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Abstract

Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of sig-

naling genes in plants and are associated with metabolic regulation, nutrient utilization and

stress responses. This gene family has been proposed to be involved in sucrose signaling.

In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat

on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and

encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s.

Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified

polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed

and mapped between the markers D-1092101 and D-100014232 using a set of recombinant

inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were trans-

formed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-

4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity

was found for TaSnRK2.10-4D. An association analysis using a natural population consist-

ing of 128 winter wheat varieties in multiple environments showed that the thousand grain

weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of

Hap-4A-L, but pant height (PH) was significantly lower.

Introduction

Wheat (Triticum aestivum L.) is one of the most important food crops worldwide, and obtain-

ing higher yields is one of the primary objectives for wheat improvement. A large number of

quantitative trait loci (QTLs) have been reported to control grain yield and yield components

[1–7]. Recently, several yield-related genes have been cloned and transformed into functional

markers (FMs), such as TaGW2 [8], TaSus2 [9], TaCwi-A1 [10], and TaGS1a [11] etc. The

FMs derived from polymorphic sites in genes are important for marker-assisted selection

(MAS) in breeding programs [12].

Sucrose non-fermenting 1-related protein kinases (SnRKs) form a major family of signaling

proteins in plants and include three gene subfamilies, SnRK1, SnRK2 and SnRK3 [13]. SnRK1
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genes play an important role in the regulation of carbon metabolism and energy status [14–15],

and SnRK3 genes encode CBL-interacting protein kinases, which specifically interact with calci-

neurin B-like proteins (CBLs) [16]. The SnRK2 genes represent a group of plant-specific protein

kinases that have been shown to be involved in abiotic stress signal transduction, nutrient utiliza-

tion and growth in plants [17]. Ten members of the SnRK2 gene family have been identified [15].

In wheat, SnRK2s are involved in the response to abiotic stress and have potential functions

in carbohydrate and energy metabolism [18]. PKABA1 was the first gene of the SnRK2 family

cloned in wheat and is induced by abscisic acid (ABA) and hyperosmotic stress [19–20]. Overex-

pression of TaSnRK2.4 in Arabidopsis resulted in increased tolerance to osmotic stress, delayed

seedling establishment, longer primary roots, and higher yields under both normal and stress

conditions [21]. Functional analysis showed that TaSnRK2.7 is involved in carbohydrate metab-

olism as well as decreasing osmotic potential, enhancing photosystem II activity, and promoting

root growth [18]. TaSnRK2.8 may participate in ABA-dependent signal transduction pathways,

and overexpression of this gene results in enhanced tolerance to abiotic stress. Additionally,

TaSnRK2.8 transgenic plants show significantly lower levels of total soluble sugar under normal

growing conditions, which suggests that this gene might be involved in carbohydrate metabo-

lism [22]. Two other members of the SnRK2s found in wheat, TaSnRK2.3 and W55a, also play

important roles in the response to abiotic stress and plant growth [7, 23].

The objectives of this study were to isolate the full-length cDNA and gDNA sequences of

TaSnRK2.10 in wheat, to develop and map the functional markers, and to conduct an associa-

tion analysis between TaSnRK2.10 haplotypes and agronomic traits using a natural population

of 128 varieties.

Materials and methods

Plant materials

Plant materials in this study came from four groups: 1) ten winter wheat varieties, including

Chinese Spring, Jinan 17, Jining 17, Lumai 21, Lumai 23, Shannong 0431, Shannong 8355,

Weimai 8, Xiaoyan 81, and Yannong 15, were used for the isolation of TaSnRK2.10 DNA

sequences and for haplotype analysis. This material was highly polymorphic and was selected

from each subgroup of the 128 natural populations of varieties (NPVs) analysed using 91 SSR

and 47 functional markers; 2) a set of Chinese Spring nullisomic-tetrasomic lines (CS-N/Ts)

was used for determining the special chromosomes of TaSnRK2.10; 3) a set of 179 recombinant

inbred lines (RILs) derived from ‘Shannong 0431 × Lumai 21’ was employed for linkage

analysis. Shannong 0431 is a germplasm developed by our group with a large grain size and

multi-disease resistance (wheat stripe rust, leaf rust, powdery mildew and sharp eyespot),

Lumai 21 is a cultivar released by the Yantai Academy of Agricultural Science of China in

1996 and has a high yield and high drought resistance; and 4) a natural population of varieties

(NPVs) was employed to validate the functional markers and analyze the relationships be-

tween TaSnRK2.10 haplotypes and agronomic traits. The population consisted of 128 winter

wheat varieties released in the Huang-huai Winter Wheat Region and the Northern Winter

Wheat Region of China.

DNA and RNA extraction and first-strand reverse transcription of cDNA

After sterilization for 5 min in a 10% solution of H2O2 and washing three times with sterilized

water, wheat seeds were germinated and cultured in a growth chamber (20±1˚C with 12 h

light, 12 h dark cycle). Ten days later, wheat leaves were sampled for the isolation of gDNA

and total RNA. The gDNA was extracted from lyophilized mixed leaves using the CTAB

method [24]. The RNA was extracted using TRIzol reagent (Invitrogen Co., Ltd., Shanghai,
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China), and the first-strand synthesis was performed using M-MLV transcriptase (Invitrogen

Co., Ltd., Shanghai, China) according to the manufacturer’s instructions.

Cloning, sequence analysis and development of genome-specific

primers

To obtain the sequence of TaSnRK2.10, the cDNA sequence of SAPK10 from rice (GenBank ID:

AB125311) was used as a query sequence to screen the GenBank wheat EST database. All candi-

date ESTs showing high similarity to SAPK10 cDNA were obtained through BLASTN searches

(http://www.ncbi.nlm.nih.gov) and assembled into a putative TaSnRK2.10 cDNA sequence

using the CAP3 Sequence Assembly Program (http://doua.prabi.fr/software/cap3). The func-

tional region and activity sites were identified with PROSITE (http://prosite.expasy.org/). The

primer pairs for TaSnRK2.10-1F/R and TaSnRK2.10-2F/R (Table 1) were designed based on the

putative sequence using Primer Premier Version 5.0 software (http://www.premierbiosoft.com/

) and were used for isolating the cDNA and gDNA sequences of TaSnRK2.10. The genome-spe-

cific primer pairs for TaSnRK2.10-3-4AF/R, TaSnRK2.10-3-4BF/R and TaSnRK2.10-3-4DF/R
(Table 1) were designed based on DNA sequence variations among the genomic sequences to

identify homoeologs as well as specific alleles at individual loci.

PCR assays were performed using LA Taq polymerase (TaKaRa Biotechnology Co., Ltd.,

Dalian, China) in a 20 μL reaction mixture containing 80 ng of gDNA or cDNA, 5 pM of

TaSnRK2.10-1F/R or TaSnRK2.10-2F/R, 200 μM of each dNTP, 1 unit of LA Taq and 2 μL of

10× PCR buffer. A touchdown PCR procedure was employed as follows: initial denaturation at

95˚C for 5 min, followed by 10 amplification cycles of 35 s at 95˚C, 35 s at 63˚C with a decrease

of 0.5˚C per cycle and 2 min at 72˚C, followed by 30 amplification cycles of 30 s at 95˚C, 45 s

at 59˚C and 2 min at 72˚C, and a final extension step at 72˚C for 10 min. The PCR products

were separated on 1.0% agrose gels, and the target bands were recovered with the TIANgel

Midi Purification kit (TianGen Biotech Co., Ltd., Beijing, China) and cloned into the pEA-

SY-T1 simple vector (TransGen Biotech Co., Ltd., Beijing, China) before being transformed

into competent E. coli DH5α cells via the heat shock method. Positive clones were selected for

sequencing by Sangon Biotechnology Co. Ltd. (Shanghai, China). Using the software DNA-

MAN (http://www.lynnon.com/), the positions of exons and introns in the TaSnRK2.10 gene

Table 1. Primers used in this study.

Primer set Primer sequence (5’-3’) Amplified target Size (bp)

TaSnRK2.10–1 Forward: GCTTGCTCGGTTGCTTTGC TaSnRK2.10cDNA 1339, 1342,and 1284

Reverse: CATCCAAAAGGCCAAACCGT

TaSnRK2.10–2 Forward: GTCAAGTACATCGAGCGAGGG TaSnRK2.10gDNA 2127 or 2130, 2052 and 2076

Reverse: GTCGGCGTCTGAATCAAGGT

TaSnRK2.10-3-4A Forward: CTTCATTCGCAACCAAAATCTACG A genome-specific 1109 or1106

Reverse: GAACTGGTTGATCCGAGAACCG

TaSnRK2.10-3-4B Forward: GCTTGCTTCACTGTCGCAG B genome-specific 688

Reverse: GCAGAGTCTAGCAGTACCGTT

TaSnRK2.10-3-4D Forward: CCATGACGTTCTCCGTTCCC D genome-specific 1296

Reverse: GCACACTCAATATCCTCTGGC

TaSnRK2.10-4A-CAPS Forward: CTTCATTCGCAACCAAAATCTACG 1109 or 1106

Reverse: GAACTGGTTGATCCGAGAACCG

TaSnRK2.10-4B-AS1 Forward: GCTTGCTTCACTGTCGCAGG 688

Reverse: GCAGAGTCTAGCAGTACCGTT

TaSnRK2.10-4B-AS2 Forward: GCTTGCTTCACTGTCGCAGA 688

Reverse: GCAGAGTCTAGCAGTACCGTT

https://doi.org/10.1371/journal.pone.0174425.t001
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were determined by aligning the amplified gDNA and the corresponding cDNA sequences.

The sequence alignment and similarity to other species were determined using the NCBI data-

base. A phylogenetic tree was constructed based on the full-length amino acid sequences of

SnRK2s using the protein sequences aligned by MAFFT7 [25]. The maximum-likelihood phy-

logenetic tree was reconstructed using MEGA5 [26], and the phylogenetic support for each

split was evaluated with 500 bootstrap replicates.

Development and location of functional markers

We analysed the sequence of the coding region for gene TaSnRK2.10 in the ten winter wheat

varieties and found two haplotypes for TaSnRK2.10-4A and TaSnRK2.10-4B, respectively.

Using the Primer Premier 5.0 software, the polymorphic site for distinguishing the haplotypes

of the TaSnRK2.10 gene were transformed into a cleaved amplified polymorphism sequence

(CAPS) and allele-specific PCR (AS-PCR) markers [27] for TaSnRK2.10-4A-CAPS and

TaSnRK2.10-4B-AS1/AS2 (Table 1), respectively. The primer pairs were used to amplify the

genome-specific TaSnRK2.10 allele of CS-N/Ts, RILs and NPVs through PCR. PCR was per-

formed using the following program: 95˚C for 5 min, followed by 30 cycles of 95˚C for 30 s,

60˚C for 30 s, and 72˚C for 1 min, and then a final extension of 72˚C for 10 min. The PCR

products for the CAPS marker were digested with SalI (TaKaRa Biotechnology Co., Ltd.,

Dalian, China) according to the manufacturer’s directions. All segments were separated on

1.0% agarose gels with EB. For location of the functional markers a genetic map of RILs was

used which was constructed using SSR markers and DArT array of Wheat PstI (TaqI) 2.6 and

Wheat GBS 1.0 (Triticarte Pty. Ltd, Canberra, Australia) (Unpublished data).

Measurements of agronomic traits and association analysis

The phenotypes of the natural population of 128 wheat varieties were evaluated in field trials in

three environments: Tai’an 2011 (TA11), Tai’an 2012 (TA12) and Yan’tai 2012 (YT12), in Shan-

dong Province, China. Tai’an is part of the Huang-Huai Winter Wheat Region and Yantai is

part of the Northern Winter Wheat Region of China. Each plot consisted of 3 rows that were 1.5

m long and spaced 25 cm apart; 70 seeds were planted in each row with two replicates. Plant

height (PH), grain number per spike (GNS), spike length per plant (SL), sterile spikelet number

per spike (SSS), fertile spikelet number per spike (FSS) and total spikelet number per spike (TSS)

were determined from 10 random spikes for each line in each replicate at the grain-filling stage.

The fertile spikelet number per spike (FSS) was calculated as TSS minus SSS. A 50 cm uniformed

row was chosen to measure the spike number per plant (SN). The thousand grain weight

(TGW) was evaluated by weighing three samples of 200 grains from each plot after harvest.

The unified mixed linear model (MLM) based on the Q + K model was used for functional

markers and agronomic traits analysis in TASSEL v.2.0.1 [28–29]. The population structure

matrix (Q) was obtained using STRUCTURE 2.3.1 software [30]. The relative kinship matrix

(K) was obtained using TASSEL software [31]. Corrections for multiple testing were per-

formed using the positive FDR (FDR� 0.1) in QVALUE [32]. The 91 SSR and 47 functional

markers were used to calculate Q and K for NPVs. A connection between functional markers

and agronomic traits was determined when P� 0.05.

Results

Cloning, chromosome assignment and characterization of TaSnRK2.10

Four wheat ESTs (CJ827375, CD882003, CD918384 and BJ294918) similar to the cDNA

sequence of SAPK10 were selected and assembled into a putative TaSnRK2.10 cDNA sequence.
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Three cDNA clones were amplified with the TaSnRK2.10-1F/R primer pair, and the corre-

sponding gDNA sequences were amplified with the TaSnRK2.10-2F/R primer pair (S1–S3

Figs). Based on the three genome-specific primer pairs, TaSnRK2.10 genes were found to be

located on chromosomes 4A, 4B and 4D using the CS-N/Ts (S4 Fig). The sequence of

TaSnRK2.10 is shared high sequence similarity with the currently most updated gene model in

Chinese Spring (http://plants.ensembl.org/Triticum_aestivum/Gene), including the unifor-

mity of 99% for TaSnRK2.10-4A with TRIAE_CS42_4AL_TGACv1_291776_AA0996560,

100% for TaSnRK2.10-4B with TRIAE_CS42_4BS_TGACv1_328137_AA1083460, and 99%

for TaSnRK2.10-4D with TRIAE_CS42_4DS_TGACv1_361281_AA1164930.

The cDNA sequences of TaSnRK2.10-4A, TaSnRK2.10-4B and TaSnRK2.10-4D amplified

with the TaSnRK2.10-1F/R primer pair are 1339, 1342 and 1284 bp in length, respectively.

Each cDNA sequence of TaSnRK2.10 on 4A, 4B and 4D contained an open reading frame

(ORF) of 1086 bp through ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/) which was

predicted to encode a protein of 361 amino acid residues (AARs) (Fig 1) with a molecular

mass of ~40.6 kDa and a pI of ~4.80. PROSITE analysis indicated that the amino acid sequence

contains two conserved domains. The first conserved domain is an N-terminal catalytic domain

(23–279 downstream of the Met) containing an ATP-binding site (29–52 downstream of the

Met) and a serine/threonine protein kinase active site (138–150 downstream of the Met) (Fig 1).

The second domain is a relatively short C-terminal domain with abundant Asp (D) residues.

The amino acid sequence of TaSnRK2.10 shared high sequence similarity with counterpart

monocot SnRK2s, including 95.6% with SAPK10 from rice and 94.2% with ZmSnRK2.10

from maize, and lower sequence similarity with dicotyledonous plants, including 62.5% with

AtSnRK2.10 from Arabidopsis. The phylogenetic tree of the TaSnRK2.10 and SnRK2 family

members from Arabidopsis, rice and maize showed that TaSnRK2.10 clustered in the same

clade as OsSAPK10 and ZmSnRK2.10 (S5 Fig).

The complete gDNA sequences (from the ATG start codon to the TGA stop codon) of

TaSnRK2.10-4A, TaSnRK2.10-4B and TaSnRK2.10-4D are 2322, 2244 and 2268 bp in length,

Fig 1. Schematic diagram of the TaSnRK2.10 gene. (a) Known functional domains of TaSnRK2.10 protein are highlighted; ATP-binding site in diagonal

stripes, serine/threonine protein kinase active site in vertical stripes. Amino acid positions of functional domains are indicated below the protein structure. (b)

Exon-intron structure of TaSnRK2.10-4A gene with its eight coding exons in black boxes; the number of base pair sequence of ORF is listed above each

exon; The percentage of GC content for exon 1–8 is indicated below each exon. (c) The GC content in exon 1.

https://doi.org/10.1371/journal.pone.0174425.g001
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respectively (S1–S3 Figs), with eight exons and seven introns (Fig 2). The exon-intron struc-

ture of TaSnRK2.10 is very similar to SnRK2.10 in maize and Arabidopsis, while the SAPK10
gene of rice comprises seven exons and six introns. Compared with rice, the first exon of

OsSAPK10 could be divided into the first and second exon in TaSnRK2.10 (Fig 2), but the sizes

of the other exons are similar between wheat and rice, showing high sequence identity even

though the introns exhibit low sequence similarity.

Development and mapping of the functional markers

For the TaSnRK2.10 gDNA sequences among the ten wheat varieties, three SNPs (single nucle-

otide polymorphisms) and one indel (insertion or deletion of DNA bases) were found for

TaSnRK2.10-4A with two haplotypes (named Hap-4A-H and Hap-4A-L). The SNPs were

located at 1273, 1471, and 1907 bp downstream of the ATG with corresponding C-T, A-T, and

G-C substitutions, respectively. The indel was 3 bp (TGA, 1982–1984 bp downstream of the

ATG) (S1 Fig). For TaSnRK2.10-4B, one SNP was located at 856 bp downstream of the ATG

with A-G substitution, and formed two haplotypes (named Hap-4B-A and Hap-4B-G) (S2

Fig). No variation in TaSnRK2.10-4D was observed.

The sequence variations of TaSnRK2.10-4A produced a restriction enzyme SalI recognition

site (GTCGAC) in Hap-4A-H at SNP-1907-C, but not in Hap-4A-L at SNP-1907-G (GTC

GAG) (Fig 3A and 3B). Based on this SNP, a CAPS marker TaSnRK2.10-4A-CAPS (Table 1)

was developed to distinguish the TaSnRK2.10-4A allele. The PCR product for Hap-4A-H was

digested by SalI into two segments of 793 and 316 bp (Fig 3C). The RILs were genotyped using

TaSnRK2.10-4A-CAPS, and the mapping result using RILs showed that it had highly linked

two Diversity Arrays Technology (DArT) markers, D-1092101 and D-100014232, with 0.80

and 0.50 cM, respectively (Fig 4).

Two complementary dominant AS-PCR markers were developed for TaSnRK2.10-4B (Table 1).

The primer pair TaSnRK2.10-4B-AS1F/R yielded a 688 bp PCR fragment for Hap-4B-G, but no

PCR fragment for the Hap-4B-A allele. The primer pair TaSnRK2.10-4B-AS2F/R yielded a 688

bp fragment for Hap-4B-A, but no PCR fragment for the Hap-4B-G allele (Fig 5). The mapping

result using RILs showed that TaSnRK2.10-4B-AS1/2 was highly linked to the DArT marker

D-1281577 and the SNP marker S-1862758with 0.10 and 0.10 cM, respectively (Fig 4).

Association between haplotypes and agricultural traits

Data on agricultural traits for the natural population of 128 wheat varieties were used in an

association analysis. Using the TaSnRK2.10-4A-CAPS marker, 63 varieties harboring the Hap-

Fig 2. The structures of the TaSnRK2.10 gene from 4A, 4B and 4D homoeologs in wheat. The black boxes denote exons, and the lines between

exons represent introns. The numbers upon exons indicate their size (bp).

https://doi.org/10.1371/journal.pone.0174425.g002
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4A-H haplotype and 65 varieties with the Hap-4A-L haplotype were identified. The TGW of

Hap-4A-H was significantly higher than Hap-4A-L in all three environments as well as the

average value (AV) at the p�0.01 level. The PH of Hap-4A-L was significantly higher than

Hap-4A-H in TA11, YT12 and the AV (p�0.05), but SL was lower for TA11, TA12 and the AV

(p�0.05). The TSS of Hap-4A-H was significantly higher for TA12 and the AV as well as SSS

in the AV (p�0.05). These results indicated that the environments are important in explaining

the overall phenotypic variations. Using TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2 mark-

ers, 93 varieties with Hap-4B-G haplotypes and 35 varieties with Hap-4B-A haplotypes were

identified. However, there were no significant differences between the haplotypes except for

TGW in TA11 (p = 0.025) (Table 2).

Discussion

A major hindrance to PCR amplification of GC-rich templatesis the formation of secondary

structures such as hairpin loops of single-stranded GC-rich sequences [33–34]. Many ap-

proaches have been developed to overcome such problems by adjusting the PCR procedure

[34–39]. However, it is also difficult to get GC-rich sequence using the conventional RACE

technique. In recent years, a great number of wheat ESTs have been deposited, which makes it

possible to clone the full-length sequences with GC-rich sequences in combination ESTs with

PCR amplification. In our present study, four EST sequences were found by performing a

BLAST search with a reference sequence and were then combined to generate the tentative

full-length sequence of TaSnRK2.10. The size of TaSnRK2.10 is in accordance with SnRK2s
reported previously [18, 22, 40–43].

Based on the protein size and character of the acidic amino acid-enriched C-terminus, the

SnRK2 family can be divided into two groups: SnRK2a and SnRK2b [44]. SnRK2a corresponds

to the more recently defined subclass I, and SnRK2b includes subclasses II and III [21, 45].

Increasing evidence indicates that SnRK2s from subclass III are involved in the regulation of

plant metabolism [46]. As shown in our study, TaSnRK2.10 was clustered in the subclass III

Fig 3. Functional marker development based on a SNP found in the seventh exon of TaSnRK2.10-4A.

(a) The positions of the Hap-4A-H and Hap-4A-L SNPs in TaSnRK2.10-4A. (b) SNP1907 (C-G) in the PCR

product permitted the generation of different SalI restriction fragments with lengths of 793 and 316 bp in the

varieties harboring Hap-4A-H, while no digestion product was obtained in Hap-4A-L. (c) Validation of CAPS in

varieties with Hap-4A-L (1–5) and Hap-4A-H (6–10) on 1.0% agarose gel. M, marker; 1–5 are the varieties

Lumai 21, Jinan 17, Yannong 15, Chinese Spring, and Xiaoyan 81, respectively; and 6–10 are the varieties

Shannong 0431, Jining 17, Shannong 8355, Lumai 23 and Weimai 8, respectively.

https://doi.org/10.1371/journal.pone.0174425.g003
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clade (S5 Fig). The structure of TaSnRK2.10 is similar to other SnRK2s, including two typical

domains, an N-terminal highly conserved kinase domain and a regulatory C-terminal domain

[46], and showed potential for serine/threonine and tyrosine kinase activities. The relatively

short C-terminal domain of SnRK2.10 is abundant in Asp (D) and might play a role in ac-

tivation of the kinase [47–49] and function in protein-protein interactions that are mainly

involved in ABA responsiveness [40]. In rice and maize, SnRK2.10 is activated under ABA and

hyperosmotic stress. In Arabidopsis, AtSnRK2.10 was found to be expressed in the vascular tis-

sue at the base of developing lateral roots, revealing a role in root growth and architecture [50].

The ortholog in tobacco, NtOSAK, has been shown to directly interact with glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), linking its mode of action to metabolic processes [51].

All of the above evidence implies that TaSnRK2.10 is mainly involved in ABA responsiveness

and shows a potential role in carbohydrate metabolism. In this study, we found that Hap-4A

of TaSnRK2.10 was associated stably with the TGW, PH and SL, which may indicate new func-

tions of SnRK2.10 and may be the result of carbohydrate metabolism. The Hap-4A-H varieties

of TaSnRK2.10-4A showed higher TGW and SL values than the Hap-4A-L varieties, but lower

PH values, indicating the Hap-4A-H is a favorable allele for the improvement of grain yield.

The marker TaSnRK2.10-4A-CAPS may be useful in wheat yield breeding programs.

Exons are the regions encoding proteins in the ORFs of genes. Many studies have indicated

that missense mutations can influence the function of genes. For example, Wang et al. [52]

Fig 4. Mapping of TaSnRK2.10-4A and TaSnRK2.10-4B based on a RIL population of Shannong

0431×Lumai 21.

https://doi.org/10.1371/journal.pone.0174425.g004
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reported that the mutant chs1-2 with a nucleotide substitution from G to A displayed defense-

associated phenotypes compared with the wild type of CHS1, including extensive cell death,

the accumulation of hydrogen peroxide and salicylic acid, and an increased expression of PR

genes. Wang et al. [53] found a codon change from TGC to TAC in the first exon of OsCESA7,

and the mutation deleteriously affected cellulose biosynthesis and plant growth. In this study,

three SNPs and one indel were found in TaSnRK2.10-4A with two haplotypes. Of these, a SNP

in the seventh exon in TaSnRK2.10-4A caused a missense mutation that resulted in an amino

acid change from Asp to His (S1 Fig). The adjacent region is conserved between TaSnRK2.10
and the ortholog genes SAPK9 and SAPK10 in rice [54] (S5 Fig). There has been no report

about the change of the function for the amino acid from Asp to His in SnRK2 gene family.

The missense mutation may account for the variance in agronomic traits and this should be

affirmed by more evidences in the further. The other SNPs and the indel were located in

introns, which may be of little function for agronomic traits. Furthermore, only one SNP was

obtained for TaSnRK2.10-4B in an intron, and it had no significant association with agronomic

traits except for the TGW data in TA11. The potential functions of TaSnRK2.10-4B require fur-

ther investigation for verification.

The wheat yield is affected by many factors and is a polygenic trait influenced by environ-

mental and genetic interactions at all stages of the plant’s growth [55]. Direct cloning of yield-

related genes in hexaploid wheat was difficult due to its large genome size. In our study, we

hypothesized that the TaSnRK2.10 gene had functions that affect the TGW, PH and SL during

the maturity stage. To date, some grain weight genes have been isolated, such as Ppd-D1 [56],

CKX6-D1 [57], GS1a [11], GW2 [8, 58–59], GS-D1 [60], Sus [9, 61], GASR7 [62–63], TEF-7
[64], CWI [65], and 1-FEH-w3 [66–67]. Using sequence comparison and the analysis of protein

Fig 5. Functional marker development based a SNP found in the fourth intron of TaSnRK2.10-4B. (a)

Schematic diagram showing the AS-PCR approach used tovalidate the SNP. (b) PCR fragments amplified with

the markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2 in ten Chinese wheat varieties. TaSnRK2.10-

4B-AS1 yielded a 688 bp PCR fragment in varieties with the Hap-4B-G allele, and TaSnRK2.10-4B-AS2

yielded a 688 bp fragment in those with the Hap-4B-A allele. M, marker, 1–3 are the varieties Lumai 21, Jinan

17, Yannong 15, respectively; and 4–10 are the varieties Chinese Spring, and Xiaoyan 81, Shannong 0431,

Jining 17, Shannong 8355, Lumai 23 and Weimai 8, respectively.

https://doi.org/10.1371/journal.pone.0174425.g005
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domains with PROSITE (http://prosite.expasy.org/), we found that TaSnRK2.10 is different

from these genes and is a new gene for grain weight. More than 20 plant height genes in wheat

were detected and only few were cloned. Zhang et al. [68] reported that the Rht-B1 and Rht-D1
in the fourth homologous group had functions that affect the TGW and kernel number per

spike, but the sequences of them were different from TaSnRK2.10. Currently, there has been

no report regarding the cloning of a gene that affects the SL. The validation of QTLs provides

the critical first step for further mapping and gene cloning. Some QTLs for the TGW, PH and

SL were located on chromosomes 4A, 4B and 4D [69–73]. The relationship between the

TaSnRK2.10 and these QTLs requires further study.

Conclusion

A triplicate set of TaSnRK2.10 homoeologs was cloned and assigned to chromosomes 4A, 4B

and 4D. The corresponding full-length gDNA sequences of TaSnRK2.10 were 2322, 2244, and

2268 bp, comprising eight exons and seven introns and presenting an ORF of 1086 bp that

Table 2. Association analysis between the haplotypes and agronomic traits.

Trait ENV Hap-4A-H Hap-4A-L p value Hap-4B-G Hap-4B-A p value

TGW TA11 53.161 ± 5.505 51.189 ± 5.644 0.003** 52.509±5.835 51.325±5.098 0.025*

(g) TA12 46.349 ± 5.967 43.554 ± 4.881 0.007** 45.342±6.104 43.816±3.875 0.155

YT12 47.101 ± 5.140 45.373 ± 3.998 0.010** 46.397±4.880 45.594±3.978 0.190

AV 48.870 ± 4.989 46.705 ± 3.934 0.002** 48.083±4.892 46.912±3.684 0.051

KNS TA11 44.661 ± 7.009 42.894 ± 5.179 0.242 43.925±6.271 43.243±6.093 0.663

TA12 46.347 ± 7.795 44.148 ± 6.025 0.427 45.513±7.423 44.754±5.938 0.739

YT12 59.721 ± 9.037 56.657 ± 7.805 0.324 58.976±8.242 56.394±8.902 0.469

AV 50.243 ± 6.740 47.900 ± 4.381 0.193 49.438±5.743 48.131±5.835 0.911

PH TA11 64.908 ± 7.136 67.194 ± 11.303 0.018* 66.615±10.529 64.721±6.003 0.706

(cm) TA12 79.985 ± 7.853 80.417 ± 11.612 0.220 81.292±10.810 77.345±6.288 0.722

YT12 70.115 ± 8.763 72.936 ± 12.463 0.031* 72.229±12.212 69.766±5.715 0.838

AV 71.669 ± 7.266 73.516 ± 11.348 0.041* 73.378±10.672 70.611±5.559 0.909

SL TA11 8.923 ± 1.068 8.510 ± 1.062 0.014* 8.756±1.708 8.595±1.111 0.344

(cm) TA12 9.036 ± 1.164 8.565 ± 0.971 0.020* 8.845±1.153 8.631±0.898 0.638

YT12 9.322 ± 1.149 9.071 ± 1.136 0.411 9.206±1.191 9.183±1.038 0.620

AV 9.094 ± 1.036 8.715 ± 0.964 0.045* 8.936±1.047 8.803±0.940 0.797

TSS TA11 19.905 ± 1.489 19.364 ± 1.270 0.081 19.839 ± 1.352 19.063 ± 1.425 0.066

TA12 20.946 ± 1.693 20.047 ± 1.431 0.017* 20.709 ± 1.679 19.856 ± 1.301 0.164

YT12 19.705 ± 1.331 19.383 ± 1.143 0.359 19.646 ± 1.312 19.282 ± 1.020 0.397

AV 20.185 ± 1.352 19.598 ± 1.096 0.048* 20.065 ± 1.292 19.401 ± 1.056 0.110

FSS TA11 2.023 ± 0.808 2.007 ± 0.858 0.769 2.218±0.817 1.713±0.816 0.062

TA12 2.429 ± 1.204 2.305 ± 1.220 0.490 2.505±1.272 1.996±0.957 0.085

YT12 0.457 ± 0.421 0.474 ± 0.474 0.813 0.477±0.465 0.424±0.469 0.872

AV 1.636 ± 0.637 1.595 ± 0.673 0.785 1.704±0.646 1.378±0.632 0.072

SSS TA11 17.882 ± 1.644 17.357 ± 1.135 0.068 17.711±1.464 17.350±1.332 0.476

TA12 18.517 ± 1.768 17.742 ± 1.398 0.077 18.204±1.677 17.860±1.497 0.961

YT12 19.248 ± 1.362 18.909 ± 1.165 0.342 19.169±1.364 18.859±1.105 0.355

AV 18.549 ± 1.343 18.003 ± 0.888 0.045* 18.362±1.187 18.022±1.093 0.485

The natural population of 128 varieties was grouped according to their TaSnRK2.10-4A haplotypes (Hap-4A-H and Hap-4A-L) and TaSnRK2.10-4B

haplotypes (Hap-4B-G and Hap-4B-A). The presented values are the mean ± SD from the association analysis.

* and ** designate significance differences at p�0.05 and p�0.01, respectively.

https://doi.org/10.1371/journal.pone.0174425.t002
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encodes a protein of 361 amino acids with functional domains shared with SnRK2s. One SNP

in an exon and two SNPs and one indel in introns were detected in TaSnRK2.10-4A alleles,

resulting in two haplotypes: Hap-4A-H and Hap-4A-L. In TaSnRK2.10-4B alleles, only one

SNP in an intron was detected, also resulting in two haplotypes: Hap-4B-G and Hap-4B-A.

The sequences of SnRK2.10-4Dwere completely conserved. A CAPS marker for TaSnRK2.10-
4A and two AS-PCR markers for TaSnRK2.10-4B were developed and mapped on chromo-

somes. The results of an association analysis provided evidence that TaSnRK2.10-4A shows an

association with TGW in all of the examined environments and with PH and SL in most envi-

ronments, representing new functions of SnRK2s in wheat. Hap-4A-H was found to be a

favorable allele for the improvement of grain yield.

Supporting information

S1 Fig. Genome DNA sequences alignment between two haplotypes of TaSnRK2.10-4A.

The exons were indicated by the gray shade and the green shaded bases are SNPs and InDels

between the two haplotypes.

(RAR)

S2 Fig. Genome DNA sequences alignment between two haplotypes of TaSnRK2.10-4B.

The exons were indicated by the gray shade and the green shaded bases are SNPs between the

two haplotypes.

(RAR)

S3 Fig. Genome DNA sequences alignment of TaSnRK2.10-4D. The exons were indicated

by the gray shade.

(RAR)

S4 Fig. Chromosomal locations of TaSnRK2.10 homoeologs based on genome-specific

primer pairs using Chinese Spring nullisomic-tetrasomic lines. M, marker; 1, Shannong

0431; 2, Lumai21; 3, N4AT4B (nullisomic 4A-tetrasomic 4B); 4, N4BT4A; 5, N4DT4B; 6, H2O.

(RAR)

S5 Fig. Phylogenetic tree of TaSnRK2.10 and SnRK2s from Arabidopsis, rice, maize and

wheat. Three distinct isoform groups are presented within the boxes. The phylogenetic tree

was constructed based on the full-length amino acid sequences of SnRK2s using the protein

sequences were aligned by MAFFT7 [25]. The Maximum-likelihood phylogenetic tree was

reconstructed using MEGA5 [26], and the phylogenetic support for each split was evaluated

with 500 bootstrap replicates.

(RAR)
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