 = 36

quadratic terms that could be formed from the eight elements in ḡ(p,r), thus obtaining a set of

44D data vectors ḡaug(p,r). Next, we concatenated this vector with the 30 coordinates X(p,r) of

the pose, which gave us the following 74D vector z(p,r):

zðp; rÞ ¼
Xðp; rÞ

�gaugðp; rÞ

" #

with
p ¼ 1; � � � ; 12 ðposesÞ

r ¼ 1; � � � ; 5 ðrepetitionsÞ
ð7Þ

The training of the PCA model was combined with cross-validation to avoid any perfor-

mance evaluation bias. The PCA model was trained with pooled data from four repetitions of

twelve poses each. Testing was done on the remaining repetition. We reiterated this procedure

four times while rotating the five repetition sets in the training pool and the test set. Each train-

ing pool comprised a 74×48 matrix Ztrain, the columns of which were vectors z(p,r), with a cor-

responding test set comprising a 74×12 matrix Ztest.

Before developing the PCA model, we first normalised our data with respect to the mean

and variance because there were two different physical dimensions and units. For each of the

74 elements in the training set, the average and sample variance were calculated. These two

parameters were used to shift and scale the data such that the average was zero and the vari-

ance was one. We also performed this operation on the test set.

The PCA model Y is a 74×D matrix, containing the D most dominant eigenvectors yd that

result from Z train ZT
train yd = λd yd, where λd are the eigenvalues. We normalised the eigenvec-

tors, i.e. the principal components, to get YYT = I and sorted the eigenvectors yd in Y = [ y1, ���,

yd ] to get the condition λd� λd+1 for the corresponding eigenvalues.

PCA is basically an encoding/decoding method. Any data vector from the test set Ztest, say

ztest, could be encoded into a lower D-dimensional coefficient vector b:

b ¼ YTztest ð8Þ

Decoding from b uses the same model:

ztest � Yb ð9Þ

Eqs (8) and (9) were not directly helpful in estimating lip positions. In the test set, we

wanted to estimate lip positions from the sEMG features, so we could use only that part of the

vector ztest that contained the sEMG features. We adapted Eq (9) accordingly and defined the

submatrix Yg of Y, which contained the sEMG features only (the lower 44 rows of Y). We then

had:

�gaug ¼ Ygbþ v ð10Þ

Where v contained the residuals that represented the approximation error in Eq (9), and ḡaug

was the part of ztest that contained the 44 sEMG features. We regarded Eq (10) as a linear

observation model of b, Yg being the observation matrix and v the observation noise. Least
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Square Error (LSE) estimation of b is then straightforward [21]:

b̂LSE ¼ ðY
T
g YgÞ

� 1YT
g �g aug ð11Þ

b̂LSE being the estimated coefficient vector. From that, we could estimate the full vector ztest,

including the 30 lip position coordinates X by applying Eq (9):

ẑLSE ¼ Yb̂LSE ð12Þ

Undoing the normalisation finalised the estimation.

An extension of this estimation of b is the Minimum Mean Square Error (MMSE) estima-

tion. This method exploits the prior knowledge that the PCA coefficients are uncorrelated,

with zero means. The covariance matrix Cb of b is diagonal with diagonal elements λd. With

uncorrelated residuals v, the covariance matrix is proportional to the unity matrix Cv = σv
2 I.

The unbiased MMSE estimate b̂MMSE, based on the sEMG features, then follows [21]:

b̂MMSE ¼ ðY
T
g Yg þ s2

vC
� 1

b Þ
� 1YT

g �gaug ð13Þ

Obviously, when σv is set to zero, b̂MMSE equals b̂LSE. So, the MMSE estimate encompasses

the LSE estimate, and there is no need to treat it separately.

Extended general regression neural network estimation. The second regression method

is an extension of the general regression neural network (GRNN). GRNN is a nonlinear inter-

polation method based on Parzen kernel density models [22]. We combined the design and

evaluation of GRNN with cross-validation in the same way as outlined above. First, we defined

a linear index over the poses and repetitions: c¼
def

12ðr � 1Þ þ p. Assuming the vectors Xc and

ḡc are associated, we had a population of pairs available in a training pool {(Xc,ḡc) | c = 1, ���,

48}. Given a new sEMG vector ḡ, GRNN estimates the associated vector X̂ by:

X̂ ¼
X48

c¼1

wcXc with : wc ¼
sð�g; �gcÞ

sð�g; �g1Þ þ sð�g; �g2Þ þ . . .þ sð�g; �g52Þ
ð14Þ

where s(ḡ, ḡc) is a similarity measure between ḡ and ḡc derived from a Parzen estimate of the

underlying probability density. We replaced the Parzen kernel that uses isotropic Gaussians

based on Euclidean distances with the likelihood function p(g | c), assuming non-isotropic

Gaussians with pose-dependent Mahalanobis distances. This alteration of the standard GRNN

would induce better adaptations to the feature vectors’ statistical properties. We defined all 48

poses in a training pool as individual classes. For each class, a feature set g(i,p,r)was available,

which we used to train the likelihood function p(g | c). In the assumption of normal distribu-

tions for the likelihood function p(g | c) = N (g – μc, Cc), learning boils down to estimating the

mean μc and the covariance matrix Cc, as in μ̂c ¼ �gc. We defined the similarity measures asso-

ciated with a new vector ḡ as follows:

sð�g; �gcÞ ¼ Nð�g � �gc; a
2Cc þ gIÞ ð15Þ

The introduction of factor α2 improved the generalisation capability. For each pose, only

four repetitions in a training pool were available. Therefore, poses were not well populated in

the 8-dimensional feature space. By spreading the Gaussian kernels with the factor α2, we

increased the overlap between kernels. We added the term γI to improve numerical stability,

but the choice of γ (around 10−6) was not critical.

For each regression method, we determined the best performing combination of feature

type, window length, and configuration (of 60 possible combinations) using the cross-validation
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technique mentioned above. With the PCA method, we evaluated the parameter σv for each

combination over the range of σv = 0, 0.05, ���, 0.3 and the PCA dimension D over the range of

D = 1, 2, ���, 48. With the GRNN method, we analysed the parameter α over the range of α = 1,

2, ���, 10.

To estimate the mean optimal settings, we averaged the error values ec over the five volun-

teers and looked which settings gave the minimum error:

ec;averageðconf ; feat;win;D;svÞ ¼
1

5

X5

vol¼1

ecðvol; conf ; feat;win;D;svÞ

ec;min ¼ minconf ;feat;win;D;sv
ec;averageðconf ; feat;win;D;svÞ

ð16Þ

In the GRNN method, we interchanged the parameters D and σv with α.

We applied the one-sided paired Student’s T-test to check for significant differences between

the PCA-based regression methods and to test for significant differences between volunteer-

independent and volunteer-specific parameters. After all, since the PCA-LSE is in fact included

in the PCA-MMSE at σv = 0, it can never be better than the PCA-MMSE. The same holds true

for volunteer-specific parameters, which will always outperform or be equivalent to volunteer-

independent parameters.

We compared the GRNN with the PCA-MMSE using the two-sided paired Student’s T-test,

because we did not know whether the GRNN method would perform better or worse than the

PCA-based regression method. Finally, we performed a repeated-measures ANOVA test to

look for statistically significant influences of the various sEMG feature extraction settings and

parameters.

Results

Fig 3 gives an idea of the accuracy showing the 3D lip shapes of volunteer 5 with volunteer-spe-

cific settings for both PCA-MMSE (in red) and modified GRNN (in blue). Table 2 presents the

optimal results of the five individual volunteers for both methods. Table 3 shows the results for

the mean optimal settings as calculated by Eq (16). Both with volunteer-specific (P<< 0.01)

and with volunteer-independent settings (P<< 0.01), the PCA-MMSE method performed

Fig 3. Rest pose and seven facial expressions in 3D of volunteer 5 averaged over the five repetitions.

GREEN: lip shapes tracked by 3D image reconstruction using a stereo camera set-up. RED: lip

shapes estimated by the PCA-based nonlinear regression. BLUE: lip shapes estimated by the

extended GRNN-based nonlinear regression. A: rest (not estimated), B: voluntary smiling, C: pursed lips,

D: raised upper lip, E: mouth open, F: depressed mouth corners, G: blowing, H: pouting.

https://doi.org/10.1371/journal.pone.0175025.g003
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significantly better than the PCA-LSE method. However, we found no significant difference

between the modified GRNN method and the PCA-MMSE method (volunteer-specific set-

tings: P ~ 0.17 and volunteer-independent settings: P ~ 0.99), nor did we find any significant

difference between the volunteer-specific settings and the volunteer-independent settings

(PCA-LSE: P ~ 0.82, PCA-MMSE: P ~ 0.15, GRNN P ~ 0.06). In the PCA-based estimation,

dimension D (P<< 0.01), and parameter σv (P<< 0.01) were both statistically significant,

whereas feature type (P ~ 0.14), window length (P ~ 0.06), and configuration (P ~ 0.06) were

not. In the modified GRNN-based estimation, parameter α (P<< 0.01) and window length

(P<< 0.01) were statistically significant, whereas feature type (P ~ 0.07) and configuration

(P ~ 0.58) were not. The averaged data showed somewhat lower error measures ec and er when

we used the PCA method. Nevertheless, with volunteer-specific settings, the GRNN method

performed better in four volunteers.

We found the lowest mean error in the unipolar configuration when estimating positions

with PCA and in the bipolar configuration when using GRNN. However, three volunteers per-

formed better in the unipolar configuration. When we interchanged configurations, the cor-

rected error with mean optimal settings (ec,min) became 3.78 mm when using PCA and 3.01

mm when using GRNN. The PCA method showed more consistency with respect to the chosen

feature than the GRNN method. In all volunteers, the WAMP feature showed the best results—

in four volunteers at slim = 10 mV, which also showed the lowest mean error rates, and in one

at slim = 20 mV. The GRNN method showed a preference for the MAV feature in the averaged

results. Two volunteers performed better when we used the WAMP feature at slim = 10 mV. In

Table 2. The lowest error values for ec and er by volunteer with the corresponding settings.

Volunteer ec (mm) er ρ Configuration Feature a Window (ms) D σv α
PCA GRNN PCA GRNN PCA GRNN PCA GRNN PCA GRNN PCA GRNN PCA GRNN

1 2.71 2.69 0.24 0.24 0.90 0.90 Uni Uni 1 1 200 200 10 0.05 3

2 3.00 3.12 0.29 0.31 0.88 0.86 Bi Bi 2 3 300 150 17 0.25 5

3 2.41 2.25 0.23 0.22 0.91 0.92 Uni Uni 1 1 300 50 12 0.10 2

4 1.99 1.42 0.23 0.17 0.91 0.94 Uni Bi 1 4 300 50 7 0.05 2

5 2.94 2.39 0.33 0.27 0.87 0.90 Uni Uni 1 5 100 200 6 0.05 3

a. Optimal features are represented by numbers as follows: 1. WAMP slim = 10 mV; 2. WAMP slim = 20 mV; 3. WL; 4. MAV; 5. RMS.

https://doi.org/10.1371/journal.pone.0175025.t002

Table 3. The error values for ec and er by volunteer with the mean optimal settings, i.e. volunteer-independent settings (see Eq (16)).

Volunteer erms (mm) ec (mm) er ρ
PCAa GRNNb PCAa GRNNb PCAa GRNNb PCAa GRNNb

1 3.18 3.68 2.71 3.28 0.28 0.33 0.90 0.89

2 3.94 3.58 3.57 3.17 0.36 0.32 0.85 0.85

3 2.95 2.95 2.45 2.44 0.25 0.25 0.91 0.91

4 2.60 2.18 2.01 1.42 0.20 0.14 0.91 0.94

5 3.40 3.80 2.97 3.42 0.30 0.35 0.88 0.86

Averaged 3.21 3.24 2.74 2.75 0.28 0.28 0.89 0.89

Corrected Average 2.76 2.78

a. PCA settings: configuration = unipolar; feature = WAMP slim = 10 mV; window length = 300 ms; D = 9; σv = 0.05.

b. GRNN settings: configuration = bipolar; feature = MAV; window length = 50 ms; α = 2

https://doi.org/10.1371/journal.pone.0175025.t003
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one volunteer, WL gave the best results, and in another, RMS. Table 4 lists the optimal settings

for both methods per feature, averaged over the volunteers (see Eq (16)), with the correspond-

ing error measures. In the PCA method, WAMP at slim = 10 mV clearly performed better. The

error measures between the different features were much smaller when we used GRNN, show-

ing a maximum difference in ec of 0.31 mm between MAV and WAMP at slim = 20 mV. The

methods showed differences in preferred window lengths, with 300 ms in the PCA method and

50 ms in GRNN. However, influence of window length appeared much more profound in

GRNN than in PCA, producing maximum ec differences of merely 0.02 mm in PCA and no less

than 0.68 mm in GRNN.

In all volunteers, we found good correlation coefficients (ρ). With the PCA method, ρ ran-

ged between 0.87 and 0.91 and with the GRNN method, ρ ranged between 0.86 and 0.94. The

mean ρ was 0.89 with both methods (see Table 2). Between features, ρ ranged between 0.87

and 0.89.

The optimal PCA dimension D ranged between 6 and 17 in our volunteers and showed an

optimum in the averaged results at 9. By evaluating the results for all different dimensions, we

found that the first four to five principal components had a large influence on shape predic-

tion. When we used eight principal components, the error values reached a plateau, after

which only small changes in the errors occurred. When using nine principal components, we

found explained variances in the PCA model of 92 to 96% in our volunteers.

We never found the optimal value for σv to be zero, which means that the MMSE analysis

performed better. We noted a clear trend towards higher ec values when increasing σv. A 0.05

increase of σv produced a mean error increase of 0.11 (range: 0.10 to 0.13). This trend occurred

in four of five volunteers; volunteer 2 was the only one to show a small error decrease as σv was

raised to 0.25.

The averaged results showed the lowest error at parameter α = 2. Only volunteer 2 clearly

deviated with the lowest error at α = 5. In this volunteer, the error was 0.50 mm larger at α = 2,

with the other settings unchanged.

When comparing volunteers by values in er, we found the PCA method to be more consis-

tent than the GRNN method: the former gave a value range of 0.23 to 0.33 and the latter a

range of 0.17 and 0.31. Both methods gave a value of 0.28 for er with the averaged data.

Discussion

Our study has shown that it is, indeed, possible to estimate static 3D lip shapes from volun-

teer-specific sEMG measurements of facial muscles and the digastric muscle. The tested meth-

ods, PCA-based nonlinear regression and a modified GRNN, gave comparable results with an

average accuracy of about 2.8 mm in five measured volunteers.

Table 4. The mean optimal results (see Eq (16)) by feature obtained with PCA and GRNN and the corresponding settings.

RMS MAV WL WAMP slim = 10 mV WAMP slim = 20 mV

PCA GRNN PCA GRNN PCA GRNN PCA GRNN PCA GRNN

ec(mm) 3.31 2.81 3.33 2.78 3.28 2.88 2.76 2.84 3.27 3.09

er 0.34 0.29 0.34 0.28 0.33 0.29 0.28 0.29 0.33 0.31

ρ 0.87 0.89 0.87 0.89 0.87 0.89 0.89 0.89 0.87 0.88

Configuration Mono Bi Mono Bi Mono Mono Mono Mono Mono Mono

Window (ms) 50 50 50 50 50 50 300 150 200 50

D 7 NA 7 NA 9 NA 9 NA 16 NA

σv 0.05 NA 0.05 NA 0.05 NA 0.05 NA 0.1 NA

α NA 2 NA 2 NA 2 NA 3 NA 2

https://doi.org/10.1371/journal.pone.0175025.t004
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In the PCA approach, MMSE performed significantly better than LSE. The MMSE method

uses the additional knowledge that the values in the coefficients b are uncorrelated, with zero

means and with variances that are known from the PCA model [21]. Therefore, the growth of

the coefficients is controlled, and a higher PCA dimension can be achieved, which will lead to

a more accurate estimation. The corrected RMS error of 2.76 mm and correlation coefficient

of 0.89 are promising results. The modified GRNN method produced almost identical results.

Both models seem generally applicable, but PCA was more consistent between volunteers,

whereas in four volunteers, the modified GRNN method produced more accurate position

estimates.

A disadvantage of using the modified GRNN method could be the fact that GRNN can be

regarded as an interpolation method with a lookup-table that is filled by the training set and

probed by the sEMG feature vector of the unknown pose. The method performs well as long as

the feature vector probes in the vicinity of feature vectors in the table, as was the case in this

study. The results are less predictable if the feature vector probes in a white area of the lookup-

table, which can occur when a pose is adopted that is not present in the training set. As PCA

behaves smoother in the untrained regions, this method may be of better use for our ultimate

goal: to predict post-treatment function loss, we will need maximum accuracy in predicting

not only 3D lip shapes, but also functional movements that result from multiple muscle activa-

tions, even though we could never create a volunteer-specific training set that includes all pos-

sible poses.

Since most models in literature do not give quantitative values, we have difficulty compar-

ing our results with previous findings. Lucero & Munhall’s finite-element model of the face

and lips uses intramuscular facial EMG measurements (ZYG, LLS, DAO, MEN, OOS, OOI,

and the depressor labii inferioris and levator anguli oris muscles) [16]. They placed five mark-

ers on the lips and estimated vertical displacements and protrusions of these markers, finding

mean correlation coefficients of 0.71 and 0.28 for vertical displacement and protrusion,

respectively.

Although our methods performed much better than this finite-element approach, our mod-

els could only describe phenomena, whereas a FEM could establish a one-to-one correspon-

dence between anatomy and physiology on the one hand and mathematical structures on the

other, which renders it more suitable for a practical application to predict post-treatment func-

tion loss. Moreover, the FEM approach can include the (nonlinear) dynamics of anatomy and

physiology. Some poses, e.g. the pose adopted when articulating the vowel sounds /a/ and /e/,

require little persistent muscle activation. When we disregard the muscle activation patterns

(and associated sEMG patterns) that produce these poses, it is much harder to distinguish

between them.

We cannot draw any decisive conclusions as to an optimal configuration, feature, or win-

dow length for processing sEMG signals. The PCA method showed a preference for unipolar

sEMG measurements in combination with the WAMP feature at slim = 10 mV and calculated

over longer time windows (on average, 300 ms). The GRNN method performed best in a bipo-

lar configuration with the MAV feature determined over a 50-ms time window. However, the

optimal settings varied between volunteers, especially in the GRNN method. In the PCA

method, we did not find a single best setting for window length either, but the effects on the

error with PCA were marginal–probably because we evaluated static poses only with an

sEMG-feature sequence averaged over three seconds. The GRNN method performed signifi-

cantly better with smaller window lengths than with larger ones, possibly because small win-

dows have more fluctuations in the sEMG features, thus expanding the covariance matrix and

leading to a better kernel coverage in the 8-dimensional feature space. For the purpose of this

study, a volunteer-specific model coupling sEMG to positions, we did not find it necessary to
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determine one single best configuration for all volunteers, since the parameters could be fine-

tuned during the training process with each volunteer’s individual data. Nevertheless, narrow-

ing down the parameter ranges and evaluating only the best performing features would defi-

nitely reduce computation time.

Meltzner et al. used a modified Mel-frequency cepstral coefficients (MFCC) algorithm for

feature extraction from sEMG [12,13]. MFCCs are frequently used in automatic speech recog-

nition with acoustical signals. Despite the fact that sEMG signals possess different properties

than acoustical signals, Meltzner et al. found that an MFCC algorithm tailored to their needs

outperformed the other processing algorithms they tested [12,13]. More recently, Längkvist

et al. reviewed the applications of deep learning for feature extraction from time series [23],

and Wand & Schultz showed the use of deep neural networks in EMG-based speech recogni-

tion [24]. These are interesting topics that might improve our results, but we would probably

need much more training data. Since the current accuracy has the same order of magnitude as

the observation error, these improvements will be marginal. Future experiments may benefit

from the inclusion of advanced feature extraction algorithms like the ones mentioned above

in combination with high-density sEMG grids. Staudenmann et al. showed that these grids

improved sEMG-based muscle force estimation by some 30% [25]. Another good thing about

these grids is that they eliminate the need for precise microelectrode placement.

When tested on our five volunteers, our methods produced satisfying initial results and our

models showed comparable accuracy in all volunteers. Despite our relatively small sample size,

our results indicate that sEMG of the perioral muscles conveys sufficient information to esti-

mate 3D lip positions, and we have identified important parameters. A larger sample size

might reveal that window length, configuration, and feature type also have significant influ-

ence on the RMS errors. On the other hand, a large sample size may produce significant differ-

ences of small RMS errors, which do not have any practical meaning.

Despite similar performances, we favour the PCA-based regression model because of the

advantages discussed above, the possible disadvantages of modified GRNN, and the computa-

tional load of the estimators, which is in favour of the PCA method.

It must be noted that training sets are volunteer-specific and cannot be used for the estima-

tion of lip poses of other volunteers. This problem also occurs in EMG-speech recognition, as

described by Schultz & Wand [10]. They showed that generic independent-speaker models

might be feasible but at the cost of higher error. Meltzner et al. argue that speaker-dependent

systems do have practical applications and that the minimal amount of training data necessary

per individual is not too big of a burden [12]. For our ultimate goal, these volunteer-specific

models are key, as each patient is unique.

Variance in facial muscle anatomy, small muscles and electrodes hampers the exact identifi-

cation of muscles and electrode locations, which may cause small differences between volun-

teers in muscle activation measurements or amount of crosstalk picked up in the signals.

Lapatki et al. showed there is a high risk of crosstalk in the facial musculature due to cocontrac-

tion of adjacent muscles [26]. Even when using high-density grids, crosstalk remains visible,

even if it is reduced. We saw coactivation in all volunteers and all poses in varying degrees.

Apparently, either the volunteers were not always able to perform isolated muscle contrac-

tions, or crosstalk occurred.

Our most important conclusion is that features extracted from facial sEMG can estimate lip

shapes in 3D with high accuracy. This finding is an essential step forward in constructing a vir-

tual-therapy model to predict post-treatment function loss. We found our sEMG processing

parameters to be generally applicable and could use them in our future application for oral

and lip cancer patients, so we will not have to optimise our sEMG parameters for each patient

individually.
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These settings might not only benefit researchers in the field of silent-speech interfaces, but

might also be interesting for researchers in the field of human machine interfaces (HMI)—for

instance, in projects like Hamedi et al.’s, who used facial sEMG to classify emotions [7,27]. The

results of our study seem promising for controlling machines via HMI with support of up to

13 control commands (the thirteen poses). Our models would be able to classify emotions and

present them visually in 3D, too. Moreover, as suggested by Honda et al., the models could

produce visual output for physiological vocal-tract models in speech production and speech

synthesis. Or they could provide visual feedback in EMG-based speech recognition.

For the development of a virtual-therapy model that could predict functional outcome,

the current models should be extended to incorporate dynamics as well as unilateral lip

movements. Such extension would require video capturing of the lips and bilateral sEMG

measurements.

Our recommendation for future research would be to combine FEM with nonlinear regres-

sion and apply the estimation techniques to model the neural activation of simulated muscles

instead of lip positions, thus separating activation modelling from dynamic modelling. The

first step in developing such an activation model of the lips has been taken.

Conclusion

This study shows that static 3D lip shapes can be estimated from volunteer-specific sEMG

measurements of facial muscles and the digastric muscle. The tested methods—PCA-based

nonlinear regression and a modified GRNN—gave comparable results with an average accu-

racy of about 2.8 mm in the five measured volunteers.
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