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Abstract

Mutations in the HBB gene are responsible for several serious hemoglobinopathies, such as

sickle cell anemia and β-thalassemia. Sickle cell anemia is one of the most common mono-

genic diseases worldwide. Due to its prevalence, diverse strategies have been developed

for a better understanding of its molecular mechanisms. In silico analysis has been increas-

ingly used to investigate the genotype-phenotype relationship of many diseases, and the

sequences of healthy individuals deposited in the 1,000 Genomes database appear to be

an excellent tool for such analysis. The objective of this study is to analyze the variations in

the HBB gene in the 1,000 Genomes database, to describe the mutation frequencies in the

different population groups, and to investigate the pattern of pathogenicity. The computa-

tional tool SNPEFF was used to align the data from 2,504 samples of the 1,000 Genomes

database with the HG19 genome reference. The pathogenicity of each amino acid change

was investigated using the databases CLINVAR, dbSNP and HbVar and five different predic-

tors. Twenty different mutations were found in 209 healthy individuals. The African group had

the highest number of individuals with mutations, and the European group had the lowest

number. Thus, it is concluded that approximately 8.3% of phenotypically healthy individuals

from the 1,000 Genomes database have some mutation in the HBB gene. The frequency of

mutated genes was estimated at 0.042, so that the expected frequency of being homozygous

or compound heterozygous for these variants in the next generation is approximately 0.002.

In total, 193 subjects had a non-synonymous mutation, which 186 (7.4%) have a deleterious

mutation. Considering that the 1,000 Genomes database is representative of the world’s pop-

ulation, it can be estimated that fourteen out of every 10,000 individuals in the world will have

a hemoglobinopathy in the next generation.

1. Introduction

Understanding the relationship between phenotype and genotype in the clinical setting is one

of the main objectives of traditional research [1]. However, studies on a large number of muta-

tions are problematic, primarily due to the experimental analyses. In contrast, in silico analysis
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is faster and easier to execute, yields more results, and costs less, thus making it more efficient.

This type of analysis is based on alterations in the sequences of nucleotides and/or amino acids

and their comparison with the native sequence to correlate the effect of these alterations on the

phenotype of the individual [1,2,3,4].

Mutations in the HBB gene, which is located on chromosome 11 p15.5 [5], are responsible for

several serious hemoglobinopathies, such as sickle cell anemia and β-thalassemia. Hemoglobin-

opathies are a set of hereditary diseases caused by the abnormal structure or insufficient produc-

tion of hemoglobin. Sickle cell anemia and β-thalassemia can lead to serious anemia and other

life threatening conditions [6]. Sickle cell anemia is one of the most common monogenic diseases

worldwide. It is estimated that 312,000 people are born with sickle cell anemia every year, and the

majority of these individuals are native to Sub-Saharan Africa [7]. Thus, it is important for the

public healthcare system to detect heterozygous carriers of hemoglobinopathies, as they can pro-

duce homozygous and double heterozygous individuals with serious clinical conditions [8].

The 1,000 Genomes Project is an international consortium organized with the objective of

sequencing a large number of individual genomes representative of the world’s population.

The consortium has the objective of better characterizing the sequence variation of the human

genome and enabling the investigation of the relationship between genotype and phenotype.

Thus, the 1,000 Genomes Project enables a more precise study of variants in genome-wide

association studies (GWAS) and the best localization of variants associated with diseases in dif-

ferent population groups [9].

The objective of this study is to track variations in the β-globin gene (HBB); to describe the

frequencies of mutations in different population groups using the 1,000 Genomes databank,

which provides a comprehensive resource of human genetic variation [9] relative to the HG19

reference genome [10]; and to investigate the pattern of resulting pathogenicity.

2. Methodology

To perform this study, data from 2,504 samples deposited in the 1,000 Genomes database were

used; these open-access sequences were aligned with the HG19 reference genome using the

SNPEFF tool [11]. This program provides and records the effects both of genetic variations as

well as amino acid alterations. The resulting data were visualized in the Integrative Genomics

Viewer (IGV) [12], a high-performance visualization tool for the interactive exploration of

genomic datasets. The mutations were tracked at the nucleotide and amino acid levels, and the

population frequencies with which these mutations occur, the type of mutation, and the respec-

tive positions were recorded.

To investigate pathogenicity these mutations, five different prediction tools, including POLY-

PHEN [13], SIFT [14], PROVEAN [15], PANTHER [16], and E MUTPRED [17], and three

databanks, including CLINVAR [18], dbSNP [19] and HbVar [20], were used, as shown in Fig 1.

Each predictor uses distinct characteristics to determine the effect of the mutations in rela-

tion to the information obtained regarding the structure and function of the protein. It is

important to highlight that the results of all predictors provide additional evidence of pathoge-

nicity; thus, five predictors were analyzed to improve accuracy. The determination of the path-

ogenicity of each mutation is based on four pieces of evidence: (i) CLINVAR, (ii) dbSNP, (iii)

HbVar, and (iv) predictors.

Tables 1, 2 and 3 present the following results of the alignment of sequences from 2,504

samples: (1) the positions in the genome; (2) the identification of the single nucleotide poly-

morphism (SNP) of each mutation; (3) the types of mutations; (4) the mutations observed at

the nucleotide level; (5) the respective consequences at the amino acid level; (6) the population

frequency of each mutation; and (7) the pathogenicity investigated for each mutation.

Mutations in the HBB gene in 1,000 genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0174637 April 5, 2017 2 / 9

supported by CNPq/Produtividade (CNPQ 304413/

2015-1); SIDNEY SANTOS supported by CNPq/

Produtividade (CNPq 305258/2013-3). The funders

had no role in the study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0174637


3. Results

A total of 20 different mutations were identified in 209 individuals (8.34%) in the coding

region of the HBB gene. The variants observed were classified as follows: (i) four synonymous

mutations; (ii) seven missense mutations; (iii) four stop-gain mutations; (iv) one frameshift

mutation; (v) one splice region and missense variant; (vi) one splice region and synonymous

variant; (vii) one splice acceptor and intron variant; and (viii) one splice donor and intron var-

iant. Missense mutations were the most frequently encountered, affecting 174 (83.2%) individ-

uals, as shown in Table 1. All observed mutations were heterozygous and already had SNP IDs.

The mutations with the highest allelic frequencies were as follows: (i) rs334 had total fre-

quency of 0.0274 (African and American populations); (ii) rs33930165 had a frequency of

0.0034 (only in the African population); and (iii) rs33950507 had a frequency of 0.0028 (East-

ern and Southern Asian populations), as shown in Table 2.

Synonymous mutations were encountered in 16 (7.6%) samples and were excluded from

the investigation of pathogenicity performed by the database predictors because they do not

alter the amino acid sequence.

Thus, the pathogenicity of missense, stop-gain, frameshift, splice region (both acceptor and

donors), synonymous and intron mutations were tracked using the dbSNP, CLINVAR and

Fig 1. Alignment of the 1000 Genomes and HG19 sequences of HBB using the SNPEFF tool; predictors and BD used for the investigation of

pathogenic mutations.

https://doi.org/10.1371/journal.pone.0174637.g001

Mutations in the HBB gene in 1,000 genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0174637 April 5, 2017 3 / 9

https://doi.org/10.1371/journal.pone.0174637.g001
https://doi.org/10.1371/journal.pone.0174637


HbVar databases, as well as five in silico predictors (POLYPHEN, SIFT, PROVEAN, PAN-

THER and MUTPRED). The results showed 11 pathogenic mutations of HBB (Table 3). In

addition, five mutations—(1) rs111645889, (2) rs33946267, (3) rs33958637 (4) rs35578002 and

(5) rs33912272—presented conflicting results between predictors and databases.

4. Discussion

Mutations in the HBB gene are distributed unevenly among the different population groups.

The African population was the most affected, with 73.2% of individuals having mutations in

this gene, while the European population was least affected, with 4.3% of individuals having

such mutations.

The three mutations with the greatest frequency were (1) rs334 (AFR and AMR); (2)

rs33930165 (AFR); and (3) rs33950507 (EAS and SAS). The rs334 mutation is responsible for

hemoglobin S, known as HbS, which causes sickle cell anemia. The rs33930165 mutation is

responsible for hemoglobin C, or HbC [41], which is more frequent in the African population

[42,43]. In addition, the rs3395057 mutation is responsible for hemoglobin E, or HbE [41],

which is involved in β-thalassemia described in Asian populations [44].

The available data show that variants rs33986703, rs63750783, and rs281864900 are respon-

sible for β-thalassemia and are described in Asian populations [45,46,39]. Variants rs11549407

and rs33971634 are also β-thalassemia mutations but are common in European populations

[47,24]; rs33971440 and rs35578002 are commonly found in populations of the Mediterranean

region [48,49,34].

Although the HBB gene is well studied, there are some mutations in this gene that are not

well known and poorly described in the literature. This is the case of the variants rs111645889,

Table 1. Position and SNP ID of the mutations observed at the nucleotide level, the respective consequences at the amino acid level, the types of

mutations, and the number of individuals.

Position SNP ID Nucleotide change AA alteration Type of mutation N˚ Individuals Ref.

5246840 rs36020563 G/A His144His Synonymous 1 [21]

5246870 rs113082294 C/G Val134Val Synonymous 9 [22]

5246883 rs111645889 G/A Ala130Val Missense 1 [23]

5246890 rs33971634 G/A Gln128 Stop gained 1 [24]

5246908 rs33946267 C/G Glu122Gln Missense 3 [25]

5246947 rs33958637 T/G Asn109His Missense 1 [26]

5246948 rs193922562 G/A Gly108Gly Synonymous 1 [27]

5247876 rs145669504 G/T Leu82Leu Synonymous 5 [28]

5247992–5247996 rs281864900 CAAAG/C Phe42fs Frameshift 5 [29]

5248004 rs11549407 G/A Gln40 Stop gained 1 [30]

5248029 rs1135071 C/A Arg31Ser Splice region and missense 1 [31]

5248030 rs33943001 C/G # Splice acceptor and intron variant 1 [32]

5248159 rs33971440 C/T # Splice donor and intron variant 1 [33]

5248162 rs35578002 G/T Glu30Gly Splice region and synonymous variant 1 [34]

5248173 rs33950507 C/T Glu27Lys Missense 14 [35]

5248200 rs33986703 T/A Lys18 Stop gained 6 [36]

5248205 rs63750783 C/T Trp16 Stop gained 2 [37]

5248232 rs334 T/A Glu7Val Missense 137 [38]

5248233 rs33930165 C/T Glu7Lys Missense 17 [39]

5248236 rs33912272 G/A Pro6Ser Missense 1 [40]

#—Intronic variant mutations

https://doi.org/10.1371/journal.pone.0174637.t001
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rs33958637, rs1135071, rs33943001 and rs33912272, for which no scientific papers were found

discussing their epidemiology.

CLINVAR [18] is one of the most widely used databases in clinical and pathological analy-

ses related to mutations. However, not all mutations of the HBB gene (rs35578002) are regis-

tered in this database, and conflicting results have been observed when comparing predictors

with the CLINVAR, dbSNP and HbVar databases to estimate the pathogenicity of each muta-

tion, or more specifically, the clinical significance of mutations rs111645889, rs33946267,

rs33958637, rs35578002 and rs33912272.

It is important to emphasize that all samples deposited in the 1,000 Genomes Project, an

international consortium aimed at producing a public catalog of human genetic variability,

belong to individuals without clinical manifestations of any disease.

The SNP rs35578002 is not available in CLINVAR and has no information on clinical sig-

nificance in the dbSNP database. Predictors consider this variant as benign, but the HbVar

database classifies it as a damaging mutation. This variant is the β-thalassemia mutation Cd29

(C> T), which in homozygosis causes hemolytic anemia and ineffective erythropoiesis [34].

This mutation was described in Mediterranean populations. One possible explanation for the

inconsistent information about the clinical significance of this variant is that it is a synony-

mous mutation in the splice region that is critical for RNA processing, causing thalassemia as

described in HbVar. Also noteworthy is the mutation rs33946267. According to the literature,

this mutation leads to the formation of Hb D-Punjab. This mutation is generally asymptomatic

but may occasionally cause moderate hemolytic anemia, similar to the manifestations of sickle

Table 2. SNP ID, nucleotide and Amino Acid changes, number of individuals and population frequency of each mutation.

SNP ID Nucleotide

change

Amino Acid

change

Total

individuals

N˚/ Freq

AFR

N˚/ Freq

AMR

N˚/ Freq

EAS

N˚/Freq

EUR

N˚/ Freq

SAS

Total Allele

Frequency

rs36020563 G/A His144His 1 1 (0.0008) 0 0 0 0 0.00019

rs113082294 C/G Val134Val 9 0 2 (0.0029) 0 7 (0.007) 0 0.00179

rs111645889 G/A Ala130Val 1 1 (0.0008) 0 0 0 0 0.00019

rs33971634 G/A Gln128 1 0 1 (0.0014) 0 0 0 0.00019

rs33946267 C/G Glu122Gln 3 0 0 0 0 3 (0.0031) 0.00059

rs33958637 T/G Asn109His 1 0 0 1 (0.001) 0 0 0.00019

rs193922562 G/A Gly108Gly 1 1 (0.0008) 0 0 0 0 0.00019

rs145669504 G/T Leu82Leu 5 0 0 5 (0.005) 0 0 0.00099

rs281864900 CAAAG/C Phe42fs 5 0 0 5 (0.005) 0 0 0.00099

rs11549407 G/A Gln40 1 0 1 (0.0014) 0 0 0 0.00019

rs1135071 C/A Arg31Ser 1 0 0 0 1 (0.001) 0 0.00019

rs33943001 C/G # 1 0 0 0 0 1 (0.001) 0.00019

rs33971440 C/T # 1 0 1 (0.0014) 0 0 0 0.00019

rs35578002 G/T Glu30Gly 1 1 (0.0008) 0 0 0 0 0.00019

rs33950507 C/T Glu27Lys 14 0 0 8 (0.0079) 0 6 (0.0061) 0.00279

rs33986703 T/A Lys18 6 0 0 6 (0.006) 0 0 0.00119

rs63750783 C/T Trp16 2 0 0 0 0 2 (0.002) 0.00039

rs334 T/A Glu7Val 137 132

(0.0072)

5 (0.0998) 0 0 0 0.02735

rs33930165 C/T Glu7Lys 17 17

(0.0129)

0 0 0 0 0.00339

rs33912272 G/A Pro6Ser 1 0 0 0 1 (0.001) 0 0.00019

AFR: African.; AMR: American; EAS: Eastern Asian; EUR: European; SAS: Southern Asian.

https://doi.org/10.1371/journal.pone.0174637.t002
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cell anemia when associated with other hemoglobin variants, such as HbS or β-thalassemia

mutations. Its initial distribution suggests that it is more prevalent in the central region of

Asia, but due to migration, it can be found in several other regions [50].

According to the results, 8.3% of the phenotypically healthy individuals of the 1,000

Genomes database have a mutation in the HBB gene in heterozygosis. This means that

eighty out of 1,000 individuals have a mutant allele in the gene. The frequency of mutated

genes was estimated at 0.042, so that the expected frequency of being homozygous or com-

pound heterozygous for these variants in the next generation is approximately 0.002. In

total, 193 subjects had a non-synonymous mutation, meaning that approximately 7.7%

had a change that affects the sequence of amino acids. Of these, 186 (7.4%) have a deleteri-

ous mutation based on available data on the clinical significance of these mutations

(Table 3). Considering that the 1,000 Genomes database is representative of the world’s

population, it can be estimated that fourteen out of every 10,000 individuals in the world

will have a hemoglobinopathy in the next generation.

Independently, new studies are needed to validate the clinical consequences of the muta-

tions with undefined pathogenicity. Considering the absence of physiopathological knowledge

relative to the newly identified mutations, the use of in silico predictors (in an orderly and cri-

teria-based manner) emerges as a possible tool to aid in decision-making with respect to diag-

nostic, preventative, and treatment measures.
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Moi P, Thein SL, Galanello R, Gonçalo R Abecasis GR, Schlessinger D, Sanna S, Cucca F. Genome-

wide association analyses based on whole-genome sequencing in Sardinia provide insights into regula-

tion of hemoglobin levels. Nature genetics. 2015; 47: 1264–1271. https://doi.org/10.1038/ng.3307

PMID: 26366553

48. Sirdah MM, Sievertsen J, Al-Yazji MS, Tarazi IS, Al-Haddad RM, Horstmann RD, Timmann C. The

spectrum of β-thalassemia in Gaza strip, Palestine. Blood Cells, Molecules and Diseases. 2013; 50:

247–251. https://doi.org/10.1016/j.bcmd.2012.12.004 PMID: 23321370

49. Chassanidis C, Boutou E, Voskaridou E, Balassopoulou A. Development of a high-resolution melting

approach for scanning beta globin gene point mutations in the Greek and other Mediterranean popula-

tions.PLos ONE. 2016; 11: e0157393. https://doi.org/10.1371/journal.pone.0157393 PMID: 27351925

50. Torres LS, Okumura JV, Silva DGH, Bonini-Domingos CR. Hemoglobin D-Punjab: origin, distribution

and laboratiry diagnosis. Rev Bras Hematol Hemoter. 2015; 37: 120–126. https://doi.org/10.1016/j.

bjhh.2015.02.007 PMID: 25818823

Mutations in the HBB gene in 1,000 genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0174637 April 5, 2017 9 / 9

http://www.ncbi.nlm.nih.gov/pubmed/6280057
http://www.ncbi.nlm.nih.gov/pubmed/3828533
http://www.ncbi.nlm.nih.gov/pubmed/6198908
http://www.ncbi.nlm.nih.gov/pubmed/88735
http://www.ncbi.nlm.nih.gov/pubmed/5509617
http://www.ncbi.nlm.nih.gov/pubmed/6129204
http://www.ncbi.nlm.nih.gov/pubmed/7852088
https://doi.org/10.4269/ajtmh.13-0572
http://www.ncbi.nlm.nih.gov/pubmed/24957539
https://doi.org/10.1371/journal.pone.0034565
http://www.ncbi.nlm.nih.gov/pubmed/22506028
http://www.ncbi.nlm.nih.gov/pubmed/88735
https://doi.org/10.1089/gtmb.2011.0035
http://www.ncbi.nlm.nih.gov/pubmed/21978377
https://doi.org/10.1038/ng.3307
http://www.ncbi.nlm.nih.gov/pubmed/26366553
https://doi.org/10.1016/j.bcmd.2012.12.004
http://www.ncbi.nlm.nih.gov/pubmed/23321370
https://doi.org/10.1371/journal.pone.0157393
http://www.ncbi.nlm.nih.gov/pubmed/27351925
https://doi.org/10.1016/j.bjhh.2015.02.007
https://doi.org/10.1016/j.bjhh.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25818823
https://doi.org/10.1371/journal.pone.0174637

