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Abstract

In epidemiological studies, exposures of interest are often measured with uncertainties,

which may be independent or correlated. Independent errors can often be characterized rel-

atively easily while correlated measurement errors have shared and hierarchical compo-

nents that complicate the description of their structure. For some important studies, Monte

Carlo dosimetry systems that provide multiple realizations of exposure estimates have been

used to represent such complex error structures. While the effects of independent measure-

ment errors on parameter estimation and methods to correct these effects have been studied

comprehensively in the epidemiological literature, the literature on the effects of correlated

errors, and associated correction methods is much more sparse. In this paper, we implement

a novel method that calculates corrected confidence intervals based on the approximate

asymptotic distribution of parameter estimates in linear excess relative risk (ERR) models.

These models are widely used in survival analysis, particularly in radiation epidemiology.

Specifically, for the dose effect estimate of interest (increase in relative risk per unit dose), a

mixture distribution consisting of a normal and a lognormal component is applied. This choice

of asymptotic approximation guarantees that corrected confidence intervals will always be

bounded, a result which does not hold under a normal approximation. A simulation study was

conducted to evaluate the proposed method in survival analysis using a realistic ERR model.

We used both simulated Monte Carlo dosimetry systems (MCDS) and actual dose histories

from the Mayak Worker Dosimetry System 2013, a MCDS for plutonium exposures in the

Mayak Worker Cohort. Results show our proposed methods provide much improved cover-

age probabilities for the dose effect parameter, and noticeable improvements for other model

parameters.
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Introduction

Measurement errors are ubiquitous in epidemiological studies, especially for doses arising

from environmental and occupational exposures, which are difficult to assess. These errors

may cause problems in risk estimation and statistical inference, possibly leading to incorrect

conclusions [1]. The most well-known measurement error models are classical and Berkson.

In linear models, classical measurement errors change the mean structure and thus introduce

bias in parameter estimates, while averaging errors only change variances without biasing

parameter estimates. Correction methods for independent measurement errors have been

comprehensively described elsewhere [2], including regression calibration, simulation extrap-

olation (SIMEX), etc. However, when exposure estimates in a cohort are constructed using

complicated physical and biological models, uncertainties in the dosimetry system can become

very complex [3]. In such systems, uncertainties of some parameters in the models may affect

a large group of study participants simultaneously.

In radiation epidemiology, there are a number of important studies for which dosimetrists

have developed Monte Carlo dosimetry systems (MCDS) [4–6] to represent the structure of

uncertainties in dose estimation. Samples from MCDS are given as dose realizations/replica-

tions, which provide both dose estimates and associated uncertainty information, in contrast

to traditional dosimetry systems where only a single point estimate is given. Usually there are

many dose determining parameters that are shared by sets of individuals in MCDS. These

shared parameters are sampled and fixed in each dose replication. Thus, dose replications can

preserve the correlation structure of dose errors. One example is CIDER (Calculation of Indi-

vidual Doses from Environmental Radionuclides) dosimetry system that models exposure of

the thyroid gland to radioactive iodine (131I), used in Hanford Thyroid Disease study [7]. In this

system, shared components with uncertainties included the total release of 131I from the site,

prevailing weather patterns, pasturing practices, biological parameters affecting uptake to the

thyroid gland, etc. To represent these uncertainties, CIDER system provided 100 dose replica-

tions for the entire cohort, where both shared and unshared components affect the correlation

structure of the replications. Other examples include studies of 131I exposure in Kazakhstan [8],

and studies of occupational and residential exposure to radiation from the Mayak plutonium

production plant in the Southern Urals region of Russia. We are particularly motivated by work

on dosimetry for the Techa River Cohort study [9–11] and the Mayak Workers Cohort study

[3, 12]. The dosimetry system for the Mayak Workers Cohort study is used as the basis of our

discussion and the simulation experiments described below.

In order to study the effects of shared uncertainties on epidemiologic risk estimation when a

MCDS is available, Stram and Kopecky [13] proposed the shared and unshared, multiplicative

and additive (SUMA) model to capture some aspects of a complex dosimetry system repre-

sented by Monte Carlo replications. Stram et al. [14] proposed using the mean dose, obtained

by averaging across all replications, in place of the true dose in risk analysis and described a

sandwich estimation technique for correcting the variance calculation of the regression model

parameter estimates. The authors claimed that by using the mean dose, the score estimation

equation has expected value zero at the true parameter values, which keeps the parameter esti-

mator unbiased. With their approach, the authors performed a score-type test for inference in

an example. However, the construction of confidence interval (CI) is not specified and CI’s con-

structed based on the score-type test can be unbounded. Alternatively, Kwon [15] proposed a

Bayesian approach that involves calculating the likelihood for each dose replication and averag-

ing the posterior samples of model parameters fitted to each dose replication weighted by their

associated likelihood values. The authors claimed their approach greatly improved coverage

probability and reduced bias. We note, however, this appears to be in contradiction to previous

Adjusting for shared errors in Monte Carlo dosimetry systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0174641 April 3, 2017 2 / 18

the U.S. DOE Office of Environment, Health, Safety

and Security, the Russian Federal Medical

Biological Agency, and the Russian State Atomic

Energy Corporation (Rosatom). Interested

researchers would need to apply (as the authors

have) for permission to use the data from the U.S.

Department of Energy’s Russian Health Studies

Program. Contact information is provided below.

Barrett N. Fountos, M.S. Program Manager

Russian Health Studies Program U.S. Department

of Energy Office of Environment, Health, Safety and

Security (AU) Office of Domestic and International

Health Studies (AU-13/GTN B-214) 19901

Germantown Road Germantown, MD 20874

Telephone: 301-903-6740.

Funding: This work was conducted as part of the

Joint Coordinating Committee for Radiation Effects

Research, Projects 1.2b, Techa River Population

Cancer Morbidity and Mortality, 2.2, Mayak Worker

Cancer Mortality, and 2.4, Mayak Worker

Dosimetry. It was jointly funded by the U.S.

Department of Energy (U.S. DOE, grant nos. DE-

HS0000091) and the Federal Medical Biological

Agency (FMBA) of the Russian Federation. The

funder provided support in the form of salaries for

authors [ZZ, DLP, MS, BAN, MG, BM, VV, ES, AB,

DOS], but did not have any additional role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. The

specific roles of these authors are articulated in the

‘Author Contributions’ section. Hirosoft

Corporation [DLP and BM] and Global Dosimetry

Limited [AB] also provided support in the form of

salaries but did not have any additional role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: The authors of this

manuscript have the following competing interests.

DLP is sole proprietor of Hirosoft International, a

software and consulting company with a

subcontract with the University of Southern

California to work on the DOE-funded Mayak

Workers and Techa River Cohorts. AB is sole

proprietor of Global Dosimetry a consulting

company with a contract from DOE to assist on the

dosimetry for the Mayak Workers Cohort. This

does not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0174641


conclusions regarding simultaneous estimation of true dose along with the model parameters;

see section 7.1 of [2].

In this paper, we propose a novel approach to approximate the asymptotic distribution of

parameter estimates in Poisson excess relative risk (ERR) models, using an MCDS. We also

show how to construct CI’s based on this approximation, which can equivalently be used for

hypothesis testing. Specifically, for the dose effect parameter, we use a mixture of normal and

lognormal distributions to approximate its distribution, rather than the normal distribution as

commonly used in maximum likelihood theory. The variance of the two components in this

mixture distribution are estimated using techniques as in [14]. Based on this mixture distribu-

tion, we calculate a score-type CI. A simulation study was performed to evaluate the perfor-

mance of our method, compared with other procedures. The simulations used hypothetical

SUMA dosimetry systems with various error settings, and also the Mayak Worker Dosimetry

System 2013 (MWDS-2013), a newly-developed MCDS for the Mayak Worker Cohort [16].

Implementation of the proposed method is provided in R [17], as a package available online

(https://github.com/zhuozhang/Rerr).

Data and methods

Mayak worker cohort and the dosimetry system

The Mayak Production Association (Mayak PA) was established in 1948 as a facility for pluto-

nium production in the former Soviet Union, located in the Southern Urals of Russia [18].

Due to inadequate knowledge of the radioactive materials, the workers in Mayak PA experi-

enced chronic external and internal exposure to radiation through the following decades with

especially high rates during the first decade of operation. The average cumulative external

doses of the cohort, largely from gamma rays, were larger than the average doses received by

Japanese atomic bomb survivors in the Life Span Study [19] and substantially larger than those

received at similar nuclear production sites such as the Hanford facility [3]. Workers in the

radiochemical and plutonium production plants had the potential for internal exposures due

from inhaled plutonium aerosols at, on average, much higher levels than those experienced by

US [20] or UK workers [21] engaged in similar work.

The Mayak Worker Cohort (MWC) was established in the 1980’s by Russian investigators.

Support for the study of this cohort is currently provided by the Russian Ministry of Health

and (through a bi-national cooperative agreement between Russia and the United States) from

the U.S. Department of Energy. As currently defined, the cohort includes 25,757 people who

began work at one of the main plants (reactor complex, radiochemical plant, or plutonium

production plant) or in one of two auxiliary departments (water treatment or mechanical

repair) between 1948 and 1982 [22]. About 25% of the cohort members are women. Estimates

of individual annual occupational external doses to various organs are available for all cohort

members. These estimates were largely based on individual film badge readings augmented

with information about specific workplaces and job titles. Around 17,000 MWC members

who worked in the radiochemical or plutonium production plants had potential for exposure

to plutonium through the inhalation of plutonium-containing aerosols. About 8,000 of these

workers (47%) have been measured for interval plutonium exposure using urine bioassays or

from autopsy data. Doses to the lung, liver, bone surface, and various other organs have been

computed for these monitored workers. Recent analyses have been based on the deterministic

dose estimates provided by the Mayak Worker Dosimetry System 2008 (MWDS-2008) [23].

More recently, a Monte-Carlo dosimetry system has been developed for use in analyses of radi-

ation risk in the MWC. The new system, called the Mayak Worker Dosimetry System 2013

(MWDS-2013), provides 500 realizations of annual external organ doses for each cohort
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member and 1,000 realizations of annual internal dose to various organs for cohort members

with urinalysis or autopsy data.

Compared to other cohorts, the relatively high and protracted doses make the Mayak

Worker Cohort extremely valuable for evaluating scientific hypothesis concerning dose rate

and risk. The quality of death ascertainment, together with the availability of both internal and

external radiation exposures, offers a unique opportunity to evaluate site-specific cancer mor-

tality risks in both males and females under different exposure conditions that relates more

closely to typical nuclear workers. It may also provide better characterization of occupational

radiation risk both internally and externally.

The simulations described below made use of sex, date of birth, follow-up starting date and

average of cumulative annual external dose for a subset of the MWC. This subset included

125,110 person-years of follow-up for 7,873 radiochemical and plutonium plant workers with

plutonium bioassay data and internal dose estimates. As described in the following section,

some of the simulations make use of the MWDS-2013 internal dose realizations for these

workers.

Poisson ERR model

Our methods and simulations are based on Poisson ERR models. These models are widely

used for cancer risk analysis in radiation epidemiology. A reasonably general form for these

ERR models is as follows,

hðtÞ ¼ backgroundðtÞ � 1þ
X

i

biXiðtÞ �modifieriðtÞ
� �

;

backgroundðtÞ ¼ exp a0 þ
X

j

ajCjðtÞ
� �

;

modifieriðtÞ ¼ exp
X

ki

aki
Aki
ðtÞ

� �
;

where h(t) is the hazard function as a function of time variable t, which can be age, or time

since enrollment. The variable Xi(t) represents time dependent exposure, e.g. cumulative inter-

nal or external radiation. The modifieri(t) term allows covariates, represented by Aki
ðtÞ, such

as sex or time-dependent variables like age, to modify the risk associated with each Xi(t). The

background(t) term models the baseline risk applicable to the unexposed, generally as a func-

tion of both fixed covariates and time-dependent variables (e.g. age), notated as Cj(t). We use

time-dependent notations for all covariates without loss of generality, treating fixed variables

as special cases of time-dependent variables.

Holford [24] and Laird and Oliver [25] observed the equivalence of performing survival

analysis based on a piecewise exponential model and the log-linear Poisson model, by showing

their likelihood functions only differ by a known constant factor. This equivalence holds gen-

erally for Poisson regression and survival analysis with other risk models, including the ERR

model (see S1 File). In our simulations, we consider the following piecewise hazard model,

which is only a slight simplification of models used for cancer risk analysis in the Mayak

Workers Cohort,

hi ¼ expða0 þ a1C1;i þ a2C2:i þ a3C3;iÞð1þ b1X1;iexpða4A1;i þ a5A2;iÞ þ b2X2;iÞ: #ð1Þ

Here i indexes person-year (as in the following), and all covariates are described in Table 1.
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Since internal dose estimates are considerably more uncertain than external dose estimates,

here we assume only X1 is associated with measurement errors, with dose replications pro-

vided from a MCDS.

A simplified model for Monte Carlo dosimetry systems

Stram and Kopecky [13] proposed a simplified model to characterize uncertainty components

in a MCDS. This model includes four error components, namely shared and unshared multi-

plicative and additive (SUMA) errors. Let Xi be the true dose, and assume a Berkson error

model, i.e., E(Xi) = Zi, where Zi is the measurement for Xi. Under the SUMA model, the true

dose Xi given the mean dose Zi is represented as

Xi ¼ �SM�M;iZi þ �SA þ �A;i;

where subscript S denotes shared errors, subscript M denotes multiplicative errors, and sub-

script A denotes additive errors, with E(�SM) = E(�M,i) = 1 and E(�SA) = E(�A,i) = 0. While this

model is oversimplified compared to an actual complex dosimetry system, it is useful for theo-

retical analyses of the effect of shared and unshared error in a dosimetry system, and for gener-

ating MCDS in simulations. In our simulations, we also use a slightly extended SUMA model

that includes a partially shared component, i.e., errors that are shared among a subset of the

person-years. The extended model is

Xi ¼ �SM�M;i�P;pðiÞZi þ �SA þ �A;i;

where p(i) is a partition function that puts person-year i into disjoint subsets, and E(�P,p(i)) = 1.

In our simulations, we define the partition p(i) such that p(i) = p(j) whenever i, j are from the

same person, so the error component �P,p(i) is shared on the individual level. In our simula-

tions, we assume the multiplicative errors are lognormally distributed, and the additive errors

are normally distributed.

Corrected confidence intervals and inference

Corrected variance for parameter estimates. In Eq (1), assume we only have access to

Z1 = E(X1), where X1 = [X1,1,X1,2,. . .,X1,n]T, n is the total number of person-years. Let θ = [a0,

a1,a2,a3,b1,a4,a5,b2]T. Following the same idea as in Stram et al. [14], the ERR model is fitted

using Z1 instead of X1. By Fishers Scoring,

by � y � I � 1

Z1
SZ1
:

Here, SZ1
is the score function, and IZ1

is the Fisher information, both computed using Z1.

Since the inverse of the expected information is a constant matrix, we have

VarðbyÞ � I� 1

Z1
VarðSZ1

Þ I � 1

Z1
:

Following the derivation as shown in S1 File, we get

VarðSZ1
Þ ¼ IZ1

þ b2

1
QGCovðX1jZ1ÞGQT

Table 1. Description of variables in the hazard model.

C1 C2 C3 X1 A1 A2 X2

log(age/60) log2(age/60) sex internal dose log(age/60) sex external dose

https://doi.org/10.1371/journal.pone.0174641.t001
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where matrix Q = [Q1,. . .,Qn] with

Qi ¼

1

C1;i

C2;i

C3;i

Z1;iexpða4A1;i þ a5A2;iÞ

1þ b1Z1;iexpða4A1;i þ a5A2;iÞ þ b2X2;i

b1Z1;iA1;iexpða4A1;i þ a5A2;iÞ

1þ b1Z1;iexpða4A1;i þ a5A2;iÞ þ b2X2;i

b1Z1;iA2;iexpða4A1;i þ a5A2;iÞ

1þ b1Z1;iexpða4A1;i þ a5A2;iÞ þ b2X2;i

X2;i

1þ b1Z1;iexpða4A1;i þ a5A2;iÞ þ b2X2;i

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

and G = diag([t1 exp(a0 + a1C1,1 + a2C2,1 + a3C3,1),. . .,tn exp(a0 + a1C1,n + a2C2,n + a3C3,n)])

with ti being the length of time actually spent in person-year i. Let M = QG, we then have

VarðbyÞ ¼ I � 1
Z1
þ b2

1
I � 1

Z1
MCovðX1jZ1ÞMTI � 1

Z1
: ð2Þ

Score-type and Wald-type confidence intervals. Using the corrected variance in Eq (2)

directly in a score-type inference of H0 : b1 ¼ b�
1

leads to the test statistic

ðbb1 � b�
1
Þ

2

ðI � 1
Z1
þ ðb�

1
Þ

2I � 1
Z1

MCovðX1jZ1ÞMTI � 1
Z1
Þb1;b1

: ð3Þ

where we use the subscript b1,b1 to index the element of the corrected variance matrix associ-

ated with b1. We term this test as a “score-type” test because the variance of the estimate used

in the denominator of the test depends on the null value (specific value of b�
1

in H0) being

tested. Note however that M and I � 1
Z1

are evaluated at by.

Note also that as b�
1

approaches ±1, this statistic asymptotes to 1=ðI � 1
Z1

MCovðX1jZ1Þ

MTI� 1
Z1
Þb1 ;b1

, which can sometimes fall below the critical value. Under these situations, the

score-type test-based confidence intervals will include both positive and negative infinity,

which is undesirable for dose effect assessment.

Stram et al. [14] used the corrected variance to calculate a 95% Wald-type confidence inter-

val which, when applied to our models, translates to

bb1 � za

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI � 1
Z1
þ ðbb1Þ

2I � 1
Z1

MCovðX1jZ1ÞMTI � 1
Z1
Þb1 ;b1

q

: ð4Þ

This is termed a Wald-type confidence interval because the variance term used is a constant

once the parameters have been estimated, and does not depend on the null value b�
1

in H0.

While this Wald-type confidence interval does not have the extreme-value problem, it ignores

the fact that the variance of the estimator is greatly affected by the effect size b1, which can lead

to inadequate and unbalanced confidence interval coverage.

Inference distributions for parameter estimates. Our proposed method is based on the

results of a simple theorem stated below.

#

#

#
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Theorem 1 Consider the SUMA model Xi = Zi�SM�M,i + �SA + �A,i, 1� i� n, where all �’s

are independent with Eð�SMÞ ¼ Eð�MiÞ ¼ 1; Eð�SAÞ ¼ Eð�AiÞ ¼ 0; Varð�MiÞ ¼ s2
M; Varð�AiÞ ¼

s2
A, Xi is the unobserved true dose, Zi = E(Xi) is known, and n is the number of subjects, and

the simple linear regression model Yi = a + bXi + �i, where �i’s are independent with E(�i) = 0,

Var(�i) = σ2, and �Mi,�Ai,�i are mutually independent. The MLE slope estimator bbn with the

model fitted using Zi’s has the following properties

1. When s2
M ¼ 0;EðZ2

i Þ <1 and max1�i�nZi¼po n1
2

� �
, we have

bbn!db�SM þ N;

where N is a random variable with distribution

N � Gaussian 0;
s2 þ s2

A

n VarðZ Þ

� �

; N ? �SM:

2. When s2
M > 0;EðZ4

i Þ <1 and max1�i�nZ2
i ¼po n1

2

� �
, we have

bbn!db�SMN 0 þ N;

where N0,N are random variables with distributions

N 0 � Gaussian 1;
EðZ2ðZ � EZÞ2Þ

n VarðZ Þ2
s2

M

 !

; N � Gaussian 0;
s2 þ s2

A

n VarðZ Þ

� �

;

respectively, and �SM,N0,N are independent.

Proof. See supplementary material provided (S1 File).

The theorem says that the distribution of the slope estimator under a linear model is greatly

influenced by the distribution of the shared error �SM. When all multiplicative errors are

strictly positive, it can be seen from the proof that we can replace N0 with a truncated normal

random variable that is strictly positive. In such case, we can easily show that the 1-α confi-

dence intervals are always bounded, noting that the probability of b�SMN0 + N being less than bb
approaches 0 as b increases. We note that the theorem, although proved only for the simple lin-

ear regression model, naturally extends to a general linear dose effect model, such as the model

in Eq (1).

Dealing with the exact distribution of bb is difficult since it involves the multiplication of two

random variables and a summation, and not necessary since a real MCDS will deviate from

the ideal SUMA model which this exact distribution is based on. For practical purposes, we

suggest approximating the distribution of bb as bL+N where L is a lognormal random variable

with E(L) = 1, and N a normal random variable with E(N) = 0. A lognormal distribution is

very natural for the shared multiplicative error. In a complex dosimetry system, there can be

many different shared (almost always multiplicative) error components, so that on the log

scale, from the central limit theorem, an approximate normal distribution can be assumed for

an overall combined shared error, as represented by �SM.

We use this bL+N mixture distribution as the inference distribution of bb1 in Eq (1). It fol-

lows that Varðbb1Þ ¼ b2
1
VarðLÞ þ VarðN Þ. Comparing it with Eq (2), we let

Adjusting for shared errors in Monte Carlo dosimetry systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0174641 April 3, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0174641


VarðLÞ ¼ ðI � 1
Z1

M CovðX1jZ1ÞMTI � 1
Z1
Þb1;b1

; VarðN Þ ¼ ðI � 1
Z1
Þb1 ;b1

: ð5Þ

For the other parameters, denoted as a, including a0 to a5 and b2, that are associated with

known covariates, we base our inference on a normal distribution rather than the mixture one.

The rationale is, when there is only shared multiplicative error on dose, measured dose is just a

rescaled version of true dose. Thus, the likelihood function would be the same as if there is no

error on dose if we rescale the parameter associated with dose while leaving all other parame-

ters unchanged. This suggests shared multiplicative error will have little influence on these

parameters. Meanwhile, the theorem above indicates that unshared error introduces random

normal components to the estimator. Thus, we propose to use a standard normal approxima-

tion, ba ¼ aþ N for inference about all parameters except the dose effect. For these parameters,

the variance of N still needs to be corrected and is different from what we get from inverse

information matrix when b1 > 0. From Eq (2), we let

VarðN Þ ¼ ðI � 1
Z1
Þa;a þ

bb2
1
ðI � 1

Z1
M CovðX1jZ1ÞMTI� 1

Z1
Þa;a: ð6Þ

In the following, we refer to our proposed inference method shown in Eqs (5) and (6) as bL
+N, though for parameters other than b1, we are only using a normal distribution.

Corrected confidence intervals construction. Using the inference distributions deter-

mined above, for the dose effect b1, we can calculate the probability of obtaining an estimate equal

to or more extreme than the observed value bb1 under H0 : b1 ¼ b�
1
, which is 2�min ðPðb�

1
Lþ

N � bb1Þ; Pðb�
1
Lþ N � bb1ÞÞ. It follows that the lower and upper confidence limits b1,l,b1,u can

be found for a two-sided α-level confidence intervals, satisfying

Pðb1;lLþ N � bb1Þ ¼ a=2; Pðb1;uLþ N � bb1Þ ¼ a=2:

For other parameter estimates, again denoted as a, the confidence limits are calculated as

ba � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI � 1
Z1
Þa;a þ

bb2
1
ðI � 1

Z1
M CovðX1jZ1ÞMTI � 1

Z1
Þa;a

q

Efficient calculation of the corrected variance. In the Mayak Worker Cohort, there are

as many as 25,575 individuals with up to 60 years of follow-up to date. The full-cohort analyses

described below are based on person-year data with roughly 350,000 individual person-year

dose contributions. In this case Cov(X1|Z1) has more than 60 billion distinct values and direct

computation of or even storing this matrix in computer memory can be challenging. However,

to compute the corrected variance of the parameter estimates, we do not need to calculate Cov

(X1|Z1) directly. Let X1 be a matrix with each column a single dose replication of X1. Assume

X1 is of dimension n × k, and M is of dimension p × n. The p × p matrix of primary interest

MCov(X1|Z1)MT can be estimated as the sample covariance matrix of the more manageable

intermediate n × k matrix W = M X1. To see this, observe that

#

#
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Cov Wð Þ ¼
1

n � 1
WTW �

1

n
WT11TW

� �

¼
1

n � 1
MX1X

T
1
MT �

1

n
MX111TXT

1
MT

� �

¼ M
1

n � 1
X1X

T
1
�

1

n
X111TX1

� �

MT

¼ M dCovðX1jZ1ÞMT

The time complexity of calculating this product is reduced to Θ(pnk + p2k) from Θ(n2k +

p2n2), which is a significant improvement when n is dominantly large.

Inference for the null model. Under the null hypotheses H0: b1 = 0, the dose modifying

effects of age and sex, i.e. a4, a5 are no longer identifiable. To be able to make proper tests

about H0, we perform the score test with a4 = a5 = 0 fixed in Eq (1), i.e. a reduced model below,

hi ¼ expða0 þ a1C1;i þ a2C2:i þ a3C3;iÞð1þ b1X1;i þ b2X2;iÞ: ð7Þ

We choose the score test over the Wald test because the latter requires convergence of the

model fitting procedure, which is often not possible under H0.

Simulations

We use Eq (1) as the ERR model for all our simulations. This model is a simplification of mod-

els used in analyses of lung cancer risks in the MWC [26].

Dose simulation. For the simulation studies, five dosimetry systems are considered.

These include four SUMA dosimetry systems with only multiplicative errors. For each of the

SUMA dosimetry systems, we used the average cumulative annual internal dose from MWDS-

2013 as the mean dose Z1. The SUMA dosimetry systems used in the simulations have error

components as listed in Table 2, where s2
SM ¼ Varð� SMÞ; s

2
M ¼ Varð�M;iÞ; s

2
P ¼ Varð�P;pðiÞÞ.

For each of the SUMA dosimetry systems, we generated 1,000 dose replications. We also

used the actual MWDS-2013, in which case a total of 1,000 dose replications were generated by

the dosimetrists and provided to us. As in Kwon et al. [15], for each simulation experiment,

one of the realizations was used to generate the outcome survival data. The remaining 999 rep-

lications were used to obtain the mean doses used in model fitting, and to calculate MCov(X1|

Z1)MT used for the adjusted confidence intervals. The simulation is repeated for each dose rep-

lication, chosen as the true dose for generating the outcome. The particular values of the vari-

ance components given in the table were chosen as similar in value to shared and unshared

error estimates for the Hanford Thyroid Disease Study CIDER dosimetry obtained by Stram

and Kopecky [27].

Table 2. Simulation settings for the SUMA dosimetry system.

Dosimetry system True dose (X1,i) σ2
SM σ2

M σ2
P

DS-S �SMZ1,i 0.318 0 0

DS-U �M,iZ1,i 0 0.223 0

DS-SU �SM�M,iZ1,i 0.318 0.223 0

DS-SUP �SM�M,i�P,p(i)Z1,i 0.318 0.223 0.200

https://doi.org/10.1371/journal.pone.0174641.t002

#
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For external dose, we used the average cumulative annual external dose in MWDS-2013 as

the true dose for all simulations. For the other covariates, i.e. sex and age, we used the data

from MWC directly.

Survival data simulation. For each participant in the MWC, we generated an event time

following a piecewise exponential distribution specified by Eq (1). Here the assumed hazard

function is constant throughout each person-year. This event time was compared to the actual

end of follow-up for this MWC member. If the generated event time was less than the end of

follow-up, the participant was treated as a case at the generated failure time, otherwise the par-

ticipant was right-censored at their end of follow-up. Since last follow-up time is pre-defined

from the MWC data, this is non-informative censoring and will not introduce bias to our anal-

ysis. To use Poisson regression for this survival data, we tabulated the generated follow-up

time, event indicator, and covariate information for each person-year of follow-up (approxi-

mately 125,000 total in any given simulation).

We considered three models defined in terms of the baseline rate (a0) and internal dose

effect (b1) for men at age 60 as described in Table 3. For the moderate and strong models, we

used all 5 dosimetry systems. For the null model, we used MWDS-2013 only. The other param-

eters in the model were taken as in Table 4. Here sex is coded with female being 1, and male

being 0. We evaluate the moderate and strong models for each of the five dosimetry systems

described above.

Estimation and inference. With Z1, the average dose of the 999 dose replications that are

not used for generating the outcome, we used Fisher’s scoring to obtain parameter estimates by

and the information IZ1
. We calculated 4 types of confidence intervals (CI) for the dose response

parameter of interest b1. Naïve CI’s are the usual Wald CI’s using the variance estimated without

correction for measurement error. The other three CI’s all use the corrected variance given in

Eq (2). As described above, Eq (4) was used for Wald-type CI’s, Eq (3) was used for score-type

CI’s, and Eq (5) was used for the bL+N CI’s. For parameters other than b1, we used only the

Wald-type confidence intervals.

In Eq (2), Matrix M was calculated based on by. We used the same 999 dose replications to

calculate MCov(X1|Z1)MT. Confidence intervals are constructed as described previously. Over-

all coverage is calculated as the percentage of the confidence intervals covering the true value

in all 1,000 simulations with each dosimetry system. In describing the results, we focused on

the coverage of 95% confidence intervals.

We also used the true dose X1 in the above simulations for model fitting, hypothesis testing,

and confidence interval construction, for comparison purposes.

Table 3. Simulation settings for a0 and b1.

Model Baseline rate (100,000×exp(a0)) (cases per 100,000 person years) b1/Gy Expected cases Expected dose-associated cases

Null 100,000×exp(-5.0) = 673.8 0 �800 0

Moderate 100,000×exp(-6.5) = 150.3 3.6 �300 �100

Strong 100,000×exp(-5.0) = 673.8 3.6 �1,200 �400

https://doi.org/10.1371/journal.pone.0174641.t003

Table 4. Simulation settings for parameters other than a0 and b1.

Baseline rates Internal dose effect modifiers External Dose

Risk factor log(age/60) log2(age/60) sex log(age/60) sex

Parameter a1 a2 a3 a4 a5 b2 /Gy

Value 5.64 -6.39 log(0.5) -3.15 1.33 0.21

https://doi.org/10.1371/journal.pone.0174641.t004
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Results

Moderate and strong ERR model

Coverage of confidence intervals. Overall coverage of the various 95% CI’s for b1 for

both the moderate and strong models and the 5 different dosimetry systems is given in

Table 5. When there is only unshared error (DS-U), in the moderate model, there is almost no

difference in coverage between the naïve CI and the corrected CI’s, all being around 0.95. In

the strong model, the coverage for all CI’s is decreased to around 0.91 and there are only very

small differences among them. In the presence of shared error (DS-S, DS-SU, DS-SUP), the

coverage of the naïve CI is poor, ranging from 0.436 to 0.703 for the two models, compared to

the desired value of 0.95. The coverage of all the corrected CI’s is much better, while there is a

noticeable difference in performance among the three correction methods. The coverage of

the Wald-type CI’s is around 0.88, and the CI’s are biased towards the null; the lower limits are

below the true values in all simulations, and the upper limits are below the true value in around

11% of all simulations. The score-type CI’s have better coverage. However, the coverage is

around 0.97, slightly higher than the desired value of 0.95. The upper limits of the score-type

CI’s are almost always above the true values in all simulations. We also notice there is one sim-

ulation using the moderate model with DS-SUP, where the asymptote of the test statistic is

below the critical value, giving an unbounded CI. The coverage of the bL+N confidence inter-

vals are very close to 0.95. However, the coverage is slightly asymmetric, especially for

DS-SUP; when the confidence interval fails to include the true value, it is more likely to be

above the upper limit than below the lower limit.

In all 4 SUMA dosimetry systems (DS-U, DS-S, DS-SU, DS-SUP), the correction has virtu-

ally no effect on CI coverage for parameters other than b1 (S1 Table), and nearly all are close to

0.95. Coverage of naïve CI’s using the true dose X1 instead of Z1 for model fitting are given in

the supplementary materials (S2 Table).

With MWDS-2013 (Table 5), the coverage of naïve CI is poor, being only 0.624 for the

strong model and 0.830 for the moderate model. The Wald-type CI has coverage 0.894. Again,

the Wald CI is biased towards the null, with the same pattern as seen using the SUMA

Table 5. Confidence interval coverage of different methods for b1 in moderate and strong model.

Dosimetry system ERR model Confidence intervals

Corrected Naïve

Wald-type Score-type bL+N

DS-U Moderate .947 (.053, .000)† .949 (.050, .001) .949 (.050, .001) .945 (.054, .001)

Strong .910 (.087, .003) .918 (.079, .003) .918 (.079, .003) .906 (.091, .003)

DS-S Moderate .860 (.140, .000) .975 (.002, .023) .943 (.039, .018) .663 (.254, .083)

Strong .898 (.102, .000) .960 (.000, .040) .947 (.027, .026) .436 (.358, .206)

DS-SU Moderate .885 (.115, .000) .972 (.001, .027) .941 (.040, .019) .677 (.251, .072)

Strong .882 (.118, .000) .973 (.000, .027) .957 (.025, .018) .448 (.401, .151)

DS-SUP Moderate‡ .892 (.108, .000) .985 (.000, .015) .956 (.034, .010) .703 (.230, .067)

Strong .870 (.130, .000) .982 (.000, .018) .951 (.037, .012) .467 (.383, .150)

MWDS-2013 Moderate .894 (.106, .000) .964 (.029, .007) .933 (.061, .006) .830 (.151, .019)

Strong .894 (.106, .000) .960 (.032, .008) .936 (.060, .004) .624 (.300, .076)

The coverage of confidence intervals for internal dose effect b1 using different methods in moderate and strong ERR models is given, with 5 dosimetry

systems.

† Overall coverage (fraction of times the upper bound is below the true value, fraction of times the lower bound is greater than the true value).

‡ Simulation #662 was excluded because score-type confidence interval included ±1.

https://doi.org/10.1371/journal.pone.0174641.t005
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dosimetry systems. The coverage of score-type CI’s is around 0.96 and the coverage of bL+N
CI’s is around 0.93. Both the score-type method and the bL+N method have asymmetric CI’s;

the lower limits of both methods are a little conservative while bL+N has slightly inadequate

upper limits.

Overall coverage of the 95% CI’s for the parameters other than b1 when using the MWDS-

2013 dosimetry system is given in Table 6. The coverage of corrected CI’s for these parameters

is around 0.95 while naïve CI’s have inadequate coverage for b2 in both the moderate and

strong models and for almost all parameters in the strong model.

Bias of bb1. Means and standard deviations of bb1 are given in Table 7 for the moderate and

strong models. For the strong model, there is a statistically significant bias towards the null in

the slope estimates except when there are only shared errors (i.e. model DS-S). With the

SUMA dosimetry systems, we also see that the standard deviation of bb1 is much larger when

shared errors are present (DS-S, DS-SU, DS-SUP), reflecting the effect of shared error as

described in Theorem 1.

The null model

Under the null ERR model b1 = 0, the performance of the score test is given in Table 8. There

is very little effect of measurement error on the performance of the score test. The score test is

a little unbalanced, with less than desired rejections on the negative end, especially in the mod-

erate model. This unbalance is seen in the score test using either Z1 or X1.

Table 6. Confidence interval coverage for model parameters with MWDS-2013 in moderate and strong models.

Parameter Naïve Confidence Interval Corrected Confidence Interval

Moderate Strong Moderate Strong

a0 .943 (.015, .042)† .906 (.028, .066) .956 (.011, .033) .946 (.017, .037)

a1 .954 (.032, .014) .924 (.050, .026) .956 (.031, .013) .937 (.044, .019)

a2 .966 (.014, .020) .961 (.020, .019) .967 (.013, .020) .965 (.017, .018)

a3 .936 (.019, .045) .917 (.016, .067) .944 (.012, .044) .941 (.010, .049)

a4 .946 (.034, .020) .916 (.061, .023) .959 (.024, .017) .958 (.033, .009)

a5 .945 (.040, .015) .914 (.072, .014) .957 (.033, .010) .941 (.050, .009)

b2 .914 (.076, .010) .876 (.079, .045) .942 (.054, .004) .964 (.021, .015)

The coverage of confidence intervals (CI) for model parameters other than dose effect b1 are given. Naïve CI and bL+N CI were used for both moderate and

strong ERR models with MWDS-2013.

† Overall coverage (fraction of times the upper bound is below the true value, fraction of times the lower bound is greater than the true value).

https://doi.org/10.1371/journal.pone.0174641.t006

Table 7. Mean, standard deviation and p-value for bb1.

Dosimetry System Moderate Strong

b1 p b1 p

DS-U 3.65 (0.97) 0.094 3.43 (0.50) <10−4

DS-S 3.77 (2.19) 0.013 3.58 (1.77) 0.717

DS-SU 3.62 (1.98) 0.802 3.39 (1.66) <10−4

DS-SUP 3.43 (1.89) 0.004 3.11 (1.4) <10−4

MWDS-2013 3.61 (1.48) 0.813 3.33 (0.99) <10−4

Means of b1 estimates are given for moderate and strong model in 5 dosimetry systems. Standard

deviations of the estimates and the p-values of the t-test of H0: b1 = 3.6 (true value) are given.

https://doi.org/10.1371/journal.pone.0174641.t007

Adjusting for shared errors in Monte Carlo dosimetry systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0174641 April 3, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0174641.t006
https://doi.org/10.1371/journal.pone.0174641.t007
https://doi.org/10.1371/journal.pone.0174641


Discussion

We evaluated the performance of the various confidence intervals (Wald-type, score-type, bL
+N and naïve) in simulation experiments using several dosimetry systems, including the actual

Mayak Workers Dosimetry System 2013 (MWDS-2013), with results given in Table 5 and

Table 6. Overall, using our proposed methods, we saw marked improvement in the coverage

of 95 percent CI’s for the dose-response parameter (b1) associated with the variable X1, that is

affected by measurement error. For example, with the internal dose replications from MWDS-

2013 in the strong model (about 1,200 cancer cases, 400 of which were due to exposure), the

95% bL+N corrected CI’s included the true value of the dose response parameter 93.6 percent

of the time, in contrast to just 62.4 percent of the uncorrected CI’s. In experiments with simpli-

fications of this system (the various SUMA dosimetry systems) we saw even larger improve-

ments. Compared to our bL+N method, the corrected Wald-type CI’s performed worse in all

our simulations, improving coverage only to around 0.89. This clearly is due to ignoring the

dependence of the corrected variance on the parameter being estimated (b1), leading to conser-

vative lower limits and inadequate (overly liberal) upper limits. In the SUMA dosimetry sys-

tems, the upper limits of score-type CI’s are overly conservative, rarely going below the true

value. This suggests that the normal distribution, which score-type CI’s are based on, does not

model the distribution of the estimator properly in these situations. However, this is not

reflected when MWDS-2013 is used, where score-type CI’s have somewhat better upper limits

compared to bL+N. A typical comparison between the score-type CI and the bL+N CI in one

of the simulations using the moderate model with MWDS-2013 is shown in Fig 1. Overall,

compared to score-type CI’s, the proposed bL+N CI’s have superior performance when used

with simplified dosimetry systems, and provide very comparable result when MWDS-2013 is

used, while eliminating the possibility of finding CI’s that include ±1.

We note, for bL+N CI’s, even though overall coverage was excellent, the CI’s for the risk

parameter b1 in the ERR model were unbalanced; they tended to be conservative on the low

end, and were overly liberal on the high end. This may be due to the dependence of the informa-

tion matrix and matrix M on the parameter estimates, an aspect we ignored in our variance cal-

culation, as both are only evaluated at by. We observed that, with or without dosimetry error, the

standard error of the dose response parameter b1 in an ERR model appears to increase with b1.

An example is given in Fig 2 from one simulation where we see essentially a linear increase in

the uncorrected variance of bb1. Interestingly the correction term ðI � 1
Z1

MCovðX1jZ1ÞMTI � 1
Z1
Þb1 ;b1

decreases with b1, countering somewhat the increase in total variance of this parameter’s esti-

mate (b2
1

multiplied by the correction term). S2 Table shows that, even when there are no dose

errors, the standard Wald test confidence intervals for the two dose response parameters, b1 and

b2, have unbalanced coverage similar in pattern to what is seen in Table 5 and Table 6. We

Table 8. Score test of H0: b1 = 0 for the null model with MWDS-2013.

Internal dose‡ Moderate Model Strong Model

Z1 (with error) .967 (.008, .025)† .954 (.021, .025)

X1 (without error) .970 (.006, .024) .958 (.013, .029)

Result of score test for the null ERR model is given. The score test was performed on the reduced model,

given in Eq (7).

† Fraction of times H0 is not rejected (fraction of times the test statistic is significantly negative, fraction of

times the test statistic is significantly positive).

‡ Interval dose used for model fitting, score and information calculation under H0: b1 = 0.

https://doi.org/10.1371/journal.pone.0174641.t008
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therefore attribute at least part of the imbalance in our corrected confidence intervals to be due

to the structure of the risk model, rather than the measurement errors. Most likely this is due to

ignoring the dependence of the information matrix on the parameters being estimated. A full

treatment of this issue is deferred for later work since we note that treating the information

matrix and the matrix M as a function of b1 would add considerable computational burden to

our approach.

Fig 1. Comparison of naïve CI, score-type CI and bL+N CI. Confidence intervals (CI’s) in one simulation

with the moderate model with MWDS-2013 are shown. In the plot, the p-values of b1 at different points are

evaluated using the distributions underlying each method and transformed into χ2 test statistics.

https://doi.org/10.1371/journal.pone.0174641.g001

Fig 2. Variance components of b1 vs. b1. Subfigure (a) shows the change of
ffiffiffiffiffiffiffiffiffi
I� 1
b1 ;b1

q
; the naïve standard error of b1, with respect to b1. Subfigure (b) shows

the change of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI� 1
Z1
MCovðX1jZ1ÞMTI� 1

Z1
Þb1 ;b1

q
with respect to b1. In our current method, both are fixed, with values calculated at by.

https://doi.org/10.1371/journal.pone.0174641.g002
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We noticed that the bL+N confidence intervals clearly outperformed the score-type confi-

dence intervals (especially on the upper side) whenever there was shared error in the SUMA

dosimetry systems (lines in Table 5 corresponding to DS-S, DS-SU, DS-SUP) however this was

not seen for the MWDS-2013 system. This may partly be because the variance of the shared

errors in MWDS-2013 are not as large as those simulated in the SUMA dosimetry systems (we

infer this because the naïve CI’s performed better under the MWDS-2013). In addition, the

underlying assumption of the bL+N approximation is that the shared errors are lognormally

distributed. This holds exactly for the SUMA systems used, but may not necessarily apply to

the MWDS-2013. Indeed, some preliminary work not yet shown seems to indicate that the

shared component of error in this dosimetry system may be less skewed than would be a log-

normal with the same mean and variance. Additional work on incorporating a more flexible

model for the distribution of the shared error components that can be empirically tuned to the

realizations from a given system, may be warranted.

The biases in parameter estimates that we saw for the strong model in Table 7 is likely due

to the dilution effect, described by Prentice [28] in his discussion of survival analysis in the

presence of random covariate errors. The attenuation in the risk estimate occurs because

highly exposed individuals are more likely to have an early event, implying that the distribu-

tion of true dose given estimated dose has a lower mean value in the later time periods than in

the earlier time periods. Since the dosimetry system does not use information from the

response this results in a biased estimate of the slope parameter bb1. In the strong model about

5 percent of all individuals (*400/7873) die because of exposure, whereas in the moderate

model this is reduced to about 1.25 percent, and the dilution bias diminishes accordingly. The

dilution effect is not dependent upon the size of the shared errors. Rather, it reflects random

unshared errors; the dosimetry system with the greatest dilution (DS-SUP) has the most ran-

dom error and the one with only shared error (DS-S) does not show a dilution effect. The latter

follows because for DS-S everyone at a given estimated dose level has the same (unknown)

true dose, so that the distribution of true dose given estimated dose is not dependent on time.

In many studies exposure-associated cases arise in only a very small fraction of the total num-

ber of individuals considered. For example, in the A-bomb study the excess number of radia-

tion-associated solid tumor cases over 40 years of follow-up (1958–1998) was estimated to be

only about 2 percent of the exposed members of the cohort (http://www.rerf.jp/radefx/late_e/

cancrisk.html). Our moderate model, which does not show significant dilution effects, is

designed to give an excess number of cases which is very close to the actual Mayak analysis

(about 100 cases).

When b1 = 0, the corrected variance is the same as the uncorrected variance, so that the

naïve score test is still valid once the dose modifier variables are dropped from the model since

they are not identifiable if b1 = 0. We only considered the score test since the other tests depend

on model convergence which is not obtainable in a large fraction of the simulations when no

dose effect exists.

Our approach uses mean dose from the dosimetry system to fit the ERR model and then

corrects the confidence limits of the parameters. That is, we do not use the Monte Carlo reali-

zations themselves to fit the model, only to correct the confidence limits of the fitted parame-

ters. Other methods have been proposed for the problem of shared dosimetry error in

epidemiological studies [8, 15]. Kwon et al. [15] fit the risk model to each realization in turn

and then resample realizations with weights dependent on the likelihood of each fit. Contrary

to our results, they found that use of the mean doses from the dosimetry system provided very

poor estimates of the risk parameter, even for nearly linear dose response (they used a model

with linear dose response on the odds scale). In some of our simulations the risk estimates
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were biased towards the null, due most likely to the dilution effect. The bias is modest or absent

for our more realistic moderate model. Even for the strong model the biases in the risk esti-

mate were not great enough to disturb the overall coverage of the corrected CI’s. The simula-

tions conducted by Kwon et al. did not simulate survival times, rather only a binary event, so

that the dilution cannot explain their findings; we do not yet understand why they should have

seen this effect.

Conclusions

We proposed using a mixture distribution of lognormal and normal components, referred to

as bL+N, to approximate the distribution of dose effect estimates in a generalized ERR model,

which can be used for the construction of hypothesis tests and confidence intervals. These CI’s

are improved over Wald-type CI’s since they (appropriately) allow the variance of the parame-

ter estimates to change with dose effect b1. Moreover, these mixture-corrected CI’s, unlike

score-type corrected CI’s, will never include ±1.

To date all the studies we are familiar with, that use Monte-Carlo dosimetry systems, are in

radiation epidemiology. We believe, however, that the proposed method as described and

implemented here will have important applications in other areas of epidemiological study

that may benefit from the use of Monte Carlo dosimetry systems. Dose calculation for air pol-

lution studies, to give one example, is an additional area where shared errors are a prominent

feature of the dosimetry system. This paper can be used as guidance for incorporating multiple

realizations into dose response estimation and inference in a modeling framework that allows

for considerable flexibility in dose response estimation.

An R package has been implemented to facilitate further research and applications (https://

github.com/zhuozhang/Rerr). For future work, we will consider allowing ERR models with

more than one error prone covariate such as the external dose in MWDS-2013. This would, as

a special case, allow for error correction of confidence intervals for linear quadratic dose

response ERR models, which are also commonly used in radiation epidemiology.

Supporting information

S1 File. Derivations and proofs. This file shows 1) the equivalence of survival analysis with

piecewise exponential hazard function and tabulated Poisson regression, 2) derivation of Eq

(2), and 3) proof of Theorem 1.

(DOCX)

S1 Table. Confidence interval coverage for all model parameters with SUMA dosimetry

systems. The coverage of confidence intervals for all parameters in Eq (1) using different

methods in moderate and strong ERR models is given, with DS-U, DS-S, DS-SU, DS-SUP.

(DOCX)

S2 Table. Confidence interval coverage for model parameters fitted with true dose. The

coverage of confidence intervals for all parameters in Eq (1) is given. The model was fitted

using the true internal dose X1 in both moderate and strong ERR models with 5 dosimetry sys-

tems.

(DOCX)

Acknowledgments

We acknowledge the valuable support and assistance of Barrett Fountos, Program Manager,

U.S. DOE’s Office of Domestic and International Health Studies (AU-13).

Adjusting for shared errors in Monte Carlo dosimetry systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0174641 April 3, 2017 16 / 18

https://github.com/zhuozhang/Rerr
https://github.com/zhuozhang/Rerr
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174641.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174641.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174641.s003
https://doi.org/10.1371/journal.pone.0174641


Author Contributions

Conceptualization: DLP MS BAN AB DOS.

Data curation: VV.

Formal analysis: ZZ DOS.

Funding acquisition: DOS.

Methodology: ZZ DLP DOS.

Resources: MS BAN MD VV ES AB.

Software: ZZ DLP BM DOS.

Supervision: DOS.

Writing – original draft: ZZ DOS.

Writing – review & editing: ZZ DLP DOS.

References
1. Thomas D, Stram D, Dwyer J. Exposure measurement error: influence on exposure-disease. Relation-

ships and methods of correction. Annu Rev Public Health. 1993; 14: 69–93. https://doi.org/10.1146/

annurev.pu.14.050193.000441 PMID: 8323607

2. Carroll RJ, Carroll RJ. Measurement error in nonlinear models: a modern perspective. CRC press;

2006.

3. Vasilenko EK, Khokhryakov VF, Miller SC, Fix JJ, Eckerman K, Choe DO, et al. Mayak worker dosime-

try study: an overview. Health Phys. 2007; 93: 190–206. https://doi.org/10.1097/01.HP.0000266071.

43137.0e PMID: 17693770

4. Andreo P. Monte Carlo techniques in medical radiation physics. Physics in medicine and biology. 1991;

36: 861. PMID: 1886926

5. Kopecky KJ, Davis S, Hamilton TE, Saporito MS, Onstad LE. Estimation of thyroid radiation doses for

the Hanford Thyroid Disease Study: results and implications for statistical power of the epidemiological

analyses. Health physics. 2004; 87: 15–32. PMID: 15194919

6. Simon SL, Hoffman FO, Hofer E. The two-dimensional Monte Carlo: a new methodologic paradigm for

dose reconstruction for epidemiological studies. Radiation research. 2014; 183: 27–41. https://doi.org/

10.1667/RR13729.1 PMID: 25496314

7. Davis S, Kopecky KJ, Hamilton TE. Hanford Thyroid Disease Study: Final Report: Fred Hutchinson

Cancer Research Center; 2002.

8. Land CE, Kwon D, Hoffman FO, Moroz B, Drozdovitch V, Bouville A, et al. Accounting for shared and

unshared dosimetric uncertainties in the dose response for ultrasound-detected thyroid nodules after

exposure to radioactive fallout. Radiat Res. 2015; 183: 159–173. https://doi.org/10.1667/RR13794.1

PMID: 25574587

9. Akleyev A, Kisselyov M, Zhidkova K, Akleyeva K. Medical-biological and ecological impacts of radioac-

tive contamination of the Techa River: Chelyabinsk; 2002.

10. Degteva MO, Vorobiova MI, Tolstykh EI, Shagina NB, Shishkina EA, Anspaugh LR, et al. Development

of an improved dose reconstruction system for the Techa River population affected by the operation of

the Mayak Production Association. Radiat Res. 2006; 166: 255–270. https://doi.org/10.1667/RR3438.1

PMID: 16808612

11. Krestinina LY, Davis F, Ostroumova E, Epifanova S, Degteva M, Preston D, et al. Solid cancer inci-

dence and low-dose-rate radiation exposures in the Techa River cohort: 1956 2002. Int J Epidemiol.

2007; 36: 1038–1046. https://doi.org/10.1093/ije/dym121 PMID: 17768163

12. Sokolnikov ME, Gilbert ES, Preston DL, Ron E, Shilnikova NS, Khokhryakov VV, et al. Lung, liver and

bone cancer mortality in Mayak workers. Int J Cancer. 2008; 123: 905–911. https://doi.org/10.1002/ijc.

23581 PMID: 18528867

13. Stram DO, Kopecky KJ. Power and uncertainty analysis of epidemiological studies of radiation-related

disease risk in which dose estimates are based on a complex dosimetry system: some observations.

Radiat Res. 2003; 160: 408–417. PMID: 12968933

Adjusting for shared errors in Monte Carlo dosimetry systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0174641 April 3, 2017 17 / 18

https://doi.org/10.1146/annurev.pu.14.050193.000441
https://doi.org/10.1146/annurev.pu.14.050193.000441
http://www.ncbi.nlm.nih.gov/pubmed/8323607
https://doi.org/10.1097/01.HP.0000266071.43137.0e
https://doi.org/10.1097/01.HP.0000266071.43137.0e
http://www.ncbi.nlm.nih.gov/pubmed/17693770
http://www.ncbi.nlm.nih.gov/pubmed/1886926
http://www.ncbi.nlm.nih.gov/pubmed/15194919
https://doi.org/10.1667/RR13729.1
https://doi.org/10.1667/RR13729.1
http://www.ncbi.nlm.nih.gov/pubmed/25496314
https://doi.org/10.1667/RR13794.1
http://www.ncbi.nlm.nih.gov/pubmed/25574587
https://doi.org/10.1667/RR3438.1
http://www.ncbi.nlm.nih.gov/pubmed/16808612
https://doi.org/10.1093/ije/dym121
http://www.ncbi.nlm.nih.gov/pubmed/17768163
https://doi.org/10.1002/ijc.23581
https://doi.org/10.1002/ijc.23581
http://www.ncbi.nlm.nih.gov/pubmed/18528867
http://www.ncbi.nlm.nih.gov/pubmed/12968933
https://doi.org/10.1371/journal.pone.0174641


14. Stram DO, Preston DL, Sokolnikov M, Napier B, Kopecky KJ, Boice J, et al. Shared dosimetry error in

epidemiological dose-response analyses. PLOS ONE. 2015; 10: e0119418. https://doi.org/10.1371/

journal.pone.0119418 PMID: 25799311

15. Kwon D, Hoffman FO, Moroz BE, Simon SL. Bayesian dose-response analysis for epidemiological

studies with complex uncertainty in dose estimation. Stat Med. 2016; 35: 399–423. https://doi.org/10.

1002/sim.6635 PMID: 26365692

16. Napier BA. Joint US/Russian Studies of Population Exposures Resulting from Nuclear Production Activ-

ities in the Southern Urals. Health physics. 2014; 106: 294–304. https://doi.org/10.1097/HP.

0000000000000033 PMID: 24378505

17. Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Com-

puting, Vienna, Austria. 2013. ISBN 3-900051-07-0; 2014.

18. Koshurnikova NA, Shilnikova NS, Okatenko PV, Kreslov VV, Bolotnikova MG, Sokolnikov ME, et al.

Characteristics of the cohort of workers at the Mayak nuclear complex. Radiat Res. 1999; 152: 352–

363. PMID: 10477912

19. Cullings HM, Fujita S, Funamoto S, Grant EJ, Kerr GD, Preston DL. Dose estimation for atomic bomb

survivor studies: its evolution and present status. Radiat Res. 2006; 166: 219–254. https://doi.org/10.

1667/RR3546.1 PMID: 16808610

20. Voelz GL, Lawrence JN, Johnson ER. Fifty years of plutonium exposure to the Manhattan Project pluto-

nium workers: an update. Health Phys. 1997; 73: 611–619. PMID: 9314220

21. Riddell AE, Battersby WP, Peace MS, Strong R. The assessment of organ doses from plutonium for an

epidemiological study of the Sellafield workforce. J Radiol Prot. 2000; 20: 275–286. PMID: 11008932

22. Sokolnikov M, Preston D, Gilbert E, Schonfeld S, Koshurnikova N. Radiation effects on mortality from

solid cancers other than lung, liver, and bone cancer in the Mayak worker cohort: 1948–2008. PLoS

One. 2015; 10: e0117784. https://doi.org/10.1371/journal.pone.0117784 PMID: 25719381

23. Khokhryakov VV, Khokhryakov VF, Suslova KG, Vostrotin VV, Vvedensky VE, Sokolova AB, et al.

Mayak Worker Dosimetry System 2008 (MWDS-2008): assessment of internal dose from measurement

results of plutonium activity in urine. Health Phys. 2013; 104: 366–378. https://doi.org/10.1097/HP.

0b013e31827dbf60 PMID: 23439140

24. Holford TR. The analysis of rates and of survivorship using log-linear models. Biometrics. 1980; 36:

299–305. PMID: 7407317

25. Laird N, Olivier D. Covariance analysis of censored survival data using log-linear analysis techniques.

Journal of the American Statistical Association. 1981; 76: 231–240.

26. Gilbert ES, Sokolnikov ME, Preston DL, Schonfeld SJ, Schadilov AE, Vasilenko EK, et al. Lung cancer

risks from plutonium: an updated analysis of data from the Mayak worker cohort. Radiat Res. 2013;

179: 332–342. https://doi.org/10.1667/RR3054.1 PMID: 23391147

27. Stram DO, Kopecky KJ. Power and Uncertainty Analysis of Epidemiological Studies of Radiation-

related Disease Risk where Dose Estimates are Based Upon a Complex Dosimetry System; Some

Observations. Radiation Research. 2003; 160: 408–417. PMID: 12968933

28. Prentice R. Covariate measurement errors and parameter estimation in a failure time regression model.

Biometrika. 1982; 69: 331–342.

Adjusting for shared errors in Monte Carlo dosimetry systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0174641 April 3, 2017 18 / 18

https://doi.org/10.1371/journal.pone.0119418
https://doi.org/10.1371/journal.pone.0119418
http://www.ncbi.nlm.nih.gov/pubmed/25799311
https://doi.org/10.1002/sim.6635
https://doi.org/10.1002/sim.6635
http://www.ncbi.nlm.nih.gov/pubmed/26365692
https://doi.org/10.1097/HP.0000000000000033
https://doi.org/10.1097/HP.0000000000000033
http://www.ncbi.nlm.nih.gov/pubmed/24378505
http://www.ncbi.nlm.nih.gov/pubmed/10477912
https://doi.org/10.1667/RR3546.1
https://doi.org/10.1667/RR3546.1
http://www.ncbi.nlm.nih.gov/pubmed/16808610
http://www.ncbi.nlm.nih.gov/pubmed/9314220
http://www.ncbi.nlm.nih.gov/pubmed/11008932
https://doi.org/10.1371/journal.pone.0117784
http://www.ncbi.nlm.nih.gov/pubmed/25719381
https://doi.org/10.1097/HP.0b013e31827dbf60
https://doi.org/10.1097/HP.0b013e31827dbf60
http://www.ncbi.nlm.nih.gov/pubmed/23439140
http://www.ncbi.nlm.nih.gov/pubmed/7407317
https://doi.org/10.1667/RR3054.1
http://www.ncbi.nlm.nih.gov/pubmed/23391147
http://www.ncbi.nlm.nih.gov/pubmed/12968933
https://doi.org/10.1371/journal.pone.0174641

