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Abstract

This paper presents the concept of perfect matrices of Lagrange differences which are used

to analyze relationships between RR and JT intervals during the bicycle ergometry exercise.

The concept of the perfect matrix of Lagrange differences, its parameters, the construction

of the load function and the corresponding optimization problem, the introduction of internal

and external smoothing, embedding of the scalar parameter time series into the phase

plane—all these computational techniques allow visualization of complex dynamical pro-

cesses taking place in the cardiovascular system during the load and the recovery pro-

cesses. Detailed analysis is performed with one person’s RR and JT records only—but the

presented techniques open new possibilities for novel interpretation of the dynamics of the

cardiovascular system.

Introduction

ECG analysis is the basic, the primary, and the most studied noninvasive technique used for

the contemporary investigation of the functionality of the cardiovascular system. The rele-

vance of ECG parameters to the clinical practice is unquestionable ECG parameters are effec-

tively used for the identification of various heart rate and conductivity defects, different heart

hypertrophies and ischemic processes. Cardiac time intervals are sensitive markers of cardiac

dysfunction, even when it goes unrecognized by conventional echocardiography [1]. There

exist some opinions that diagnostic features of ECG parameters are completely understood—

and that there is no need to seek for any new approaches in ECG analysis.

However, interrelations between EGC parameters is still an active area of research. A typical

example is the relationship between RR and QT intervals. This relationship was first described

by Bazzet [2] in a form of a functional correlation and the definition of tolerance intervals for

QT. But one hundred years later, discussions about this relationship do not seem to be stop-

ping. A number of new functional relations between these parameters were proposed. For

example, functional relations among RR, JT, and QT intervals are evaluated in [3]. Many

researchers were proposing new analytical expressions and confidence intervals for inter-

parameter relationships—all adapted to their specific cohort [4–6]. Unfortunately, other
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researchers were not able to prove the validity of these relationships [7]. This is probably due

to some of the reasons described below.

Insufficient identification of the specificity of relationships between ECG

parameters

For example, it is inappropriate to interpret QT as a characteristic of one physiological process.

It is well known that QT is the sum of the depolarization and the repolarization of heart’s myo-

cardium. However, depolarization and repolarization may have completely different variation

tendencies. For example, depolarization and repolarization may both become shorter during

the load—but sometimes depolarization becomes longer and repolarization becomes shorter

(what is a rather common phenomenon during the extreme loads). Thus the sum of the depo-

larization and the repolarization would not represent a clearly determined physiological pro-

cess during an exercise with a constantly increasing load—and a simple QT-RR relationship

cannot describe the behavior of the human cardiovascular system in general. In other case, the

examination of QT and JT intervals under the supervised consumption of dietary acids is pre-

sented in [8]. The correlation amongst QT, JT and their alternative counterparts is discussed

in [9]. Similar problems exist for other relationships between ECG parameters (for example

PQ-RR, etc.).

A fixed model of relationships between ECG parameters cannot always

hold even for a particular person

Relationships between ECG parameters do vary according to various physiological and patho-

logical reasons. Holistic models interpret a human being as a complex system—where nonlin-

ear chaotic processes play an important role in the relationships between different sub-systems

and in generating reactions of these sub-systems [10]. Therefore, it is probably illogical to seek

a unified deterministic model which could describe the relationships between ECG parame-

ters. It makes sense to observe dynamical processes, dynamical relationships—which could

exhibit complex chaotic behavior [11].

Time-averaged relationships between ECG parameters are not able to

represent the complexity of these relationships in different time scale

lengths

The relationships between ECG parameters do depend on different time scales and other fac-

tors. For example, the influence of QRS duration on the JT and QT intervals is assessed in

[12]. In addition, it is well known that there exist completely different short-term and long-

term adaptations of the cardiovascular system to physical loads [11]. It becomes clear that the

width of the observation window may seriously impede the computational results.

The complexity of the relationships, the chaotic nature of the processes, the fractality of

time scales—all that yields a necessity to develop such computational techniques which could

assess the dynamism of these relationships between RR and JT intervals. As mentioned previ-

ously, investigation of relationships between RR and JT intervals continues during the last

decades. For example, this relationship is used for the detection of prolonged repolarization in

ventricular conduction defects [13]—but the JT interval is constructed as a linear function of

the RR interval in this study. Similarly, it is shown in [14] that heart rate-corrected JT interval

is a good estimate of specific repolarization time in a cohort of physically fit university

students.
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On the contrary, the main objective of this paper is to propose a visualization technique of

relationships between RR and JT intervals which could reveal the evolution of complex

dynamical processes in the self-organization of the heart system during the load and the recov-

ery processes.

Methods

Ethics statement

The research met all applicable standards for the ethics of experimentation. Permit to perform

biomedical investigation was granted by Kaunas Regional Ethics Committee for Biomedical

Investigations, No. BE-2-51, 23.12.2015. ECG bicycle ergometry exercise was used to record

cardiac RR and JT intervals. Participants provided written informed consent prior to the

experiment.

Description

The assessment of functional ECG parameters was performed by using ECG analysis system

“Kaunas-Load” [15–18] developed at the Institute of Cardiology, Lithuanian University of

Health Sciences. The second ECG lead is used for the signal processing task. JT interval is eval-

uated as the time difference between the J point and the end of the T wave. The J point is

defined as the moment where depolarization processes expire and repolarization processes

begin. The J point is automatically detected by fixing the moment where the speed of ECG

electrical processes change just before the repolarization. The end of the T wave is detected at

the end of repolarization processes. This moment is identified by computing the intersection

between the lead axis and the tangent line to the descending slope of the T wave. Numerous

clinical trials were used to assess the measurement accuracy of the JT interval during the devel-

opment of “Kaunas-Load” system [19].

The bicycle ergometry system (Fig 1) is used for generating stepwise increasing physical

loads—whlist “Kaunas-Load” is used for a synchronous registration of twelve different stan-

dard parameters of the ECG. The bicycle ergometry exercise is initiated at 50W load—and the

load is increased by 50W every consecutive minute. The patient is asked to maintain a constant

60 revolutions per minute bicycle pedals spinning rate during the whole exercise. The load is

increased up to 250W and the exercise is continued until the first clinical indications for the

Fig 1. A general view of the experimental setup.

https://doi.org/10.1371/journal.pone.0174279.g001
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limitation of the load according to AHA (American Hearth Association) are observed. The

cohort comprised 10 adult men within the age range of 29 and 36 years. All persons have been

regular visitors of a local fitness club in Kaunas, and did not have any registered medical

conditions.

Without losing the generality, we select two ECG parameters—RR and JT intervals.

Sequences of RR and JT intervals are recorded during the bicycle ergometry experiment and

denoted as vectors x = (x1, x2, . . ., xn) and y = (y1, y2, . . ., yn) accordingly.

Perfect matrices of Lagrange differences

Given a scalar time series, derivatives of variables can be computationally assessed by Lagrange

differences at the nodal point of the time series. It is well known that derivatives reconstructed

from a scalar time series tend to intensify the noise embedded into that series. However, clever

manipulations with derivatives may also help to detect and amplify small changes of the

dynamical processes—which may not be visible in the original time series. Keeping this infor-

mation in mind we use a combination of the scalar values of time series x and y (RR and JT

intervals) and cross derivatives between elements of x and y. Our intention is to produce one

single scalar attribute which could characterize dynamical relationships between x and y. We

use square second order matrices, place different values and different differences as the ele-

ments of these matrices, and compute a single parameter representing a certain property of

that matrix. The following sections are dedicated to the considerations on the architecture of

these matrices and the selection of the parameter representing local relationships described by

these matrices.

Basic definitions

As mentioned previously, we will consider second order square matrices. We assume that

every element of a matrix can be either a single element of the time series x or y—or a differ-

ence between elements of time series x and y:

a 2 f�x;�y;�ðx � yÞg: ð1Þ

Note that symbols x and y in Eq (1) represent only the time series; indexes representing a

particular time moment will be assigned later. Different signs can be assigned to elements of x
and y. Also, differences are allowed only between elements of different time series (in order to

minimize the straightforward amplification of noise). Second order square matrices compris-

ing such elements are named as matrices of Lagrange differences (zeroth or the first order

Lagrange cross differences).

Definition. A perfect matrix of Lagrange differences is a second order square matrix

whereas elements of that matrix do satisfy the following requirements:

1. All elements of the matrix are different.

2. Zeroth order differences are located on the main diagonal.

3. First order differences are located on the secondary diagonal.

4. Indexes of x and y can take one of the three possible values: i 2 {n − δ, n, n + δ}, where n is

the current time moment and δ is the time lag; d 2 N.

5. The perfect matrix of Lagrange differences is lexicographically balanced—the number of

symbols of x and y in the expressions of all elements of the matrix is the same.
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6. The perfect matrix of Lagrange differences is balanced in respect of time—the number of

indices with subscripts −δ and +δ in the expressions of all elements of the matrix is the

same.

Example 1. Several examples of not perfect and perfect matrices of Lagrange differences.

0 xnþd � ynþd

xn� d � yn� d yn

 !

� not a perfect matrix � the null element is not allowed:

yn xnþd � ynþd

xn� d � yn� d yn

 !

� not a perfect matrix � no lexicographical balancing:

xn xnþd � ynþd

xnþd � ynþd yn

 !

� not a perfect matrix � no balancing in respect of time:

xn xnþd � ynþd

xn� d � yn� d yn

 !

� finally; this is a perfect matrix of Lagrange differences:

The classification of perfect matrices of Lagrange differences

A natural question is about the number of different perfect matrices of Lagrange differences.

In general we seek to represent six different elements of time series x and y as shown in

Table 1.

A graphical visualization of perfect matrices of Lagrange differences would help to classify

these matrices and to interpret their structure. Zeroth order differences (±x and ±y) are located

on the main diagonal—but indexes of these elements can be different. We draw circles around

elements from Table 1 which are selected as zeroth order differences. For example, if ±xn is

selected as an element representing a zeroth order difference, then a circle is drawn around the

element in the first row and the second column of Table 1.

A first order difference is visualized by drawing an arrow connecting the two elements of

the difference. For example, an arrow connecting the element in the first row and the first col-

umn and the element in the second row and the first column is used to represent a difference

±(xn−δ − yx−δ) in Table 1.

Example 2. As noted in Example 1, a matrix Lð1Þd;n ¼
xn xnþd � ynþd

xn� d � yn� d yn

 !

is a

perfect matrix of Lagrange differences. As previously, symbol δ denotes the time delay; n—the

time moment around which the elements in Table 1 are centered around; (1) in the superscript

Table 1. Six different elements of time series x and y.

xn−δ xn xn+δ

yn−δ yn yn+δ

These elements can be represented in a perfect matrix of Lagrange differences.

https://doi.org/10.1371/journal.pone.0174279.t001
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denotes the number of the perfect matrices of Lagrange differences. The graphical representa-

tion of this matrix is shown in Fig 2.

Such graphical representation of perfect matrices of Lagrange differences allows an efficient

classification of all possible perfect matrices. In fact, there are only 18 types of perfect matrices

of Lagrange differences—all of them are illustrated in Fig 3.

One of the main characteristics of any square matrix are its eigenvalues (or the spectrum of

the matrix). It is clear that elements on the diagonal and the anti-diagonal can be interchanged

and their signs can be switched without affecting the maximal absolute eigenvalue. It means

that every graphical representation of a matrix in Fig 2 can be a result of 24 = 16 distinct perfect

matrices of Lagrange differences in terms of the maximal absolute eigenvalue. Overall, 18 dif-

ferent representations yield 288 distinct perfect matrices of Lagrange differences.

The construction of the optimization problem

As mentioned previously, a scalar parameter representing local relationships described by per-

fect Lagrange matrices must be selected. In general, the selection of such a parameter is an ill-

posed inverse problem of parameter identification. Some sort of error function must be

defined before different parameters could be assessed and compared in respect of their

representativeness.

As mentioned in Section “Methods”, loads of the bicycle ergometry exercise are increased

at every consecutive minute. However, the RR intervals do change during the exercise. The

number of inter-beat intervals recorder during the first minute (before the exercise was

started) and the further minutes are different (Fig 4). The x-axis in Fig 4 represents the index

number of the x-time series. Note that the x-axis does not represent time—each inter-beat

interval is different. Cumulative summation of the x-variable allows simple reconstruction of

the time variable. However, we do not use the time variable in further computational experi-

ments—all computations will be based on the x-time series data.

It is clear that Fig 4 is constructed for a single individual person. The investigated person

did manage to reach 250W bicycle ergometry load—and then (almost immediately after

Fig 2. The graphical representation of a perfect matrix. This particular matrix is presented in Example 2.

https://doi.org/10.1371/journal.pone.0174279.g002
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reaching the highest load) the ergometry test was stopped. However, the recordings of the per-

son’s ECG parameters continued during the recovery process.

Therefore, first 96 RR intervals fit into the first minute when the load was 0W; 108 RR inter-

vals fit into the second minute (the first minute of the exercise when the load was 50W); 124

RR intervals into the 3-rd minute (100W load); 140 RR intervals into the 4-rd minute (150W

load); 158 RR intervals into the 5-th minute (200W load) and only 5 RR intervals into the final

part of the exercise when the load was increased to 250W (Fig 4). After the exercise was termi-

nated, the recording of ECG parameters continued for another 5 minutes (Fig 4).

Moreover, we norm the opposite values of the load to the y-axis of Fig 4 and fit it to the

interval [0, 1]. Therefore, 0W load is mapped to 1; 50W—to 0.8; 100W—to 0.6; 150W—to 0.4;

200W—to 0.2 and 250W—to 0 (Fig 4). In other words, we construct the target function—and

the parameter representing local relationships described by perfect Lagrange matrices should

follow this target function as close as possible.

We select the following parameters: the maximal absolute eigenvalue of a perfect matrix of

Lagrange differences max |λ|, the minimal absolute eigenvalue min |λ|, the structural coeffi-

cient str = max |λ|/min |λ| and the discriminant dsk = (a11 − a22)2 + 4a12a21 (where indexes

denote the location of elements). The time delay δ is set to 1.

Fig 3. All possible graphical representations of perfect matrices of Lagrange differences.

https://doi.org/10.1371/journal.pone.0174279.g003
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Let us denote the scaled inverse values of the load (Fig 4) as lk; k = 1, 2, . . ., 1199. Now, the

values of the particular parameter computed for the perfect matrix of Lagrange differences

constructed from the RR (x-time series) and JT (y-time series) are denoted as pk; k = 1, 2, . . .,

1199 (note that δ = 1). The optimization problem is formulated as follows—minimize RMSE

(root mean square error) between lk and pk—by selecting the most appropriate parameter:

arg min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

ðlk � pkÞ
2

s !

; ð2Þ

where the minimization is performed in respect of a particular expression of the parameter;

values of pk are normalized into interval [0, 1] before the optimization process is commenced.

Computational optimization of the best parameter is done by using ECG records of 10 per-

sons. Every person did stop the bicycle ergometry exercise at different moments—so the num-

ber N in Eq (2) is different for each person (N = 1199 for the first person—his bicycle

ergometry load protocol is shown in Fig 4). However, we do not preselect a single perfect

matrix of Lagrange differences—we do average RSME for all 18 perfect matrices—the results

are presented in Table 2. Note that the person whose load diagram is shown in Fig 4 is repre-

sented as Person #1 in Table 2.

Fig 4. Load target function values for the person #1.

https://doi.org/10.1371/journal.pone.0174279.g004

Table 2. The averaged RMSE values for all perfect matrices.

Person min |λ| max |λ| str dsk

1 0.137 0.085 0.609 0.240

2 0.294 0.327 0.582 0.355

3 0.153 0.134 0.616 0.228

4 0.169 0.105 0.561 0.275

5 0.113 0.095 0.595 0.304

6 0.235 0.123 0.571 0.307

7 0.153 0.114 0.611 0.238

8 0.236 0.204 0.587 0.345

9 0.156 0.132 0.614 0.375

10 0.178 0.089 0.501 0.319

Here the parameter δ = 1 is fixed.

https://doi.org/10.1371/journal.pone.0174279.t002
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It can be seen that min |λ| is the best parameter for the second person—but max |λ| is the

best parameter for all other persons. Therefore, we fix max |λ| as the best parameter represent-

ing the local relationships described by perfect Lagrange matrices.

Internal and external smoothing

Computational experiments are continued with max jlðLðsÞd;kÞj where LðsÞd;k denotes a perfect

matrix of Lagrange differences centered around time moment k. It is well known that moving

averaging (MA) [20] helps to smooth coarse signals. Moreover, MA is frequently considered as

a simple yet effective option for the prediction of irregular time series [21].

However, before dealing with MA, we introduce the procedure of internal smoothing. The

radius of internal smoothing Δ defines how many parameter values computed for perfect

matrices of Lagrange differences (at different δ) are averaged. For example, inner averaging

(without external averaging) reads:

1

D

XD

d¼1

max jlðLðsÞd;kÞj: ð3Þ

Now, the smoothing of the reconstructed parameter values at different time moments k is

performed using the standard MA—such smoothing procedure is denoted as external smooth-

ing. However, we do use only odd widths of the averaging windows (denoted as m) for MA—

the averaging is constructed symmetrically around the time moment k. Let us denote the

reconstructed parameter value as pk(s, Δ, m), where k is the time moment; Δ is the radius of

internal smoothing; m is the radius of external smoothing. Then

pkðs;D;mÞ ¼
1

ð2mþ 1ÞD

Xkþm

j¼k� m

XD

d¼1

max jlðLðsÞd;kÞj: ð4Þ

Note that the order of internal and external averaging is not important (Eq (4)). However, that

would not be the case if weights for different δ would be introduced for internal averaging (all

weights set to be equal in this paper). Note that external averaging (without internal averaging)

reads:

pkðs; 1;mÞ ¼
1

2mþ 1

Xkþm

j¼k� m

max jlðLðsÞd;kÞj; ð5Þ

and the procedure of internal averaging (without external averaging) yields Eq (3).

Example 3. Let us consider the following time series: x = (x1, . . ., x7) = (1, 3, 2, 0, 4, 3, 1); y
= (y1, . . ., y7) = (2, 1, 0, 4, 3, 1, 1) and let us compute p4(1, 2, 1).

A schematic diagram illustrating the computational procedures of internal and external

smoothing is presented in Fig 5. First of all, the perfect matrix of Lagrange differences is

constructed around k = 4: Lð1Þ1;4 ¼
0 4 � 3

2 � 0 4

 !

. The eigenvalues of Lð1Þ1;4 are: λ1� −0.4495;

λ2� 4.4495. Thus, max jlðLð1Þ1;4Þj � 4:4495.

Next, Lð1Þ2;4 ¼
0 3 � 1

3 � 1 4

 !

. The eigenvalues of Lð1Þ2;4 are: λ1� −0.8284; λ2� 4.8284.

Thus, max jlðLð1Þ2;4Þj � 4:8284.

Since Δ = 2, the procedure of internal smoothing yields: p4(1, 2, 0)� 0.5(4.4495 + 4.8284) =

4.6389.
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Since m = 1, computations must be repeated for k = 3 and k = 5. Lð1Þ1;3 ¼
2 0 � 4

3 � 1 0

 !

;

λ1,2� 1 ± 2.6458i; max jlðLð1Þ1;3Þj � 2:8284. Lð1Þ2;3 ¼
2 4 � 3

1 � 2 0

 !

; λ1,2 = 1;

max jlðLð1Þ2;3Þj ¼ 1. Now p3(1, 2, 0)� 0.5(2.8284 + 1) = 1.9142.

Lð1Þ1;5 ¼
4 3 � 1

0 � 4 3

 !

; λ1,2� 3.5 ± 2.7839i; max jlðLð1Þ1;5Þj � 4:4721.

Lð1Þ2;5 ¼
4 1 � 1

2 � 0 3

 !

; λ1 = 3; λ2 = 4; max jlðLð1Þ2;5Þj ¼ 4. Now p5(1, 2, 0)� 0.5(4.4721 + 4) =

4.236.

Finally, p4ð1; 2; 1Þ ¼
1

3
ðp3ð1; 2; 0Þ þ p4ð1; 2; 0Þ þ p5ð1; 2; 0ÞÞ � 3:5964

Now, it is possible to perform the minimization of RMSE in respect of s and Δ (Table 3).

Note that this optimization is performed for the first person only (whose load diagram is pre-

sented in Fig 4). In order to lessen the extent of this computational experiment we set m = Δ
and vary the internal and external smoothing from 1 to 8; the computation of RMSE is per-

formed for all 18 perfect matrices of Lagrange differences (Table 3).

It can be observed that a moderate internal and external smoothing (m = Δ = 3) helps to

minimize RMSE for almost all perfect matrices of Lagrange differences. In fact, the average

value of RMSE (averaged for s = 1, 2, . . ., 18) is minimal at m = Δ = 3 (Table 3). Therefore, we

will fix m = Δ = 3 for further computations.

Fig 5. A schematic illustration of internal and external smoothing. ParametersΔ = 2 and m = 1.

https://doi.org/10.1371/journal.pone.0174279.g005
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Also, it can be observed that the RMSE value has a lower dependency on s than Δ (Table 3).

Apparently, effects induced by the smoothing operation have a greater impact to the RMSE

than the parameter s (at a fixed smoothing window). Some minimal smoothing helps to

remove the noise and to minimize the RMSE (at Δ = 3). However, wider smoothing windows

distort the signal [22] (the signal loses the variability, the effect of a time delay is introduced).

Visualization of the load and the recovery processes

Table 4 shows that the lowest RMSE value is achieved at m = Δ = 3 and s = 3 (the third perfect

matrix of Lagrange differences). The variation of pk(3, 3, 3) (normalized into interval [0, 1]) is

illustrated in Fig 6.

Fig 6 shows the variation of the optimal parameter pk, reconstructed using the optimal

matrix of Lagrange differences and optimal smoothing. Yet, Fig 6 reveals interesting features.

It is well known that the “collapse of complexity” happens with the heartbeat time series at dif-

ferent pathologies [23, 24]. The parameter pk reaches zero at the moment when person #1 can-

not continue the bicycle ergometry test at the maximal load. But pk is the modulus of the

maximal eigenvalue of the perfect matrix of Lagrange differences. The complexity of the sys-

tem is minimal when the modulus of the maximal eigenvalue of the matrix of differences

becomes minimal. That also explains why the load diagram (Fig 4) represents the scaled

inverse values of the actual load.

The variation of the parameter pk in Fig 6 also reveals an interesting phenomenon. The sys-

tem (represented by pk) tries to stabilize around the scaled normalized constant value of the

load—that is particularly clear around the load level 0.8 in Fig 6. This constant value of the

Table 3. RMSE values for person #1.

s, Δ 1 2 3 4 5 6 7 8

1 0.0948 0.0823 0.0818 0.0846 0.0848 0.0865 0.0891 0.0910

2 0.0907 0.0820 0.0805 0.0838 0.0870 0.0880 0.0910 0.0915

3 0.0907 0.0820 0.0807 0.0843 0.0866 0.0883 0.0908 0.0917

4 0.0953 0.0824 0.0817 0.0846 0.0860 0.0867 0.0896 0.0911

5 0.0920 0.0817 0.0813 0.0854 0.0888 0.0899 0.0926 0.0929

6 0.0922 0.0816 0.0811 0.0850 0.0873 0.0895 0.0922 0.0926

7 0.0904 0.0832 0.0814 0.0850 0.0881 0.0908 0.0912 0.0927

8 0.0905 0.0832 0.0813 0.0848 0.0877 0.0904 0.0909 0.0927

9 0.0946 0.0835 0.0826 0.0850 0.0879 0.0894 0.0902 0.0916

10 0.0947 0.0836 0.0827 0.0851 0.0881 0.0894 0.0902 0.0918

11 0.0918 0.0826 0.0825 0.0866 0.0896 0.0918 0.0918 0.0937

12 0.0917 0.0826 0.0824 0.0863 0.0893 0.0915 0.0914 0.0934

13 0.0898 0.0819 0.0828 0.0833 0.0853 0.0884 0.0892 0.0903

14 0.0896 0.0821 0.0827 0.0836 0.0856 0.0886 0.0894 0.0904

15 0.0945 0.0821 0.0825 0.0829 0.0853 0.0868 0.0881 0.0894

16 0.0947 0.0822 0.0829 0.0830 0.0855 0.0871 0.0883 0.0896

17 0.0909 0.0817 0.0850 0.0856 0.0882 0.0908 0.0908 0.0923

18 0.0911 0.0818 0.0845 0.0859 0.0885 0.0909 0.0910 0.0924

Average RMSE 0.0922 0.0824 0.0822 0.0847 0.0872 0.0892 0.0904 0.0917

Different matrices s and parameters Δ are presented in rows and columns respectively.

https://doi.org/10.1371/journal.pone.0174279.t003
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load can be interpreted as a stable fixed point—which losses its stability due to the fatigue. Sim-

ilar loss of stability in a quasi-isometric arm-curl exercise reflected by the increase of low-fre-

quency fluctuations is observed in [25].

It is well known that phase maps of bioelectrical signals my useful for the investigation of

dynamical processes [26]. In order to better represent the attractors (and to assess their stabil-

ity) we also visualize the dynamical processes of Fig 6 in a phase plane. Time-delay embedding

[27] is used to visualize temporary stabilization and the subsequent loss of the stability of

attractors in the phase plane (Fig 7); the optimal time delay τ is determined by using the tech-

nique presented in [28] (τ = 4 RR intervals). The normalized loads at 1, 0.8, 0.6, 0.4, 0.2 and 0

are shown as star type markers in Fig 7.

Table 4. RMSE values.

s, Person 1 2 3 4 5 6 7 8 9 10

1 0.082 0.322 0.119 0.109 0.094 0.126 0.112 0.219 0.124 0.088

2 0.081 0.324 0.119 0.103 0.095 0.125 0.112 0.221 0.123 0.088

3 0.081 0.318 0.118 0.107 0.095 0.114 0.112 0.203 0.118 0.088

4 0.082 0.317 0.118 0.105 0.096 0.121 0.113 0.204 0.118 0.088

5 0.081 0.325 0.118 0.105 0.095 0.111 0.112 0.208 0.121 0.087

6 0.081 0.325 0.119 0.101 0.095 0.105 0.112 0.208 0.120 0.087

7 0.081 0.317 0.119 0.105 0.099 0.118 0.111 0.224 0.130 0.096

8 0.081 0.318 0.119 0.101 0.099 0.127 0.112 0.225 0.126 0.096

9 0.083 0.315 0.118 0.106 0.101 0.109 0.112 0.208 0.128 0.096

10 0.083 0.316 0.118 0.102 0.103 0.136 0.113 0.208 0.125 0.096

11 0.083 0.321 0.117 0.102 0.102 0.120 0.112 0.211 0.127 0.097

12 0.082 0.321 0.117 0.102 0.101 0.102 0.112 0.210 0.127 0.098

13 0.083 0.323 0.133 0.112 0.093 0.140 0.113 0.215 0.134 0.090

14 0.083 0.324 0.134 0.109 0.094 0.138 0.113 0.217 0.133 0.089

15 0.083 0.322 0.136 0.110 0.095 0.134 0.113 0.200 0.130 0.089

16 0.083 0.321 0.136 0.109 0.095 0.137 0.113 0.200 0.130 0.088

17 0.085 0.326 0.134 0.106 0.095 0.124 0.114 0.203 0.132 0.090

18 0.085 0.327 0.134 0.104 0.095 0.122 0.114 0.204 0.131 0.088

The parameters are m = Δ = 3, different matrices s (rows) and persons 1 to 10 (columns).

https://doi.org/10.1371/journal.pone.0174279.t004

Fig 6. Load target function and optimal parameter values for the person #1.

https://doi.org/10.1371/journal.pone.0174279.g006
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Temporal stabilization of pk around 0.8 fixed-point attractor is especially well expressed in

Fig 7. It is clear that person #1 would be able to continue the bicycle ergometry test for a much

longer time at the load equal to 0.8. However, the increased load (to 0.6) forces the system to

re-organize (Fig 7). Note that these reorganization processes are interpreted and visualized just

by using two time series—RR and JT interval sequences.

The reorganization process to the 0.6 fixed-point attractor is rather complex. Initially, the

system tries to loop around a non-existing attractor slightly higher than 0.6—then goes

through some transients—and settles around 0.6 (Fig 7). Again, it is clear that person #1 could

continue the exercise much longer at the load 0.6.

However, the load is again increased to 0.4. Now, the system quickly converges to the 0.4

fixed-point attractor—and the complexity of the transient processes is much lower compared

to the previous transitions (Fig 7). Again, person #1 could continue the exercise for a longer

time than he is allowed.

But the convergence of the process to 0.2 fixed-point attractor is much more complicated—

in fact the sequence of pk never stabilizes around 0.2 (Fig 7). It seems that person #1 would not

be able to continue the load at 0.2 much longer than he already did. The transition to the 0

fixed-point attractor never happens. Instead “the collapse of complexity” happens and person

#1 terminates the bicycle ergometry test.

It is equally interesting to observe the recovery processes right after the bicycle ergometry

test is terminated. The inverse effect of the “collapse of complexity” is observed in Fig 8. The

trajectory not only moves away from the point of collapse—the complexity of the trajectory

itself is drastically changes over time.

Fig 7. Phase plane of the optimal parameter series pk during the load. The time delay is τ = 4.

https://doi.org/10.1371/journal.pone.0174279.g007
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Initially, the trajectory rapidly moves towards a temporarily stable attractor around 0.45

(Fig 8). However, this attractor loses the stability as the recovery processes continue. Finally,

the system’s trajectory plots a chaotic attractor around 0.8. Such chaotic behavior of the heart

could be considered as the validation of the presented model—since it is well known that heart

is a chaotic system [29, 30].

Further discussions and concluding remarks

A computational technique for visualization of complex transient processes of the heart

parameters (RR and JT) is developed in this paper. It is based on the extensive application of

novel algorithms and concepts originating from the broad field of nonlinear systems science

and engineering. A natural question is whether such complex computations are required—

maybe straightforward visualization of RR and JJ in a phase plane would reveal similar

relationships?

The variation of RR—JT intervals during the bicycle ergometry test (for the first person) is

visualized in Fig 9. Unfortunately, Fig 9 reveals essentially only a single relationship—RR (and

JT) intervals do become shorter at the load.

This paper focuses on the development of a novel visualization technique of relationships

between RR and JT intervals. But it is unclear if similar information on the self-organization of

the heart system during the load and the recovery could not be retrieved from other cardiac

intervals (for example RR and QRS; RR and QT). However, it appears that RR and QRS, RR

and QT intervals yield completely different representations (S2 Appendix).

Fig 8. Phase plane of the optimal parameter series pk after the load. The time delay is τ = 4.

https://doi.org/10.1371/journal.pone.0174279.g008
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An important aspect of the presented computational technique is that an optimal set of

parameters (s, m and Δ) is reconstructed for every individual person based on his RR, JT time

series and the load data. The resulting optimal time series p(s, m, Δ) minimizes the individual

load target function and is used for visual characterization of the self-organization of the heart

system.

From the computational point of view, it would be possible to further minimize the differ-

ences between p(s, m, Δ) and the load target function by selecting optimal parameters s, m and

Δ for each individual load step (not for the whole load history data). However, such an

approach is not used due to two important reasons.

Firstly, the optimal time series p(s, m, Δ) would be a discontinuous function (at the time

moments when the load is changed). That would complicate the interpretation of the graphical

phase diagrams. Secondly, it would be unclear which parameter set should be used for the

recovery. In other words, such splitting of the optimization procedure would not allow to visu-

alize the recovery processes—which are considered to be equally (or even more) important

than the load processes [31].

Another important aspect of this study is that we have identified the best fitting perfect

matrix of Lagrange differences for the first person (s = 3). We do speculate that the particular

number of the perfect matrix of Lagrange differences may serve as an identifier of dynamical

processes taking place in the heart system during load and recovery.

The following computational experiment is performed for the illustration of this hypothe-

sis. We use the same parameter (the maximum absolute value of the eigenvalues of a perfect

matrix of Lagrange differences), the internal and the external smoothing (m = Δ = 3)—but

instead of fixing the third matrix of Lagrange differences (s = 3) we perform the minimization

of RMSE for every person for every possible perfect matrix of Lagrange differences (Table 4).

Fig 9. Phase plane of the RR and JT interval series.

https://doi.org/10.1371/journal.pone.0174279.g009
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It is interesting to note that RMSE values for the second person (for all s values) are more

than three time higher compared to the RMSE values for the first person (Table 4). But the

same effect can be observed in Table 2 and could be probably explained by a guess that the

self-organization of the heart system for the second person does function differently.

Nevertheless, it is possible to reconstruct a best fitting perfect matrix of Lagrange differ-

ences for every single person (Table 4; S1 Appendix). As mentioned previously, we hypothesize

that the sequential number of this matrix is a specific identifier of the dynamical relationships

and self-organization taking place in a particular person’s heart system.

However, the proposed technique for visualization of relationships between RR and JT

intervals does not propose a single marker which can detect such conditions as atrial fibrilla-

tion, supraventricular tachycardia, or sudden cardiac death. Instead, we propose a computa-

tional technique which could reveal the complexity of the self-organization of the heart system

during the load and the recovery processes. This complexity is represented by the parameter p
(s, m, Δ). A physician can observe the “collapse of complexity” at the end of the bicycle stress

test, temporary stabilization of transient attractors during the load, rich dynamical behavior of

the heart system during the recovery process.

We doubt if it is possible to quantity such complex transient dynamics by a single bio-

marker. However, development of pattern classification algorithms for automatic analysis of

transient orbits generated by p(s, m, Δ) (and relating these patterns to novel markers for early

disease diagnosis) remains a definite objective of future research.

Supporting information

S1 Appendix. Detailed analysis for persons #2 − 5. Target load functions, phase planes dur-

ing the load and after the load for persons #2, #3, #4 and #5.

(PDF)

S2 Appendix. Analysis using RR, QRS, QT intervals. Other cardiac intervals yield different

representation of the self-organizational processes.

(PDF)

S1 Fig. Visual results for persons #2 − 5. Target load functions, phase planes during the load

and after the load for persons #2 (parts a, b, c), #3 (parts d, e, f), #4 (parts g, h, i) and #5 (j, k, l).

(TIF)

S2 Fig. Visual analysis using RR-QRS and RR-QT intervals. Using RR-QRS intervals: target

load function and pk(2, 3, 3) (part a), phase plane during the load (part b), after the load (part

c), and straightforward mapping RR-QRS (part d) for person #1. Using RR-QT intervals: target

load function and pk(9, 3, 3) (part e), phase plane during the load (part f), after the load (part

g), and straightforward mapping RR-QT (part h) for person #1.

(TIF)

S1 Data. Original data files. The supporting information files include unprocessed data from

ECG analysis system “Kaunas-Load” for all subjects who were part of this research.

(ZIP)
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8. Djoussé L, Rautaharju PM, Hopkins PN, Whitsel EA, Arnett DK, Eckfeldt JH, et al. Dietary Linolenic

Acid and Adjusted QT and JT Intervals in the National Heart, Lung, and Blood Institute Family Heart

Study. Journal of the American College of Cardiology. 2005; 45(10):1716–1722. https://doi.org/10.

1016/j.jacc.2005.01.060 PMID: 15893192

9. Electrophysiology TFotESoCtNASoP. Heart Rate Variability. Circulation. 1996; 93(5):1043–1065.

https://doi.org/10.1161/01.CIR.93.5.1043 PMID: 8598068

10. Malik M, Färbom P, Batchvarov V, Hnatkova K, Camm AJ. Relation between QT and RR intervals is

highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart.

2002; 87(3):220–228. https://doi.org/10.1136/heart.87.3.220 PMID: 11847158

New approach for visualization of relationships between RR and JT intervals

PLOS ONE | https://doi.org/10.1371/journal.pone.0174279 April 5, 2017 17 / 18

https://doi.org/10.1371/journal.pone.0153636
https://doi.org/10.1371/journal.pone.0153636
http://www.ncbi.nlm.nih.gov/pubmed/27093636
https://doi.org/10.1111/j.1542-474X.1997.tb00325.x
https://doi.org/10.1016/j.amjcard.2003.12.055
https://doi.org/10.1016/j.amjcard.2003.12.055
http://www.ncbi.nlm.nih.gov/pubmed/15081446
https://doi.org/10.1016/0002-8703(85)90564-2
https://doi.org/10.1016/0002-8703(85)90564-2
http://www.ncbi.nlm.nih.gov/pubmed/3883731
https://doi.org/10.1111/j.1540-8167.2006.00408.x
https://doi.org/10.1111/j.1540-8167.2006.00408.x
http://www.ncbi.nlm.nih.gov/pubmed/16643414
https://doi.org/10.1371/journal.pone.0019400
https://doi.org/10.1371/journal.pone.0019400
http://www.ncbi.nlm.nih.gov/pubmed/21625487
https://doi.org/10.1001/jama.289.16.2120
http://www.ncbi.nlm.nih.gov/pubmed/12709470
https://doi.org/10.1016/j.jacc.2005.01.060
https://doi.org/10.1016/j.jacc.2005.01.060
http://www.ncbi.nlm.nih.gov/pubmed/15893192
https://doi.org/10.1161/01.CIR.93.5.1043
http://www.ncbi.nlm.nih.gov/pubmed/8598068
https://doi.org/10.1136/heart.87.3.220
http://www.ncbi.nlm.nih.gov/pubmed/11847158
https://doi.org/10.1371/journal.pone.0174279


11. Bonomini MP, Arini PD, Gonzalez GE, Buchholz B, Valentinuzzi ME. The allometric model in chronic

myocardial infarction. Theoretical Biology and Medical Modelling. 2012; 9(1):1. https://doi.org/10.1186/

1742-4682-9-15

12. Zhou SH, Wong S, Rautaharju PM, Karnik N, Calhoun HP. Research and Applications in Computerized

Electrocardiology Should the JT rather than the QT interval be used to detect prolongation of ventricular

repolarization? Journal of Electrocardiology. 1992; 25:131–136.

13. Rautaharju PM, Zhang ZM, Prineas R, Heiss G. Assessment of prolonged QT and JT intervals in ven-

tricular conduction defects. The Americal Journal of Cardiology. 2004; 93(8):1017–1021. https://doi.org/

10.1016/j.amjcard.2003.12.055 PMID: 15081446

14. Misigoj-Durakovic M, Durakovic Z, Prskalo I. Heart rate-corrected QT and JT intervals in electrocardio-

grams in physically fit students and student athletes. Annals of Noninvasive Electrocardiology. 2016; 21

(6):595–603. https://doi.org/10.1111/anec.12374 PMID: 27194642

15. Vainoras A, Gargasas L, Ruseckas R, Miskinis V, Jurkoniene R, Schwela H, et al. Computerized exer-

cise electrocardiogram analysis system “Kaunas-Load”. Proceedings of the XXIV International Con-

gress on ELECTROCARDIOLOGY; 1997. p. 253–256.

16. Korsakas S, Vainoras A, Gargasas L, Ruseckas R, Miskinis V, Jurkoniene R. The computerized analy-

sis of cardiac signals. Biomedizinische technik: Proceedings; 1997. p. 114–117.

17. Slapikas R, Zaliunas R, Zabiela P, Vainoras A, Ablonskyte R, Bechtold H. Reproducibility of JTc and JT

dispersion in the serial standard electrocardiogram in patients with coronary artery disease and in

healthy controls. VI Asian-pacific symposium on cardiac pacing and electrophysiology: Proceedings;

1997. p. 405–408.

18. Gargasas L, Vainoras A, Ruseckas R, Jurkoniene R, Jurkonis V, Miskinis V. A new software for ECG

monitoring system. 6th Nordic Conference on eHealth and Telemedicine: Proceedings; 2006. p. 255–

256.

19. Zywietz Ch, Gargasas L, Vainoras A, Jurkoniene R, Cizas M. ECG computer analysis: results of diag-

nostic performance tests with the Kaunas-03 program. Annals of the Kaunas Institute of Cardiology.

1994; 1(1):66–70.

20. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures.

Analytical chemistry. 1964; 36(8):1627–1639. https://doi.org/10.1021/ac60214a047

21. Von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic acids research.

1986; 14(11):4683–4690. https://doi.org/10.1093/nar/14.11.4683 PMID: 3714490

22. Orfanidis SJ. Introduction to Signal Processing. Prentice Hall, Inc., 2009.

23. Henriques TS, Mariani S, Burykin A, Rodrigues F, Silva TF, Goldberger AL. Multiscale Poincar{é} plots
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