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Abstract

Multiple myeloma (MM) represents a haematological cancer characterized by the pathologi-

cal hyper proliferation of antibody-producing B-lymphocytes. Patients typically suffer from

kidney malfunction and skeletal disorders. In the context of MM, the transforming growth

factor β (TGFβ) member Activin A was recently identified as a promoter of both accompa-

nying symptoms. Because studies have shown that bone morphogenetic protein (BMP)-

2-mediated activities are counteracted by Activin A, we analysed whether BMP2, which

also binds to the Activin A receptors ActRII and ActRIIB but activates the alternative SMAD-

1/5/8 pathway, can be used to antagonize Activin A activities, such as in the context of MM.

Therefore three BMP2 derivatives were generated with modified binding activities for the

type II (ActRIIB) and/or type I receptor (BMPRIA) showing either increased or decreased

BMP2 activity. In the context of MM these BMP2 muteins show two functionalities since they

act as a) an anti-proliferative/apoptotic agent against neoplastic B-cells, b) as a bone-forma-

tion promoting growth factor. The molecular basis of both activities was shown in two differ-

ent cellular models to clearly rely on the properties of the investigated BMP2 muteins to

compete for the binding of Activin A to the Activin type II receptors. The experimental out-

come suggests new therapeutic strategies using BMP2 variants in the treatment of MM-

related pathologies.

Introduction

Multiple myeloma (MM) is a malignant disease of bone marrow characterized by a patho-

logical increase in antibody-producing plasma cells and is thus inherently linked to an accom-

panying increase in immunoglobulins (plasmacytosis) [1]. The pathological concomitant

phenomena of this disease are hypercalcaemia, increased susceptibility to infections and organ
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malfunction, which are caused by the deposition of antibody fragments. Patients also suffer

from the extremely painful destruction of bone structure [2]. The incidence of MM is approxi-

mately 4–6 new cases per 100,000 people per year. MM represents 10% of all haematological

and 1% of all cancer types [3]. To date, the exact mechanisms leading to the manifestation of

this disease are not well understood, but are probably not monocausal [4,5].

Recently, Activin A, a member of the TGFβ superfamily, has come to the forefront as a new

attractive target for novel therapeutic strategies in the field of MM. Activin A might cause the

two most prominent symptoms associated with MM: enhanced plasma cell proliferation and

bone osteolysis or osteonecrosis. In 2010, Vallet et al. published that the degree of osteolysis in

patients with MM correlates first with elevated Activin A levels in the blood plasma and second

with a pronounced inhibition in osteoblast differentiation [6]. In vivo experiments using the

adoptive transfer of human myeloma cells into mice demonstrated that a synthetic decoy

against Activin A, a soluble Activin A type II receptor termed RAP-011, not only led to in-

creased osteoblast activity but also limited the growth of neoplastic B-cells and significantly

improved overall bone integrity [6]. Similar results were reported by Chantry et al. using a sim-

ilar Activin A decoy receptor (ActRIIA.muFc) in a murine myeloma model. In these studies,

treatment with ActRIIA.muFc resulted in the stimulation of osteoblastogenesis and inhibition

of the myeloma-induced suppression of bone formation. Furthermore, ActRIIA.muFc blocked

the formation of osteolytic bone lesions and increased animal survival rates [7]. Sotatercept,

the human analogue of ActRIIA.muFc, has since been successfully tested in phase II clinical

trials. MM patients treated with Sotatercept showed decreased osteolytic lesions and attenu-

ated tumour activity [8]. This result is in excellent agreement with previous findings that

reported a correlation between increased Activin A blood serum levels and the degree of bone

lesions [9].

The biological role of Activin A in the context of these pathologies has been described well.

The TGFβ ligand Activin A not only inhibits osteoblast differentiation [10] but also activates

bone-resorbing osteoclasts and thereby exerts a strong catabolic effect in bone tissue homeo-

stasis. Additionally, haematopoietic bone marrow cells, which undergo differentiation into

osteoclasts upon stimulation with receptor activator of NF-κB ligand (RANKL) and macro-

phage colony-stimulating factor (M-CSF), showed increased expression in the RANKL recep-

tor RANK when treated with Activin A. Therefore, increasing the susceptibility of these cells

to RANKL will result in the amplification of osteoclast differentiation via a forward-powered

paracrine/autocrine loop [11].

However, the precise molecular mechanism regarding how Activin A antagonists might

promote the osteoanabolic effects as well as the reduction in cancer cell proliferation in the

context of MM has not been revealed or clearly understood. In 2016 Aykul et al. described a

ligand-mediated mechanism for signaling regulation of the type II TGFβ family receptors

ActRII, ActRIIB, and BMPRII, that can explain the antagonistic effect of Activin A on a molec-

ular level. As Activin A and bone growth-promoting BMPs not only share but also utilize

highly overlapping epitopes at these type II receptors they hypothesized a direct competition

mechanism as the basis of mutual antagonism. Hereby, ligands that bind type II receptors with

high affinity, like Activin A, effectively compete with ligands that interact with type II receptors

with low affinity, like BMP2, BMP7 and BMP9, for binding to the type II receptor and thereby

block BMP signaling. They also proposed that such a signaling antagonism is an integral func-

tion of the TGFβ signal transduction system [12]. This postulated antagonism presents a very

good model to explain the effects observed for Activin A antagonists in MM. In this work, we

show that Activin A directly inhibits BMP2-induced anti-proliferative/apoptotic activities in

MM cell lines. To counteract Activin A activity we engineered BMP2 variants which exhibit

increased receptor binding affinities for particular type II receptors and can thus not only be
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utilized as superior Activin A antagonists, but simultaneously serve as BMP2 super-agonists to

facilitate bone growth. These features might be clinically exploited as a new therapeutic option

for the treatment of MM.

Materials and methods

Cell culture

The human MM cell lines MM.1S, RPMI8226, AMO1, U266, L363, JJN3, OPM2, KMS12-BM,

KMS11 and INA6 cells were cultured in RPMI 1640 (PAA, Pasching, Germany) supplemented

with 10% (v/v) heat-inactivated foetal bovine serum (PAA, Pasching, Germany). Recombinant

human IL6 (ImmunoTools, Friesoythe, Germany) was added to a final concentration of 2.ng/

ml when culturing INA6 cells. All assays with MM cell lines were carried out with 10% FCS in

RPMI and for the INA6 cells also 2 ng/ml IL6 was added. The cell lines MM.1S, RPMI 8226

und U266 were purchased from the American Type Culture Collection (ATCC). The cell lines

C2C12, KMS12-BM, AMO1, OPM2, L363, JJN3 were obtained from the Leibniz-Institut

DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH), Braunschweig,

Germany. The cell line ATDC5 was purchased from Sigma-Aldrich, Darmstadt, Germany.

The cell line INA-6 was a friendly gift from Dr. Martin Gramatzki, Erlangen.

Ligand expression

Recombinant human BMP2, including the variants BMP2-L51P (termed BMP2-P), BMP2-

L100KN102D (termed BMP2-KD) and BMP2-L51PL100KN102D (termed BMP2-PKD), were

expressed in E. coli, refolded and purified as previously described [13]. Recombinant human

Activin A was produced in baculovirus-transfected SF9 insect cells as described [14].

WST-1 assay

Cell proliferation was analysed using the WST-1 reagent according to the manufacturer’s rec-

ommendations (Roche, Germany). Briefly, 20,000 cells/well were seeded in 96-well plates. The

cells were then incubated for 72 h in the presence or absence of recombinant ligands. Ten

microliters of WST-1 (Roche, Germany) was added per well, and the cells were further incu-

bated for 2–3 h at 37˚C. CD138-positive primary cells were incubated for 5 to 7 h with WST-1.

The concentration of formazan generated was determined at 450 nm wavelength using an

ELISA plate reader. The figures show the mean values of triplicates and the standard deviation.

Assays were conducted as three independent experiments.

Alkaline phosphatase (ALP) assay

The murine pre-chondrogenic cell line ATDC5 (RIKEN, no. RCB0565) was cultivated in

DMEM/Ham’s F12 containing 5% FCS and antibiotics (100 U ml-1 penicillin G and 100 μg ml-

1 streptomycin). The murine myoblast cell line C2C12 (ATCC CRL-1772) was maintained in

DMEM containing 10% FCS. The ALP assays were performed in the ATDC5 or C2C12 cells as

previously described [15]. The figures show the mean values and the standard deviation of

triplicates. The assays were carried out as three independent experiments.

Quantitative reverse-transcription PCR (qRT-PCR)

The following primers were used for the qRT-PCR experiments:

1. ActRI (forward) TACGATGTGGTTCCCAATGA and (reverse) AGTCTTGCGGATGGATTTTG;
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2. ActRIB (forward) CGACTTAGTGCCCTCTGACCand (reverse)

TGTGGAGAGAGGGAGCAGTT;

3. ActRII (forward) GTTGCCATTTGAGGAGGAAA and (reverse)

CCAGCTGATAACCTGGCTTC;

4. ActRIIB (forward) CTGACTTTGGCTTGGCTGTTand (reverse) AGGGCAGCATGTACTCAT
CC; and

5. HPRT (hypoxanthine-guanine phosphoribosyltransferase) (forward) GACCAGTCAACAGG
GGACAT and (reverse) ACACTTCGTGGGGTCCTTTT.

Total RNA was prepared using the Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer´s recommendations. For cDNA synthesis, 1 μg of total RNA

was reverse-transcribed using the QuantiTect Reverse Transcription Kit (Qiagen, Germany).

qRT-PCR was performed using 20 ng of the cDNA synthesis mix per reaction and the Quanti-

Tect SYBR Green PCR Kit (Qiagen, Hilden, Germany). Three independent PCR analyses were

performed in duplicate for each gene. Relative expression levels were calculated from a com-

parison with the house keeping gene HPRT and the following equation: rel. Expression (%) =

[2(CtS-CtR)]�100, where CtS is the Ct value for HPRT gene expression and CtR is the Ct value

for the individual receptor gene expression.

Primary MM cells/CD138+ selection

Bone marrow aspirates from MM patients were obtained at the Universitätsklinikum Würzburg,

Medizinische Klinik und Poliklinik II after obtaining informed consent. Permission was granted

by the local ethics committee (Ethik-Kommission der Medizinischen Fakultät der Universität

Würzburg; reference number 18/09). The mononuclear cell fraction was isolated via density cen-

trifugation (Lymphocyte Separation Medium; PAA) and rinsed with phosphate-buffered saline

(PBS). After a second wash with cold separation buffer (PBS containing 0.5% FBS and 2.5 mmol/

l EDTA), the cell suspension was incubated for 15 min at 8˚C with CD138 Microbeads (Miltenyi

Biotech, Bergisch Gladbach, Germany) in a rotating shaker. CD138-positive cells were then iso-

lated using MACS Large Cell Columns (Miltenyi Biotech), spun and resuspended in complete

medium (10% FBS) supplemented with 2 ng/ml IL6. Cells were seeded at a density of 30,000

cells/well into 96-well plates, and Activin A (125 nM) was either added or not. Cell purity was

proofed as described before [16]. The cells were subsequently cultured for 3 days prior to the

WST assay, and the final values were calculated relative to the untreated control cells. Each assay

was performed in duplicate unless low MM cell numbers permitted only a single measurement.

Results

BMP2 was originally identified as a promoting factor for the development of bone tissue

[17,18], but it also acts as an anti-proliferative and/or apoptotic factor on MM cells. Aside

from BMP2, BMP4, -5, -6, -7 and -9 have also been described to similarly exert such anti-pro-

liferative/apoptotic functions in different human MM cell lines as well as in human primary

MM cells [19–23]. Because Activin A has also been designated as an apoptotic factor in MM

cell lines [24], we first investigated the effect of BMP2 and Activin A on the proliferation of

selected MM cell lines by measuring relative cell numbers. Exposure to 125 nM BMP2 signifi-

cantly attenuated cell proliferation up to 70% in L363 cells and to 45% in KMS12-BM cells. In

contrast, exposure to the same concentration of Activin A did not significantly affect prolifera-

tion (Fig 1A). For a detailed analysis the dose-dependency of BMP2-mediated inhibition of

proliferation was determined for both cell lines (Fig 1B).
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Fig 1. BMP2, but not Activin A, downregulates relative cell number in the L363 and KMS12-BM myeloma cell lines. (A) Cells were

grown in the presence or absence of 125 nM BMP2 or Activin A for 72 h. Relative cell numbers were assessed by WST-1 measurements. (B)

For a detailed analysis the dose response curve of BMP2 was determined for L363 (black circle line) and KMS12-BM (black circle) after

incubation with BMP2 for 72h via WST1 assay. To allow comparison of the IC50 values, the dose-response curves were normalized with the

value measured in the absence of BMP2 set to zero. The figures show the mean values and standard deviation of triplicates. The assays

were carried out as three independent experiments.

https://doi.org/10.1371/journal.pone.0174884.g001
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Next, we investigated whether Activin A antagonizes the BMP2-mediated anti-proliferative

effects in KMS12-BM cells. Therefore, we incubated the cells simultaneously with BMP2

(4 nM) and Activin A (125 nM). The presence of Activin A significantly reduced the anti-

proliferative effects mediated by BMP2 (Fig 2A, fourth bar). A similar antagonism was

observed when analysing alkaline phosphatase (ALP) expression—a marker for osteogenic

differentiation—in the C2C12 pre-myoblast cell line. In the non-stimulated cell line ALP is

not expressed. The addition of BMP2 induced ALP gene expression, which could be almost

completely inhibited by simultaneously adding Activin A (Fig 2B). A similar inhibitory effect

of Activin A on ALP expression has been reported for BMP7 [25].

Thus, Activin A and BMP2 appear to form a mutually antagonizing pair of growth factors.

In principal, mutual antagonism can be achieved by two different mechanisms: either the two

antagonizing factors activate two distinct signalling cascades that encode for opposing activi-

ties, or both factors bind to one or more shared receptor components through which different

biological activities are generated. The latter mechanism is an assumed to be a key feature of

TGFβ superfamily members, as most members bind promiscuously to overlapping sets of BMP

receptors. To initiate signal transduction, TGFβ ligands bind and assemble two type I and two

type II transmembrane receptors into active heteromeric signalling complexes [26]. Because

more than 30 ligands have to pair with only seven type I and five type II receptor chains, a pro-

nounced promiscuity exists for the interactions between ligands and receptors [26]. Furthermore

the signal appears to converge even further, as canonical signalling is limited to only two principal

pathways, the SMAD1/5/8 or SMAD2/3 pathways. Which of these two pathways will be activated

appears to depend solely on the type I receptor utilized in the active ligand-receptor complex

[26,27]. BMP2 and Activin A recruit different type I receptors. BMP2 signals via BMPRIA or

BMPRIB and hence activates the SMAD1/5/8 pathway. In contrast, Activin A activates the

SMAD2/3 pathway by engaging ActRIB in its ligand-receptor complex. Due to the activation of

different SMAD pathways, the observed mutual antagonism might therefore result from geneti-

cally encoded opposing functions. However on the other hand, both ligands utilize the same type

II receptors, ActRII and ActRIIB, thereby creating a competitive binding situation for BMP2 and

Activin A, which could also account for the counteracting properties. In such a scenario, Activin

A potentially acts as a BMP2 antagonist and vice versa. This process would depend on the pres-

ence of the particular type II receptors on the target cells and quantitatively depend on the local

concentrations of the individual ligands. In this case, the efficiency of the mutual antagonism also

strongly depends on the affinities of the two ligands to the shared receptor.

We tested our hypothesis of direct competition via mutual antagonism by using BMP2 vari-

ants with specifically altered type II receptor binding characteristics using a set of previously

designed BMP2 variants enabling us to address defined receptor complexes with distinct sig-

nalling capacities [28]. The double amino acid mutation L100K and N102D in BMP2 yielded

a variant (BMP2-KD) that binds ActRII (3.5-fold) and ActRIIB (20-fold) with significantly

increased affinities, while binding to BMPRII is unchanged. The elevated affinities of this

BMP2 variant for both Activin type II receptors should result in an enhanced antagonizing

capacity against Activin A, as the latter shares the Activin type II receptors with BMP2.

To rule out BMP2-mediated changes in gene expression as the cause of Activin A antago-

nism, we introduced a third mutation. We previously described a BMP2 variant that has a

strongly reduced binding affinity for the type I receptors BMPRIA or BMPRIB. This variant

was generated by exchanging leucine at position 51 for proline. Leucine 51 was identified as a

hot spot for type I receptor binding in BMP2 and although the resulting protein (BMP2-P)

was termed to be "type I receptor-dead" by Keller and co-workers since it does not exhibit any

BMP signaling capacity, this BMP2 variant retains all binding characteristics to BMP2-specific

type II receptors as well as to BMP-antagonizing modulator proteins such as NOGGIN [29].
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Fig 2. Activin A inhibits BMP2-mediated cellular responses. (A) KMS12-BM cells were stimulated with

either 125 nM Activin A or 4 nM BMP2 alone or co-stimulated with both growth factors for 72 h. Cell growth

was assessed by WST-1 measurements. (B) C2C12 cells were incubated without BMP2, 10 nM BMP2

and 10 nM BMP2 plus increasing concentrations of Activin A. After 72 h, ALP activity was measured by

determining p-nitrophenylphosphate conversion using an ELISA reader. In the absence of BMP2 cells

showed no ALP activity and the background signal was set as 0%. ALP activity derived from stimulation with

10 nM BMP2 was defined as 100% (dashed line). Addition of Activin A without BMP2 yielded no ALP activity
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The combination of the above-mentioned mutations yielded the variant BMP2-PKD, which

binds Activin type II receptors with enhanced affinities compared to wildtype BMP2, but like

BMP2-P, does bind to BMP2 type I receptors with very low affinities. To better understand

and illustrate the different signalling/binding capacities, the BMP2 variants are depicted in Fig

3. While BMP2-P cannot initiate any BMP signalling, the variant BMP2-PKD exhibits strongly

attenuate BMP signaling (Fig 4A).

To determine the bioactivities of these mutants, we analysed their osteoanabolic potential

by measuring the induction of ALP expression in ATDC5 cells (Fig 4A). As reported earlier,

wildtype BMP2 induces ALP activity in these cells in a dose-dependent manner yielding an

EC50 value of approximately 7 nM. The EC50 values for the induction of ALP by wildtype

BMP2 determined in our study are in excellent agreement with published data [30]. The

BMP2-KD variant exhibited a slightly increased activity as deduced from an approximately

two-fold lower EC50 value. However, both BMP2 mutants, BMP2-P and BMP2-PKD carrying

the L51P mutation showed either no or a significantly reduced ALP induction compared with

wildtype BMP2 or the variant BMP2-KD.

We next addressed the potential bioactivities of these variants in the context of MM.

KMS12-BM (Fig 4B) and L363 (Fig 4C) cells were exposed to either ligand, and their effects on

cell proliferation were analysed. Our results clearly show that both wildtype BMP2 as well as

the variant BMP2-KD significantly reduced cell proliferation in a dose-dependent manner

with similar IC50 values. In contrast, to achieve a significant reduction in proliferation by uti-

lizing BMP2-PKD, substantially higher concentrations (~10-fold) of this ligand were required,

while BMP2-P failed to completely inhibit cell proliferation. In summary, the BMP2-KD mu-

tant appears slightly more active than wildtype BMP2 in terms of both ALP gene expression

induction in ATDC5 cells as well as in inhibition of cell proliferation in KMS12-BM cells,

which confirms its design as a BMP2 super-agonist.

(data not shown). The figures show the mean values and the standard deviation of triplicates. The assays

were performed as three independent experiments.

https://doi.org/10.1371/journal.pone.0174884.g002

Fig 3. Schematic representation of the BMP2 variants in terms of their receptor binding characteristics. The arrows

demonstrate the relative binding affinities of the individual BMP2 variants to the indicated receptors. High-affinity binding is

indicated by thick black arrows, while low-affinity binding is indicated by thin grey arrows. For both “P” variants, there was no

binding (indicated by the grey cross) to the type I receptors BRIA and BRIB that could be detected by surface plasmon

resonance (SPR) analysis [15,28]. Bold receptor names indicate binding preferences among the two receptor types.

https://doi.org/10.1371/journal.pone.0174884.g003
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Fig 4. Biological activities of the different BMP2 variants. (A) ATDC5 cells were stimulated with the

indicated concentrations of either wildtype BMP2, BMP2-KD, BMP2-PKD or BMP2-P. ALP activity was
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The systemic elimination of Activin A by employing a receptor-based cytokine trap method

was previously shown as a successful and promising strategy for the treatment of MM [6–8].

However, further studies revealed that in some cases Activin A itself represses the proliferation

of certain myeloma cells [24,31]. In such cases, the removal of Activin A by a cytokine-trap

approach likely exerts an adverse effect in the patient and might even promote unwanted

survival and proliferation of neoplastic B-cells. To address this apparent contradiction, we

analysed the Activin A sensitivity of several human myeloma cell lines (MM.1S, RPMI8226,

AMO1, U266, L363, JJN3, OPM2, KMS12-BM, KMS11 and INA6), which at least in part

reflect the genetic diversity of MM in terms of their impact on cell proliferation. Interestingly,

only one cell line—INA6—appeared to be Activin A-sensitive (Fig 5A). The observed Activin

A insensitivity might be explained by the lack of at least one of the signalling receptors (i.e.,

ActRIB, ActRII or ActRIIB) essential for Activin A signalling. This phenomenon was indeed

observed in some cases and has been described previously [22]. We have thus analysed the

presence of the Activin receptors ActRI, ActRIB, ActRII and ActRIIB on mRNA levels by

qRT-PCR for all cell lines used in this study (Fig 5B). In most cases, the expression levels of the

Activin receptor mRNAs were low, but detectable; however, in INA6 cells their expression lev-

els were considerably stronger. With the presence of the necessary Activin receptors being

confirmed in all MM cell lines, it seems unclear why the majority of the investigated cell lines

appears to be Activin A-insensitive. Conformingly, analysis of CD138+ cells from eight MM

patients also showed only a minor apoptotic effect upon Activin A stimulation (Fig 5C).

The INA6 cell line, which is distinct among the cell lines investigated as Activin A-sensitive,

was previously shown to be BMP4-insensitive [22]. The BMP2/4 resistance in this case might

be explained by the absence of both BMP type I receptors, BMPRIA and -IB, which are essen-

tial for the initiation of BMP2-mediated signals [22]. This cell line therefore represents an

excellent tool to determine whether the designed BMP2 variants counteract Activin A-medi-

ated activities solely by the proposed competition mechanism for binding to the type II re-

ceptors, as the concomitant transduction of BMP2-specific signals via BMPRIA is impeded.

Indeed, the addition of either one of the BMP2 variants dose-dependently rescued the Activin

A-induced inhibition of cell proliferation in this cell line. The IC50 values determined experi-

mentally indicate the concentration at half-maximal inhibitor activity. 250 nM wildtype BMP2

was required to obtain a 50% rescue from Activin A-mediated inhibition of cell proliferation,

while the BMP2 variant having enhanced affinity for the Activin type II receptors, BMP2-

PKD, 62.5 nM variant protein was required. This indicates that the variant PKD has a fourfold

stronger inhibitory effect compared to wildtype BMP2. As INA6 cells lack both BMP2 type I

receptors BMPRIA and -IB, which impedes the recruitment of BMP2 to the cell surface via

the high-affinity type I receptors, efficacy to compete off Activin by the different BMP2 vari-

ants is solely determined by their type II receptor affinities. Thus BMP2 and BMP2-P as well as

BMP2-KD and BMP2-PKD each form a pair, which have the same type II receptor binding

affinity, either wildtype BMP2-like or an enhanced affinity due to carrying the KD mutation

and should thus show respective similar capacities to antagonize Activin A [15,28]. A represen-

tative analysis comparing the inhibition by BMP2 and the type II receptor affinity-enhanced

variant BMP2-PKD is shown in Fig 6. Our data appear to confirm the hypothesis that the

counteracting biological activities of BMP2 and Activin A result from competitive binding of

the two ligands to the same set of type II receptors on the cell surface.

determined after 72 h. (B) KMS12-BM and (C) L363 cells were stimulated with the indicated concentrations of

the four BMP2 variants. Inhibition of proliferation was assessed after 96 h by WST-1 measurements. The

figures show mean values and standard deviation of triplicates. The measurements were performed in three

independent experiments.

https://doi.org/10.1371/journal.pone.0174884.g004

Utilizing BMP-2 muteins for treatment of multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0174884 May 10, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0174884.g004
https://doi.org/10.1371/journal.pone.0174884


Fig 5. (A) A collection of different human multiple myeloma cell lines are Activin A-resistant. Ten different cell lines were incubated with or without 125 nM

Activin A. After 72 h, cell proliferation was assessed by WST-1 measurements. (B) Expression profile of Activin A receptors in MM cell lines. RNA was

isolated from the indicated MM cell lines, and the expression levels of the indicated receptors were determined by qRT-PCR. Expression levels were

normalized to the housekeeping gene HPRT (= 100%). (C) Activin A sensitivity of primary CD138+ cells isolated from different MM patients. CD138+ cells

were isolated from 8 different donors and stimulated with 125 nM Activin A for 72 h. The control cells were untreated. Cell numbers were assessed by WST-1

assay and related to the untreated cells (control). Assays were performed in duplicate (except for the values marked with a #). The figures show the mean

values and standard deviation of duplicates.

https://doi.org/10.1371/journal.pone.0174884.g005
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Discussion

In recent years, Activin A has been identified as a highly interesting target for the treatment of

MM. Animal models and clinical trials have shown that systemic elimination of Activin A, e.g.,

via a decoy receptor, might represent a promising strategy [6–8]. In the present study, we

showed that Activin A most likely exerts its inhibitory properties via a simple molecular mech-

anism where it competes with a distinct subset of TGFβ ligands, e.g., BMP2, for binding to an

overlapping set of cell surface receptors. We showed that specifically designed BMP2 variants

might be used as therapeutic agents to counteract Activin A, whose levels are elevated in MM

patients [9]. A directed molecular design yielded BMP2 variants that can either act as super-

agonistic BMP2 and concomitantly as a highly efficient Activin A antagonist (i.e., BMP2-KD)

or, if required, exert only a super-antagonistic activity against Activin A while being otherwise

inactive with regard to BMP signalling (i.e., BMP2-PKD). Particularly, the variant BMP2-KD,

which exhibited increased osteogenic potential and improved Activin A-inhibiting characteris-

tics compared to wildtype BMP2, appeared beneficial for the treatment of the major symptoms

in MM. BMP2, whose endogenous biological activity is possibly reduced by Activin A overex-

pression and frequently observed in MM patients, is by itself a potent inducer of bone forma-

tion and regeneration. BMP2 also exerts a significant inhibitory effect on the proliferation of

neoplastic B cells in MM.

Thus, the mechanism by which elevated Activin A levels lead to osteolysis and strong B-cell

proliferation is most probably due to eliminating, or at least strongly reducing, the biological

activities of endogenous BMPs. Because wildtype BMP2 already counteracts or attenuates

Activin A activities by binding to shared type II receptors, engineering an increased binding

affinity to the shared type II receptors ActRII and ActRIIB can significantly increase the in-

hibitory potential of the BMP2 variants (BMP2-KD and BMP2-PKD) if they are ectopically

Fig 6. BMP2 counteracts Activin A-induced inhibition of cell proliferation in INA6 cells. INA6 cells were

incubated with Activin A alone (10 nM) or co-stimulated by the addition of Activin A and increasing concentrations

of either wildtype BMP2 or BMP2-PKD. Cell numbers were assessed by WST-1 measurements. The black line

represents the value obtained from the untreated cells (control).The dashed line indicates the IC50 (half maximal

biological inhibitor activity. In the experiment the IC50 was determined as 250 nM for BMP2 and as 62.5 nM for

BMP2-PKD. The figures show the mean values of triplicates with standard deviation. The measurements were

performed as three independent experiments.

https://doi.org/10.1371/journal.pone.0174884.g006
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applied. If binding to BMP type I receptors is maintained by these variants, the enhanced bind-

ing affinity to the type II receptors will also result in elevated osteoanabolic capacities, which

was observed for the BMP2-KD variant compared with wildtype BMP2. BMP2-KD therefore

represents the most promising candidate for treatment of MM-related symptoms due to its

functional gain in promoting osteoanabolic processes combined with its enhanced anti-prolif-

erative effects on neoplastic B-cells in vivo. However, the therapeutic use of this mutant bears

unforeseeable risks in that its systemic administration might result in non-targeted and non-

specific activities on cells with mesenchymal origins [32,33]. To avoid a potential induction of

ectopic bone growth in mesenchymal tissue, it might be beneficial to eliminate the osteogenic

properties of the ectopically applied BMP2. To attenuate the osteogenic activity of the systemi-

cally applied BMP2, it will be necessary to reduce or even fully abrogate its SMAD1/5/8 path-

way-activating capabilities. This process is best achieved using the BMP2-P variant, which, due

to lacking type I receptor binding, cannot activate the SMAD1/5/8 pathway. However, despite

lacking direct osteogenic activities, this variant can still compete with Activin A for binding to

the type II receptors ActRII and ActRIIB and therefore antagonize Activin A activities. More-

over, although the BMP2-P variant cannot bind to BMP type I receptors, it can still bind the

BMP antagonist Noggin similar to wildtype BMP2 [29,34]. Noggin is often co-expressed with

BMPs to dampen BMP activity via a negative feedback loop. Because the BMP2-P variant can

neutralize Noggin and thereby release endogenous BMPs from complexes with Noggin, it may

therefore indirectly increase osteogenic activities at sites where BMPs are endogenously pro-

duced [29,34,35]. The antagonistic and site-specific osteogenic potential of this variant has

already been shown in cell culture as well as in a rat model and might be superior in many

aspects to wildtype BMP2 administration [29,34].

The same features, but provided with enhanced Activin A-competing properties, are real-

ized with the BMP2-PKD variant. This variant combines increased binding affinity for Activin

type II receptors and can therefore inhibit Activin A activities more efficiently. This feature

might be beneficial in clinical use in terms of safety because lower doses of the systemically

applied BMP2 variant can be administered. However, what would be the risks of systemically

applying BMP2 proteins with preserved intrinsic osteogenic activities, such as wild type BMP2

or BMP2-KD? Basically, there is no clear answer to this question due to the lack of clinical

studies and animal models. There might be a risk to force ectopic bone formation in mesen-

chymal tissue or to promote certain cancer activities, especially because it has been previously

proposed that BMPs might be involved in mesenchymal stem cell (MSC) differentiation and

in processes associated with cancer, such as epithelial to mesenchymal transition (EMT) [36].

However, BMP levels in the blood of healthy people as well as in MM patients are very low,

which does not allow a conclusion in terms of appropriate doses for BMP2 application in such

a scenario [37,38]. Furthermore, Activin A levels in the blood also appear to be very low (400–

1500 pg/ml) [9]; but only subnanomolar concentrations are required to initiate Activin A

activity like BMP inhibition [39]. In contrast, BMPs require concentrations in the range of 10

to 50 nM to exert their osteogenic activities [40]. Therefore, to exclusively inhibit Activin A-

specific activities without inducing specific BMP-related responses, rather low concentrations

of a BMP-derived Activin A antagonist should be applied. This situation suggests that the Acti-

vin A super-antagonist BMP2-PKD is likely the best option for such a treatment regimen.

Still, there are two more facts that need to be discussed. First, neoplastic cells do not appear

to be Activin A-insensitive in all MM patients. In these cases, Activin A exerts an anti-prolifer-

ative effect similar to BMP2 and our generated BMP variants. Thus, BMP2 administration can

potentially provoke unwanted side effects through the inhibition of endogenous Activin A in

these cases [24]. In contrast, only one (INA6) out of ten MM cell lines tested responded to

Activin A. Furthermore, analysis of the CD138+ cells from eight MM patients showed only
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minor apoptotic effects upon Activin A stimulation. Last but not least, the increased Activin A

levels in MM patients correlate with extensive bone involvement and inferior survival [9].

Equally diverse directed antagonists against endogenous Activin A that act in the form of

decoy receptors have also displayed a positive effect on MM [6–8,31,41,42]. For these reasons,

the advantages for blocking Activin A via BMPs predominate on the receptor level.

Furthermore, Olsen and co-workers have already shown that Activin A can antagonize

BMP6 and BMP9 by competing with binding to the two type II receptors ActRII and ActRIIB

in MM cells [39]. Interestingly there seem to be substantial differences when comparing their

results with our data. First, very low concentrations of Activin A were needed to antagonize

BMP6 and BMP9. Second, the activities of BMP2 and BMP4 could not be antagonized by simi-

lar levels of Activin A. However these results seemingly contradicting our data appear only dif-

ferent at first glance. Instead we consider differences in the binding kinetics and the formation

of the signaling-active ligand-receptor complex between BMP2 and BMP6/BMP9 to account

for this discrepancy.

To explain this oppositional observations we would like to examine the binding characteris-

tics of BMP2 from two different perspectives. Firstly Activin A can act as an BMP2 inhibitor in

the cell lines C2C12 and KMS12-BM as shown in this paper (Fig 2A and 2B). But in these cells,

Activin A concentrations several times higher than the BMP2 concentration used for stimula-

tion (10 fold and more) were necessary for effective inhibition of BMP2-mediated effects. In

order to act as efficient inhibitor in this scenario, Activin A must prevent the formation of an

active BMP signaling complex, which (in these cells) comprises of two type I receptors, two

type II receptors and the BMP2 dimer. The formation of such an activating ligand-receptor

complex is considered to occur as a two step-reaction though, since the affinity of the BMP2

ligand for the type I and II receptors are dramatically different. In vitro measurements have

shown that the affinity of BMP2 for its type II receptors is about 10 to 60 times lower than for

its type I receptors [14]. Therefore in the first step BMP2 binds to a type I receptor (BMPRIA

or -IB) with high affinity and subsequently this membrane-located binary complex then

recruits the “low-affinity” type II receptors into the complex to initiate downstream signaling.

But defining the type II receptors ActRII, ActRIIB and BMPRII as being low-affinity receptors

of BMP2 might be misleading since strictly speaking the low affinity only holds true for the

scenario where BMP2 directly binds from the extracellular space to its type II receptors. If,

however, BMP2 has been already recruited to the membrane via binding first to its type I

receptors, subsequent interaction with the type II receptors will occur in two-dimensional

space, i.e. the binary complex of BMP2-type I receptor will recruit the type II receptor in the

membrane and thus this interaction is limited to a lateral search/interaction. Various theoreti-

cal analyses clearly showed that this reduction in the degrees of freedom by changing a three-

dimensional to a two-dimensional search can significantly enhance reaction rates of the sec-

ond interaction step occuring within the membrane [43–46]. This suggests that we will observe

a higher apparent affinity for the type II receptors for the BMP ligand when the interaction

occurs within the membrane as is typically found by in vitro setups measuring 3D interactions

such as surface plasmon resonance or calorimetry [26,47]. Thus despite on paper Activin A

binds the type II receptors with higher affinities than BMP2, the type I receptor-facilitated

interaction of BMP2 with the type II receptors within the membrane will make Activin A a

rather weak inhibitor for BMP2 requiring unexpected high concentrations of Activin A. To

outcompete BMP2, almost all type II receptors must be occupied by Activin A, as otherwise

the binary membrane-located BMP2/type I receptor complex will efficiently recruit its type II

receptor (referred to as scenario A).

The scenario will get different when the blocking of Activin A by BMP2 in INA6 cells is

analyzed (referred to as scenario B). Although this might be considered the reverse situation as
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described above, here, a much higher BMP2 concentration is required to antagonize the effects

induced by a quite low nanomolar concentration of Activin A (see Fig 6). The difference is due

to the fact that INA6 cells do not express the high-affinity type I receptors required for BMP2,

i.e. BMPRIA and -IB), BMP2 mediated blockage of Activin A type II receptor binding will not

be facilitated by a first recruitment of BMP2 to the cell membrane. Thus Activin A and BMP2

will compete in directly binding to the shared type II receptors hence employing the affinities

as were determined by in vitro interaction methodologies such as surface plasmon resonance

or calorimetry. Since BMP2 exhibits affinities to its three type II receptors which are about 15

to 35 times lower as found for Activin A [14], much higher BMP2 concentrations are needed

to impede Activin A receptor binding and activation. This mechanism is consistent with the

BMP2 variant PKD, which binds the Activin type II receptors with almost Activin-A like af-

finities but has a very low affinity for BMP type I receptors, exhibiting a higher antagonistic

capacity against Activin A (see Fig 6). Although the mechanism underlying the mutual antago-

nism of Activin A and BMPs is due to a direct competition for binding to a set of shared type

II receptors, the particular expression profile of BMP type I and type II receptors in the cells

addressed as well as the receptor binding profile of the respective BMP will strongly affect the

inhibitory efficacy either of Activin A or that of the BMP.

With these considerations we might be able to understand why Olsen et al. required only

low concentrations of Activin A to inhibit BMP9 and BMP6-mediated inhibition of cell prolif-

eration in INA6 and IH-1 myeloma cell lines, but could not detect any effect of similar levels

of Activin A on BMP2/4 in IH-1 cells [39]. BMP6 does not bind any TGFβ type I receptors

with high affinity, but has intermediate affinity for Activin type II receptors and can thus be

antagonized by Activin efficiently employing by competing for binding to type II receptors

directly from the extracellular space (like scenario B). In contrast BMP9 binds with high affin-

ity to the type I receptor ALK1, which is however absent in MM cells and thus shows a similar

antagonistic profile against Activin A as observed for BMP6 with the only difference that

BMP9 also binds type II receptors with higher affinity than BMP6. The failure of BMP2 and -4

to antagonize Activin A in the MM cell line IH-1 observed in the study of Olsen et al. is due to

the fact that IH-1 cells express all three type I receptors [22] bound by BMP2 and -4 and thus

both TGFβ ligands must be competed when already being recruited to the cell surface by their

high-affinity type I receptors (see scenario A above), which however as shown by our data

requires much higher concentrations of Activin A as have been used in the study of Olsen

et al. [39].

One further point is still of fundamental interest. Why did we use BMP2 and not a different

BMP ligand? BMP2 and the variants used in this study can potentially inhibit BMP6, BMP9,

and various other BMPs due to shared use of the three type II receptors ActRII, ActRIIB and

BMPRII. This appears to be counterproductive, as BMP6 can more strongly induce apoptosis

in primary myeloma cells via the type I receptor ACVRI (ALK2) as BMP2 and -4 can do via

the BMPRIA and/or -IB [23,48]. Furthermore, ACVR1/ALK2 is -in contrast to BMPRIA and

-IB- ubiquitously expressed in myeloma cells, which potentially renders BMP6 a more versatile

Activin A antagonist than BMP2 [49]. We have employed BMP2 in our studies for two main

reasons. Firstly, we show that also BMP2 can act as an Activin A antagonist in MM. Secondly,

BMP2 and particularly its variants were used as model to demonstrate that BMP molecules

with custom-tailored functions can be generated by molecular design for a specific use in MM

therapy. We think that the functionalities of these BMP2 variants could also be transfered to

BMP6, which potentially would make BMP6 an even more versatile Activin A antagonist.

However in order to gain further insights into the therapeutic potential of this panel of BMP2

and possible BMP6 variants, testing in animal models is required to determine the functions of

such Activin A antagonists at Activin A sources and sinks. Even though the applicability of
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such BMP-based Activin A antagonists is yet to be shown in animal testing, we think that

these BMP2 variants nevertheless present a powerful tool for the treatment of MM in patients

by gradually affecting Activin A-mediated activities and thereby mediating significant im-

provements in the clinical symptoms associated with this disease.

Conclusions

In this work, we show that Activin A directly inhibits BMP2-induced anti-proliferative activi-

ties in MM cell lines. In addition, custom-designed BMP2 variants with engineered tailored

receptor binding affinities for type II and type I receptors can be used as superior Activin A

antagonists simultaneously serving as BMP2 super-agonists to potentially overcome bone ero-

sions observed in MM. These features might be clinically exploited as a new therapeutic option

for the treatment of MM.
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