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Abstract

Sustained activation of JAK/STAT3 signaling pathway is classically described in Multiple

Myeloma (MM). One explanation could be the silencing of the JAK/STAT suppressor genes,

through the hypermethylation of SHP-1 and SOCS-1, previously demonstrated in MM cell

lines or in whole bone marrow aspirates. The link between such suppressor gene silencing

and the degree of bone marrow invasion or the treatment response has not been evaluated

in depth. Using real-time RT-PCR, we studied the expression profile of three JAK/STAT sup-

pressor genes: SHP-1, SHP-2 and SOCS-1 in plasma cells freshly isolated from the bone

marrows of MM patients and healthy controls. Our data demonstrated an abnormal repres-

sion of such genes in malignant plasma cells and revealed a significant correlation between

such defects and the sustained activation of the JAK/STAT3 pathway during MM. The

repressed expression of SHP-1 and SHP-2 correlated significantly with a high initial degree

of bone marrow infiltration but was, unexpectedly, associated with a better response to the

induction therapy. Collectively, our data provide new evidences that substantiate the contri-

bution of JAK/STAT suppressor genes in the pathogenesis of MM. They also highlight the

possibility that the decreased gene expression of SHP-1 and SHP-2 could be of interest as

a new predictive factor of a favorable treatment response, and suggest new potential mech-

anisms of action of the therapeutic molecules. Whether such defect helps the progression of

the disease from monoclonal gammopathy of unknown significance to MM remains, how-

ever, to be determined.
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Introduction

Multiple Myeloma (MM) is a hematological malignancy that accounts for about 10% of hema-

tological tumors. It is characterized by plasma cell monoclonal proliferation within the bone

marrow, associated with a production of a monoclonal protein [1–3]. Many advances have

been made in the field of MM treatment [4]. However, despite the improvement of patient sur-

vival achieved by the available therapeutic strategies, MM remains a frequent and an incurable

disease [5]. Thus, understanding the biological aberrancies that drive the development of MM

is crucial to reduce relapses and to obtain durable remissions.

It is broadly accepted that the bone marrow microenvironment is critical for the develop-

ment of MM, since it provides the malignant plasma cells with the required cytokines and

growth factors [6–8]. Among these cytokines, IL-6 plays fundamental role in the growth and

survival of malignant cells, in part through the activation of Janus tyrosine kinases/Signal

Transducers and Activators of Transcription (JAK/STAT) signaling pathway [9–12]. In MM

cells, the JAK/STAT signaling pathway seems to be constitutively activated [13–16]. This con-

stitutive activation appears to confer a survival advantage to the MM cells through an anti-apo-

ptotic effect. Besides, it is also involved in MM cell drug-resistance [13, 17].

The JAK/STAT pathway is stringently regulated at several steps by 3 main families of pro-

teins: the PIAS (Protein Inhibitor of Activated STATs), the tyrosine phosphatases (SHP-1 and

SHP-2), and the SOCS (Suppressor of cytokine signal transduction), particularly SOCS-1
(reviewed in [18]). Although the IL-6/JAK/STAT signaling pathway was largely explored in the

field of hematological malignancies, particularly MM, the role played by the JAK/STAT sup-

pressor genes was less extensively investigated. Actually, SHP-1 and SOCS-1 genes were

reported to be highly methylated in MM cell lines or in whole bone marrow aspirates from

MM patients [19–22]. Little is known about SHP-1, SHP-2 and SOCS-1 genes expression

within the malignant plasma cells per se (freshly isolated from MM patients bone marrows).

Moreover, the relationship between the silencing of JAK/STAT suppressor genes and the

degree of bone marrow invasion or treatment response is not well documented. Herein, we

examined the expression of the JAK/STAT regulating genes (SHP-1, SHP-2 and SOCS-1) in the

malignant plasma cells isolated from bone marrows of MM patients. Our data demonstrated

an abnormal repression of such genes in freshly isolated malignant plasma cells and revealed a

significant correlation between gene silencing of such repressors and the sustained activation

of the JAK/STAT3 pathway in MM. In addition, we demonstrated the presence of a negative

correlation between the transcription of the studied genes and the bone marrow plasma cells

infiltration degree. In an unexpected manner, repression of SHP-1, SHP-2 genes expression

was associated to a better initial treatment response.

Materials and methods

Patients and controls

Forty-five patients with newly diagnosed and untreated MM were prospectively enrolled in

this study. For each patient, laboratory investigations determined the isotype of the monoclo-

nal immunoglobulin, Durie and Salmon stage as well as the percentage of medullary plasma

cell infiltration. After enrollment, all patients received Dexamethasone (DXM) and Thalido-

mide induction therapy. The response to treatment was evaluated three months later based on

the International Myeloma Working Group uniform response criteria for MM [23]. The main

biological features of the enrolled patients are summarized in Table 1. The control group con-

sisted of 16 age-and sex-matched bone marrow healthy donors (10 men, 6 women, mean age:

46.3 years). The study protocol was approved by the national medical ethics committee and all
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patients and healthy donors gave their written informed consent before the study in accor-

dance with the Declaration of Helsinki.

Medullar plasma cell isolation

Bone marrow mononuclear cells were isolated on Ficoll-Hypaque gradient and plasma cells

were isolated using CD138 magnetic beads (Miltenyi Biotec, Bergisch-Gladbach, Germany)

according to manufacturer’s instructions. Purity was assessed by flow cytometry (FACS Canto,

Becton Dickinson) and the following labeled mAbs: FITC-conjugated anti-CD38, PE-Conju-

gated anti-CD138, PE-Conjugated anti-CD19, Cychrome-Conjugated anti-CD45 and

APC-H7-conjougated CD56 (BD Biosciences, Le Pont de Claix, France). Purity of isolated

plasma cells (CD38+ CD138+) ranged from 95% to 99%.

SOCS-1, SHP-1 and SHP-2 mRNAs expression by Real-Time (RT)-

PCR

Total RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s procedure. The quality and purity of the extracted RNA was assessed by a

direct visualization on agarose gel electrophoresis and a calculation of the ratio of 260/280 nm

absorbance. Extracted RNA was reverse transcribed using the Murine-Moloney Leukemia

Virus (MMLV) reverse transcriptase (Invitrogen, Cergy Pontoise, France) and random hex-

amers (Promega, Madison, WI, USA) according to standard procedures. SOCS-1, SHP-1 and

SHP-2 mRNAs were quantified by real-time RT-PCR using SYBR Green PCR Master Mix

(Applied Biosystems, Branchburg, NJ, USA) and 300 nM of the chosen couples of primers.

Forward and reverse primers for SHP-1, SHP-2 and SOCS1were, respectively, 5’-GGTCACC
CACATCAAGGTCAT-3’and 5’-TGTCGAAGGTCTCCAAACCAC-3’, 5’-GAGAGCAATGA
CGGCAAGTCT-3’ and 5’-CCTCCACCAACGTCGTATTTC-3’,5’CCCTTCTTGTAGGATGG
TAGCACAC3’ and 5’-GGCTCTGCTGCTGTGGAGAC-3’.

The optimal primers and PCR conditions were previously determined. Accordingly, for

each gene, different combinations of primers were tested at three different concentrations

using a serial dilution of a positive control. The best couple of primers was chosen based on its

sensitivity (the lowest cycle threshold), specificity (a cycle threshold equal to 40 in the non-

template controls) and efficiency (slope = -3.3). For each couple of the chosen primers, the

PCR product was visualized on agarose gel electrophoresis and a direct sequencing of the PCR

Table 1. Demographic and main clinical and biological features of the MM patients at diagnosis.

Patients n = 45

Gender 27/18

Mean age (years) 51.7

Durie and Salmon stage (n)

stage IIA 2

stage IIIA 36

stage IIIB 7

Mean (range) bone marrow infiltration 41% (10–100)

Treatment response subcategory (n) (only 40 patients with an available follow-up data)

Complete response 9

Very good partial response 5

Partial response 21

Stable disease 5

https://doi.org/10.1371/journal.pone.0174835.t001
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product confirmed its specificity. All the samples were tested in duplicate and run on the same

plate for the same gene. Amplification was performed using 40 cycles of denaturation at 95˚C

for 15 s and annealing and extension at 60˚C for 1 min using an ABI PRISM 7700 sequence

detection system (Applied Biosystems). Data were normalized referring to the expression of

the endogenous gene RPLP0 (Ribosomal Protein, Large, P0) using an available gene expression

assay (with a tested efficiency equal to one) and TaqMan PCR Master Mix (Applied Biosys-

tems) by calculating 2-ΔCT, with ΔCT the difference in threshold cycles for target and

reference.

Immunochemistry

Immunohistochemistry was performed on paraffin-embedded bone marrow biopsies from 21

patients. Following reduction of endogenous peroxidase activity, deparaffinized slides were

incubated at 4˚C overnight with a rabbit anti-human phosphorylated STAT3 (p-STAT3

Tyr705) antibody diluted at 1:50 (clone D3A7; Cell Signaling Technology). Labeling was

revealed by the R.T.U. VectaStain universal Elite ABC kit (Vector Laboratories). Briefly, after

two washes, slides were incubated with a horse serum blocking solution included in the kit for

20 min. After washing, slides were incubated with a secondary biotinylated antibody, then

stained with diaminobenzidine substrate (Novocastra) during 3 min. Slides were then washed

twice with distilled water, counterstained with 1% hematoxylin and analyzed under a light

microscope at a 40x magnification by two independent investigators in a blinded fashion. Posi-

tively stained plasma cells were evaluated for each sample.

Statistical analysis

Statistical analyses were performed using StatView, SPSS and/or GraphPad Prism software.

The levels of mRNA expression for SHP-1, SHP-2 and SOCS-1 in plasma cells were compared

between the different study groups using the non-parametric Mann-Whitney U test. Correla-

tions between the gene expression of SHP-1, SHP-2 and SOCS-1 and either the bone marrow

infiltration, the response to treatment or STAT3 signaling activation were analyzed using

Spearman’s rank correlation. The χ2 test was used to compare the frequency of patients exhib-

iting a hypoexpression of SOCS-1, SHP-1 and SHP-2 in the different sub-groups identified.

The statistical significance was assigned to p values < 0.05.

Results

Expression of SHP-1, SHP-2 and SOCS-1 genes is repressed in

malignant plasma cells

The transcription of SHP-1, SHP-2 and SOCS-1 genes was studied using real-time RT- PCR in

the purified bone marrow plasma cells isolated from patients and healthy donors. Within the

group of healthy donors, SHP-1 gene expression in plasma cells ranged from 0.36 to 2.8 with a

median of 1.2. Comparatively, SHP-1 gene expression was significantly reduced within the

MM group (p< 0.0001) (Fig 1A). When the threshold of normal transcription of SHP-1 was

calculated as the value of the 5th percentile obtained in the healthy control group, we showed

that 27 out of 45 MM patients (60%) displayed a significant reduction in SHP-1 gene expres-

sion (Fig 1A).

Similar results were obtained with SHP-2. In the control group, SHP-2 gene expression ran-

ged from 0.07 to 0.8 with a median of 0.08. Its expression was significantly reduced in the

malignant plasma cells from MM patients (p < 0.0001). When the threshold of normal expres-

sion of SHP-2 was determined as above, 23 out of 45 MM patients (51%) had a reduced SHP-2

SHP-1, SHP-2 and SOCS-1 in multiple myeloma
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gene expression (Fig 1B). Interestingly, in the malignant plasma cells, we found a significant

correlation between SHP-1 and SHP-2 transcript expression (r = 0.75, p< 0.0001) (Fig 1C).

Regarding SOCS-1 gene expression, no significant difference was found between the healthy

donor and the patient group (Fig 2A). Moreover, within the patient group, SOCS-1 gene

expression profiles were very heterogeneous. Indeed, SOCS-1 gene expression was increased in

13 MM patients (exceeding the 95th percentile of the healthy control group) and decreased in

20 other cases (below the 5th percentile of the healthy control group). Thus, within the MM

group, SOCS-1 gene expression displayed a different pattern compared to SHP-1 and SHP-2.

Nevertheless, SOCS-1 gene expression was significantly correlated to that of either SHP-1 or

SHP-2 (Fig 2B and 2C).

Analysis of SHP-1, SHP-2 and SOCS-1 gene expression according to

the clinicopathological features of MM

Bone marrow infiltration. The percentage of bone marrow infiltration in the patient

group varied from 10% to 100%, with a median of 30%. To evaluate SHP-1, SHP-2 and SOCS-1
gene expression according to the degree of bone marrow infiltration, several statistical analyses

were performed. Using Spearman correlation test, we observed the presence of a negative

Fig 1. SHP-1 and SHP-2 gene expression in bone marrow plasma cells isolated from MM patients and healthy donors. (A, B) Statistical dot plots

showing the mRNA levels of SHP-1 and SHP-2 relative to the endogenous gene RPLP0 in sorted bone marrow plasma cells of healthy controls (HC,

n = 16) and multiple myeloma patients (MM, n = 45). (C) Correlation between SHP-1 and SHP-2 relative gene expression within MM bone marrow plasma

cells. Spearman rank correlation (r) and p values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g001
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correlation between SHP-1 and SHP-2 gene expression and the level of bone marrow infiltra-

tion (r = -32, p = 0.032 and r = -48, p = 0.0007, respectively) (Fig 3A). The less SHP-1 and

SHP-2 were expressed in malignant plasma cells, the more the bone marrow was infiltrated.

When the patient group was subdivided into 2 subgroups according to normal or decreased

expression of the regulating genes, the level of bone marrow infiltration was significantly

increased in the subgroups of patients with lower expression of SHP-1 or SHP-2 (p = 0.048 and

p = 0.0057, respectively) (Fig 3B).

The relationship between the expression of regulating genes and the bone marrow infiltra-

tion was further analyzed by stratifying patients according to 2 thresholds of infiltration: 20%

and 30%. An infiltration� 20% was significantly associated with a reduced expression of SHP-
1 and SHP-2 genes (p = 0.043 and p = 0.028, respectively) (Fig 4A). Interestingly, an infiltration

degree� 30% was associated only with a reduced expression of SHP-2 (p = 0.004) (Fig 4B).

Durie-Salmon staging system. According to the classic Durie-Salmon staging system, the

majority of the studied patients (36/45 cases; 80%) exhibited a stage IIIA. Seven patients

Fig 2. SOCS-1 gene expression in bone marrow plasma cells isolated from MM patients and healthy donors. (A) Statistical dot plots showing the

mRNA levels of SOCS-1 relative to the endogenous gene RPLP0 in sorted bone marrow plasma cells of healthy controls (HC, n = 16) and MM patients

(MM, n = 45). (B, C) Correlation between SOCS-1 and SHP-1, SOCS-1 and SHP-2 relative gene expression in MM bone marrow plasma cells. Spearman

rank correlation (r) and p values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g002
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(15.6%) were classified stage IIIB and only 2 patients (4.4%) displayed a stage IIA. Despite a

trend toward decreased expression of the three genes within the stage IIIB subgroup, we could

not find any significant difference of expression when compared with stage IIIA and IIIB sub-

groups (data not shown). Similarly, there was no association between the reduced expression

of the studied genes and disease stage (χ2 test, p> 0.05) (data not shown).

Treatment response. Three months after the beginning of induction therapy, the treat-

ment response was evaluated in 40 out of 45 patients according to the International Myeloma

Working Group uniform response criteria [23]. Several analyses were carried out to study the

relationship between the expression of the regulating genes and the response to the treatment.

Unexpectedly, Spearman correlation analysis showed that the transcription of SHP-1 and

SHP-2 negatively correlated with the percentage of reduction of the serum monoclonal protein

(5 patients with light chain MM were excluded from this analysis) (r = -0.55, p = 0.0006 and r

= -0.50, p = 0.002, respectively) (Fig 5A). The less SHP-1 and SHP-2 mRNAs were expressed,

the stronger the response to the treatment. Additional analyses confirmed this finding.

Accordingly, the percent reduction of the serum monoclonal protein was significantly higher

within the group of patients exhibiting reduced expression of SHP-1 or SHP-2 (p = 0.005 and

p = 0.01, respectively) (Fig 5B). When the patients were stratified according to their degree of

response to treatment (as assessed by the percent reduction in serum monoclonal protein),

SHP-1 and SHP-2 gene expression were significantly decreased within the subgroup of patient

with a better response (� 90% reduction; p = 0.01 and p = 0.03, respectively) (Fig 5B).

Fig 3. SHP-1 and SHP-2 gene expression inversely correlate with the level of bone marrow infiltration. (A) Correlation between bone marrow

infiltration and the relative gene expression of SHP-1, SHP-2 and SOCS-1 in the sorted bone marrow plasma cells. Spearman rank correlation (r) and p

values are indicated. (B) The degree of bone marrow infiltration is compared in patients exhibiting normal or decreased expression of SHP-1, SHP-2 and

SOCS-1 genes. P values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g003

SHP-1, SHP-2 and SOCS-1 in multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0174835 April 3, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0174835.g003
https://doi.org/10.1371/journal.pone.0174835


Based on the International Myeloma Working Group uniform response criteria [23], we

could grossly separate all the 40 patients into “responders” (including patients with either com-

plete or very good partial response), and “non-responders” (including those with partial or no

response). Using the χ2 test, there was a significant relationship between reduced SHP-1
expression and the “responder” status (p = 0.026, Table 2).

Finally, we attributed a score for gene expression ranging from 0 to 2. The score 2 was given

to patients presenting a normal expression, 1 for those having a slightly decreased expression

but close to the fixed threshold, 0 for an expression below the threshold. A global expression

score for the three genes (calculated as the average of the 3 scores attributed to SHP-1, SHP-2
and SOCS-1 gene expression) was given to each patient. In line with the previous results, this

scoring allowed us to show that the global gene expression score negatively correlated with the

percent reduction in serum monoclonal protein (r = -0.3, p = 0.03) (Fig 6A). Moreover, this

global score was significantly decreased in the subgroup of patients with a better response

(� 90%; p = 0.04) (Fig 6B).

SHP-1, SHP-2 and SOCS-1 gene expression negatively correlates with

the activation of the JAK/STAT3 pathway

The JAK/STAT3 activation pathway was analyzed by studying the expression of the phosphor-

ylated form of STAT3 (p-STAT3). Immunohistochemistry was performed on paraffin embed-

ded bone marrow sections from 21 out of 45 enrolled MM patients. A score of STAT3

phosphorylation, ranging from 0 to 3, was attributed according to the intensity of staining (Fig

7A). Activation of the JAK/STAT3 pathway was observed in 12 out of 21 patients (57%)

Fig 4. Gene expression of SHP-1, SHP-2 and SOCS-1 according to the degree of bone marrow infiltration. (A, B) The relative gene expression of

SHP-1, SHP-2 and SOCS-1 was compared in patients subdivided according to two different thresholds (20% and 30%) of bone marrow infiltration. P

values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g004
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(Table 3). Moreover, in 18 of the 21 patients (85.7%), the p-STAT3 score was concordant with

the relative gene expression level SHP-1, SHP-2 and SOCS-1 (Table 3). Interestingly, a signifi-

cant correlation was found between the decreased expression of the three studied genes and

the activation of the JAK/STAT3 pathway (p = 0.004 for SHP-1, p = 0.007 for SHP-2 and

Fig 5. Gene expression of SHP-1, SHP-2 and SOCS-1 according to the percent reduction of the monoclonal component. (A) Correlation between

the reduction of the serum monoclonal component (M-component) and the relative expression of SHP-1, SHP-2 and SOCS-1 in sorted bone marrow

plasma cells. Spearman rank correlation (r) and p values are indicated. (B) Levels of reduction in the serum M-component are compared between patients

exhibiting normal or reduced expression of SHP-1, SHP-2 and SOCS-1. P values are indicated. (C) The relative gene expression of SHP-1, SHP-2 and

SOCS-1 was compared between the two patient subgroups with a decrease in the M-component <90% or�90%. P values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g005

Table 2. Numbers of “non-responders” (patients with partial or no response) and “responders” (patients with either complete or very good partial

response) in “reduced expression” or “normal expression” groups for each of the studied gene. P values are indicated.

Non-responders Responders Chi-square test

SHP-1

Reduced expression 13 12 P = 0.026

Normal expression 13 2

SHP-2

Reduced expression 12 10 P = 0.12

Normal expression 14 4

SOCS-1

Reduced expression 9 8 P = 0.17

Normal expression 17 6

https://doi.org/10.1371/journal.pone.0174835.t002
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p = 0.02 for SOCS-1; data not shown). Finally, the correlation between the activation of the

JAK/STAT3 pathway and the global score of SHP-1, SHP-2 and SOCS-1 gene expression was

tested. The global level of expression of these regulating genes was negatively correlated to the

activation of the JAK/STAT3 pathway (r = -67, p = 0.0027) (Fig 7B).

Discussion

JAK/STAT is a common signaling pathway shared by many cytokines and growth factors

[24–28]. This notion supports the important and complex role that this pathway plays in the

biology of hematopoietic cells, oncogenesis, and therapy applied to some blood malignancies

[28–32]. Particularly, the IL-6R/JAK/STAT3 pathway largely contributes to the MM multi-

step transformation process and pathogenesis, making its therapeutic targeting an attractive

strategy that could favor durable remissions in MM patients [33–36]. The JAK/STAT signal-

ing pathway is regulated at various levels by different molecules such as SOCS-1, SHP-1 and

SHP-2, all of which are known to suppress the JAK/STAT signaling pathway. The aberrant

and constitutive activation of the JAK/STAT pathway during MM suggests that epigenetic

silencing of its regulating genes might be involved in this abnormality. In fact, previous data

demonstrated that hypermethylation of SHP-1 and SOCS-1 genes is a frequent event in MM.

These results were mainly demonstrated in MM cell lines or in whole bone marrow aspirates

from MM patients [20–22]. Thus, our first goal was to confirm that the reported hyper-

methylation resulted in the silencing or at least repression in the expression of these genes

within the malignant plasma cells per se. Using RT-PCR, we could study the gene expression

profile of SHP-1, SHP-2 and SOCS-1 in plasma cells freshly isolated from the bone marrow of

MM patients. Compared with healthy donors, we were able to demonstrate the presence of a

global and significant decrease in SHP-1 and SHP-2 gene expression in patient plasma cells.

Thus, these finding are in line with the reported hypermethylation of SHP-1 in MM [21].

Moreover, we found a very close and significant correlation between the inactivation of SHP-
1 and SHP-2 genes, suggesting the involvement of a common mechanism underlying their

inactivation during MM. Even though the SOCS-1 gene expression pattern differs from those

Fig 6. Relationship between treatment response and the global gene expression score. (A) The graph recapitulates the correlation between the

global score for SHP-1, SHP-2 and SOCS-1 gene expression and the percent reduction in the serum monoclonal component (M-component). Spearman

rank correlation (r) and p values are indicated. (B) The global expression score of SHP-1, SHP-2 and SOCS-1 genes was compared between the two

patient subgroups with a M-component reduction level <90% or�90%. P values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g006

SHP-1, SHP-2 and SOCS-1 in multiple myeloma

PLOS ONE | https://doi.org/10.1371/journal.pone.0174835 April 3, 2017 10 / 16

https://doi.org/10.1371/journal.pone.0174835.g006
https://doi.org/10.1371/journal.pone.0174835


of SHP-1 and SHP-2, we could demonstrate that SOCS-1 gene expression was inactivated in

about 44% of patients. This result further corroborates one previous study showing a hyper-

methylation of SOCS-1 in 40% of MM patients [22]. The heterogeneous profile of SOCS-1
gene expression leads us to hypothesize that the mechanisms involved in the inactivation of

SOCS-1 differ from those supporting the inhibition of SHP-1 and SHP-2. Surprisingly, some

of our patients (13 out of 45; 29%) exhibited a significantly enhanced expression of the

SOCS-1 gene. SOCS-1 is classically described as a tumor suppressor in many cancers, includ-

ing hematopoietic malignancies. However, its ambivalent role was previously reported, since

its overexpression seems to be associated to an oncogenic effect in other settings (reviewed

in [37]). Moreover, this hyperexpression could also be beneficial by inhibiting the oncogenic

events through the degradation of oncoproteins [38]. The limited number of patients with

hyper-expression of SOCS-1 did not allow us to characterize in depth this unexpected

feature.

The direct link between the hypermethylation of SHP-1, SHP-2 and SOCS-1 genes and the

hyperactivation of the JAK/STAT signaling pathway in MM is not well established. Indeed,

such correlation was only studied in MM cell lines [22]. Notably, using immunohistochemistry

Fig 7. Relationship between the activation of the JAK/STAT pathway and the gene expression of SHP-1, SHP-2 and SOCS-1. (A) Consecutive

sections of paraffin-embedded MM bone marrow biopsies (40x magnification) were stained with rabbit anti-human p-STAT3 or isotype control.

Representative samples are shown from 4 MM patients displaying a score of 0, 1, 2 and 3 (no p-STAT3 staining, weak p-STAT3 staining, intermediate p-

STAT3 staining and strong pSTAT3 staining, respectively). (B) The graph recapitulates the correlation between the global score of SHP-1, SHP-2 and

SOCS-1 gene expression and the score for p-STAT3 staining intensity. Spearman rank correlation (r) and p values are indicated.

https://doi.org/10.1371/journal.pone.0174835.g007
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to study p-STAT3 on patients’ bone marrow specimens, we observed the presence of a global

negative correlation between the sustained activation of the JAK/STAT3 pathway and the gene

expression of SHP-1, SHP-2 and SOCS-1 in patient plasma cells.

Data evaluating the relation between genes regulating the JAK/STAT3 pathway and the

bone marrow infiltration status at MM diagnosis is lacking. Thus, in a second step, we studied

the relationship between the gene expression of SHP-1, SHP-2 and SOCS-1 and the degree of

patient bone marrow infiltration at baseline. Our analyses highlighted that the inactivation of

SHP-1 and SHP-2 was significantly associated with a high degree of initial bone marrow inva-

sion. Thus, we consolidate the idea that the inactivation of genes regulating the JAK/STAT3

pathway can support tumor expansion through the repression of JAK/STAT signaling. In

addition to its anti-apoptotic effect, the JAK/STAT pathway can also enhance IL-6 production

[39, 40]. This can lead to the establishment of a positive feedback loop that amplifies the IL-

6R/JAK/STAT3 pathway. It is also likely that the uncontrolled JAK/STAT signaling prompts

plasma cells to be more responsive to the survival signals delivered by the microenvironment

(e.g. IL-6). Moreover, the significant correlation between bone marrow infiltration and the

inhibition of SHP-1 and SHP-2 gene expression raises the possibility that their degree of inacti-

vation may represent a biomarker that indirectly reflects tumor mass and the level of bone

marrow invasion at diagnosis. Finally, it was suggested that aberrant methylation of some

genes, such as SHP-1 and SOCS-1, helps the progression from monoclonal gammopathy of

undetermined significance (MGUS) to MM [19, 41]. In line with this, since our results show

that the decreased gene expression of SHP-1, SHP-2 was associated with a more extensive bone

marrow invasion at diagnosis, we can hypothesize that such patients may be those who pro-

gressed more rapidly from MGUS to MM.

Table 3. SHP-1, SHP-2 and SOCS-1 gene expression profiles and the corresponding Immunohistochemistry (IHC) scores for p-STAT3 staining in

the indicated patients.

Patient number SHP-1 relative expression SHP-2 relative expression SOCS-1 relative expression IHC SCORE Concordance

1 normal normal normal 0 concordant

2 normal normal normal 0 concordant

3 normal normal decreased 0 concordant

4 normal normal normal 0 concordant

5 Slightly decreased normal normal 0 concordant

6 decreased decreased normal 0 discordant

7 normal normal normal 0 concordant

8 normal normal normal 0 concordant

9 Slightly decreased normal normal 0 concordant

10 Slightly decreased Slightly decreased Slightly decreased 1 concordant

11 decreased decreased Slightly decreased 1 concordant

12 decreased Slightly decreased normal 1 concordant

13 normal normal normal 1 discordant

14 decreased normal normal 2 concordant

15 normal normal normal 2 discordant

16 decreased normal normal 2 concordant

17 Slightly decreased decreased normal 2 concordant

18 decreased decreased Slightly decreased 3 concordant

19 decreased decreased decreased 3 concordant

20 decreased decreased decreased 3 concordant

21 decreased decreased decreased 3 concordant

https://doi.org/10.1371/journal.pone.0174835.t003
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The JAK-STAT pathway was incriminated in MM chemo-resistance to multiple agents,

including dexamethasone. Indeed, JAK-STAT inhibitors can revert dexamethasone-resistance

in MM cells [13, 15, 17, 42–44]. The involvement of JAK-STAT signaling in drug resistance to

thalidomide or its analogs is not described. Unexpectedly, our results rather suggest that the

inactivation of SHP-1 and SHP-2 genes is associated with a strong response to combined dexa-

methasone/thalidomide induction therapy. Indeed, all the analyses performed showed that the

expression of SHP-1 and SHP-2 genes inversely correlates with the degree of treatment

response. The less SHP-1 and SHP-2 genes were expressed, the better the response to treat-

ment. A favorable response was globally more associated to the inactivation of SHP-1 than to

that of SHP-2. Accordingly, when patients were subdivided according to the International

Myeloma Working Group uniform response criteria into “responders” (complete or very good

partial response), and “non-responders” (partial or no response), only SHP-1 inactivation was

significantly associated to the “responder” status. One explanation for the association of a

favorable response with the inactivation of SHP gene expression could be that therapeutic

agents, particularly thalidomide, act through the inhibition of cytokines such as IL-6 that sus-

tain tumor growth and survival [45]. Patients exhibiting a decreased expression of the regulat-

ing genes could be therefore more susceptible to the growth factor starvation occurring during

treatment. Hence, the level of SHP gene expression could be a predictive factor of a favorable

response to induction therapy. Another hypothesis could be that thalidomide and\or dexa-

methasone may act similarly to other molecules by inducing the transcription of SHP-1/2 in

the malignant plasma cells [46–49]. Subsequently, this could efficiently inhibit the JAK/STAT

pathway and induce apoptosis of tumor cells. In this setting, thalidomide and\or dexametha-

sone would be more effective in patients showing a significant inactivation of SHP gene

expression. This could be of interest to adapt and personalize the available therapies according

to patient profiles.

Overall, our data provide evidence that repression of SHP-1, SHP-2 and SOCS-1 gene

expression in patient plasma cells supports the constitutive activation of the JAK/STAT3 path-

way and probably leads to higher degrees of bone marrow invasion. Interestingly, this aber-

rancy is associated to a better response to thalidomide and dexamethasone induction therapy.

The identification of such subgroups of patients showing greater or lesser responsiveness to

particular anti-cancer therapies could be helpful in the development of more adapted treat-

ment strategy. Whether the gene silencing of SHP-1/2 and SOCS-1 favors the progression from

MGUS to MM remains to be determined. Finally, our work further emphasizes the implication

of SHP-1, SHP-2 and SOCS-1 genes as suppressors of tumor growth in different cancers [37,

50–52].
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