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Abstract

Hepatocellular carcinoma (HCC) is the second most common cause of cancer death

worldwide, but is still lacking sensitive and specific biomarkers for early diagnosis and prog-

nosis. In this study, we applied targeted massively parallel semiconductor sequencing to

assess methylation on a panel of genes (FBLN1, HINT2, LAMC1, LTBP1, LTBP2, PSMA2,

PSMA7, PXDN, TGFB1, UBE2L3, VIM and YWHAZ) in plasma circulating cell-free DNA

(cfDNA) and to evaluate the potential of these genes as HCC biomarkers in two different

series, one from France (42 HCC cases and 42 controls) and one from Thailand (42 HCC

cases, 26 chronic liver disease cases and 42 controls). We also analyzed a set of HCC and

adjacent tissues and liver cell lines to further compare with ‘The Cancer Genome Atlas’

(TCGA) data. The methylation in cfDNA was detected for FBLN1, PSMA7, PXDN and VIM,

with differences in methylation patterns between cases and controls for FBLN1 and VIM.

The average methylation level across analyzed CpG-sites was associated with higher odds

of HCC for VIM (1.48 [1.02, 2.16] for French cases and 2.18 [1.28, 3.72] for Thai cases), and

lower odds of HCC for FBLN1 (0.89 [0.76, 1.03] for French cases and 0.75 [0.63, 0.88] for

Thai cases). In conclusion, our study provides evidence that changes in VIM and FBLN1

methylation levels in cfDNA are associated with HCC and could represent useful plasma-

based biomarkers. Also, the potential to investigate methylation patterns in cfDNA could

bring new strategies for HCC detection and monitoring high-risk groups and response to

treatment.
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Introduction

Liver is the fifth most common organ site for cancer in men and the ninth in women. The liver

cancer is frequently diagnosed at a late stage and has a poor prognosis (overall ratio of mortal-

ity to incidence of 0.95) making it the second most common cause of death from cancer glob-

ally. Hepatocellular carcinoma (HCC), which originates from hepatocytes, represents over

80% of primary liver cancer cases and is the third most frequent cause of cancer-related death

worldwide, with considerable geographic variation in rates and etiology [1,2,3]. Most areas of

high incidence are in low-resource countries accounting for about 80% of the new liver cancer

cases worldwide [1].

In the low-resource contexts, liver biopsies are often not feasible and the diagnosis of HCC

commonly relies on a combination of clinical symptoms, ultrasound, and analysis of α-feto-

protein (AFP) levels in serum [4]. However, AFP remains unsatisfactory for diagnosis and

screening as such high levels of AFP are detected only in a subset of patients and AFP levels

above 100 ng/mL may be observed in some patients with non-cancer chronic liver diseases [5].

For these reasons, the American Association for the Study of Liver Diseases (AASLD) does not

recommend the use of AFP testing as a part of the diagnostic criteria for HCC and considers

imaging techniques as more reliable for diagnosis of HCC [6]. Nevertheless, due to the lack of

alternative plasma marker easily applicable in low-resource context, AFP is still widely used

for HCC diagnosis with a cutoff value of 200 ng/mL proposed by the Asian Pacific Association

for the Study of the Liver [3]. Other markers have also been proposed for diagnosis of HCC,

including lens culinaris-reactive AFP (AFP-L3), HCC-specific gamma- glutamyltransferase

(HS-GGT) and glypican-3 (GPC3) [7]. To date, most of these markers have not shown better

performance for detection of HCC than AFP or AFP combined with ultrasound [4].

HCC carcinogenesis is a multi-step process that usually arises in background chronic meta-

bolic, inflammatory and/or infectious liver disease [2]. Epigenetic mechanisms have been

reported to play an important role in the development of HCC and aberrant DNA methylation

patterns have been found in the earliest stages of hepatocarcinogenesis and increasing during

the tumor progression [8]. We recently showed that massively parallel semiconductor deep

sequencing could be used to detect and analyze methylation changes in circulating cell-free

DNA (cfDNA) [9]. In the present study, we applied this targeted analysis to investigate cfDNA

methylation in plasma specimens from HCC case-control studies from France and Thailand,

two regions with differing disease prevalence and etiology. The aim of this study was to assess

cfDNA methylation in a panel of genes and evaluate their potential as novel biomarkers for

HCC diagnosis. We also analyzed a set of HCC and adjacent tissue samples as well as different

liver cell lines to further compare with ‘The Cancer Genome Atlas’ (TCGA) data in order to

explore the origin of methylation patterns in cfDNA methylation.

Materials and methods

Patient characteristics

Plasma specimens were collected and processed as previously described [10]. In France, blood

specimens and tissue samples were obtained from hospital-based controls and from patients

with HCC recruited at Hôpital Croix-Rousse in Lyon (France) between 2011 and 2012 and

HCC was diagnosed according to AASLD guidelines and Barcelona Clinic Liver Cancer stag-

ing system [11]. In Thailand, specimens were obtained from patients with HCC, with chronic

liver disease (including patients with chronic active hepatitis B) and hospital-based controls

recruited at the Cancer Control Unit of the National Cancer Institute of Thailand, Bangkok

between 2008 and 2010. Differential diagnosis of HCC versus cholangiocarcinoma was
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established by a combination of clinical examination, imaging using ultrasonography, comput-

erized tomography (CT) or Magnetic Resonance Imaging (MRI), biochemistry (AFP and liver

function enzymes testing) and histological confirmation on a small subset of patients from

whom needle biopsies were available. A total of 194 plasma samples were utilized for methyla-

tion analysis of which 42 HCC patients and 42 hospital-based controls without liver symptoms

from France (S1 Table) and 42 HCC patients, 26 chronic liver disease patients and 42 hospital-

based controls from Thailand (S2 Table). From France, also nine tumor and paired adjacent

non-tumor tissue samples were acquired from a different set of HCC patients from the same

case series (S3 Table). All adjacent non-tumor tissues were cirrhotic. In addition to tumor

samples, six liver cell lines were analysed: HepG2, HepG2.2.15, Hep3B, PLC/PRF/5, Mahlavu

and HepaRG. The conditions for the cell culture are described in the supplementary material

(S1 File). Written consent was obtained from all participants and all steps of the study (patient

recruitment, consent procedure, sample collection and processing, methylation analysis and

data analysis) were approved by the Institutional Review Boards of the Thailand National Can-

cer Institute and the International Agency for Research on Cancer.

DNA extraction and bisulfite treatment

The cfDNA was extracted from 1mL of plasma using the QIAamp circulating nucleic acid kit

(Qiagen, Valencia, CA, USA) with the QIAvac 24 Plus vacuum manifold, following manufac-

turer’s instructions. CfDNA was quantified by the Quant-iT PicoGreen dsDNA assay (Life

Technologies), the mean DNA concentration was for controls from France 0.16 ng/μl (0.04–

1.33 ng/μl) and from Thailand 0.35 ng/μl (0.01–0.69 ng/μl), for the chronic liver disease

patients 0.32 ng/μl (0.10–0.66 ng/μl) and for the HCC patients from France 0.37 ng/μl (0.1–

2.76 ng/μl) and from Thailand 1.08 ng/μl (0.10–3.14 ng/μl). DNA from tissue samples was

extracted using QIAamp DNA Mini Kit (Qiagen) and from cell pellets using Qiagen AllPrep

DNA/RNA Mini Kit (Qiagen) following manufacturer’s instructions and quantified by Nano-

Drop (Thermo Fisher Scientific). From all samples, 5–10 ng of DNA was used for the bisulfite

transformation by EZ DNA Methylation-Gold Kit (Zymo Research) and the manufacturer’s

protocol was followed.

Primer design and amplification of targets

The primers were designed for one strand using Methprimer software [12] with default parame-

ters to amplify sequences of 70 to 150 bp spanning the proximal promoter CpG island regions

of Fibulin 1 (FBLN1), Histidine Triad Nucleotide-Binding Protein 2 (HINT2), Laminin, gamma 1
(LAMC1), Latent-transforming growth factor beta-binding protein 1 (LTBP1), Latent transform-
ing growth factor beta binding protein 2 (LTBP2), Proteasome subunit alpha type-2 (PSMA2), Pro-
teasome subunit alpha type-7 (PSMA7), Peroxidasin Homolog (PXDN), Transforming Growth
Factor Beta-1 (TGFB1), Ubiquitin-conjugating enzyme E2 L3 (UBE2L3), Vimentin (VIM) and

Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), (see

S4 Table for primer sequences and targeted regions). The methylation profiles of targets were

not known at the time of the primer design. The targets were chosen to evaluate potential HCC

biomarkers ([10], on-going work and the literature [13,14,15,16,17,18,19,20]). Multiplex PCR

reactions were designed using the Multiplx online tool (http://bioinfo.ebc.ee/multiplx) and the

resulting three primer mixes were tested for incompatibilities with PriDimerChek (http://

biocompute.bmi.ac.cn/MPprimer/primer_dimer.html). For target amplification, 1–2 ng of

bisulfite treated cfDNA were used in PCR reactions with the GoTaq1 HotStart DNA polymer-

ase (Promega Corporation) and with the program: 30s at 94˚C, 3 cycles of 30s at 58.5˚C, 30s

at 72˚C, subsequently, the annealing temperature was decreased 0.5˚C every 3 cycles until

VIM and FBLN1 methylation in cfDNA as potential HCC biomarkers

PLOS ONE | https://doi.org/10.1371/journal.pone.0174265 March 23, 2017 3 / 15

http://bioinfo.ebc.ee/multiplx
http://biocompute.bmi.ac.cn/MPprimer/primer_dimer.html
http://biocompute.bmi.ac.cn/MPprimer/primer_dimer.html
https://doi.org/10.1371/journal.pone.0174265


reaching 55.5˚C; then 15 cycles of 30s at 94˚C, 45s at 50˚C, 1 min at 72˚C, and a final extension

of 10 min at 72˚C.

Sequencing by Ion Torrent™ PGM sequencer and methylation analysis

To verify the success of the PCR amplification and adjust for the quantity of reactions, 1 μL of

PCR reaction was loaded on a gel and the adjusted quantities were pooled by sample for equaliz-

ing target representation. Pools were purified with Agencourt AMPure beads with a ratio of

PCR products of 2:1 (Beckman Coulter Incorporated) and quantified by Qbit (Invitrogen Cor-

poration). Library preparation was done using 30 ng of pooled DNA and the NEBNext Fast

DNA Library Prep Set for Ion Torrent (New England Biolabs) following manufacturer’s

instructions. Individual barcodes (designed in-house and produced by Eurofins MWG Operon)

were ligated to each pool and followed by six PCR cycles and gel purification for sequencing.

The libraries were sequenced with the Ion Torrent™ PGM sequencer (Life Technologies) at deep

coverage (minimum 100 reads, mean read depth 2500, standard deviation 2700) using the Ion

OneTouch 200 Template Kit (versions v1 and v2) DL and Ion PGM Sequencing 200 Kit v2 with

the 316 chip kit (Life Technologies), following the manufacturer’s instructions. The cases and

controls were randomly distributed across different batches and analyzed blinded to the case-

control status.

The sequencing reads were aligned to the bisulfite-converted target genomic regions of all

genes (reference hg19) with the Ion Torrent Suite V3.4.2. The aligned BAM files were visual-

ized by Integrative Genomics Viewer (IGV) 2.2 (Broad Institute) [21]. A hotspot BED file con-

taining the position of the queried CpG sites and control cytosine bases (to verify the bisulfite

conversion efficiency) in the target regions was used to extract the read counts for CpG sites

and control cytosines using the HID SNP Genotyper Plugin (v3.0.0) on the Ion Torrent Suite.

The methylation index was counted as the percentage of cytosine reads of the total of cytosine

and thymine reads of each CpG and control cytosine site. Samples with methylation index val-

ues in the non-CpG control cytosines above 1% were considered as not fully bisulfite con-

verted and were excluded from the analysis [9].

Statistical analysis

For each participant, a methylation score was calculated for each gene by averaging the

observed methylation percentage for the CpG sites within each gene. Mean methylation pro-

portions and 95% confidence intervals were calculated separately for HCC patients, chronic

liver disease patients and controls, as well as chronic liver disease patients and controls com-

bined (non-HCC cases). Logistic regression was used to estimate odds ratios and 95% confi-

dence intervals for a 1 percentage point increment in methylation score. Analyses were

conducted separately for the Thailand and France case-control studies. All analyses were con-

ducted using R version 3.1.2 [22].

Analysis of the The Cancer Genome Atlas (TCGA) methylation data

Illumina HumanMethylation 450k level 1 data on 47 HCC patients were downloaded from

‘The Cancer Genome Atlas’ (TCGA, http://tcga-data.nci.nih.gov/). In total, 94 tumor and adja-

cent non-tumor samples were selected and processed into a paired analysis. Raw data (idat)

were filtered out for low quality data, normalized using the BMIQ method [23] and annotated

with hg18 ending with a set of 41 usable pairs. β-values for FBLN1 and VIM were extracted

from this subset. All analyses were performed using R (version 3.1.0) using wateRmelon and

minfi packages [24,25].
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Results

Methylation in circulating cfDNA was detected by massively parallel bisulfite sequencing for

FBLN1, PSMA7, PXDN and VIM, whereas for HINT2, LAMC1, LTBP1, LTBP2, PSMA2,

TGFB1, UBE2L3 and YWHAZ methylation was below the detection limit (1% of methylation

[9]). When comparing HCC cases with controls, we observed differences in methylation levels

of FBLN1 and VIM, whereas no differences were observed for PSMA7 and PXDN (S1 Fig) find-

ings for FBLN1 and VIM are further discussed below.

Methylation of FBLN1 and VIM in plasma DNA

After exclusion of samples for technical reasons, such as incomplete bisulfite conversion or

failed amplification, the methylation levels were analyzed for FBLN1 for 38 controls and 32

HCC patients from France and for 28 controls, 16 chronic liver disease patients and 22 HCC

patients from Thailand, and for VIM for 31 controls and 21 HCC patients from France and for

30 controls, 15 chronic liver disease patients and 19 HCC patients from Thailand. As stated

above, FBLN1 and VIM methylation patterns were found to be different between controls and

HCC patients for both France and Thailand (Figs 1–3). It is of note that for chronic liver dis-

ease patients from Thailand, the methylation patterns detected were similar to those observed

in the controls (Figs 2 and 3). There appeared to be no clear association between the methyla-

tion levels of these genes and the levels of AFP in plasma (S2 Fig). Higher mean methylation

levels were associated with greater odds of HCC for VIM, and lower odds of HCC for FBLN1,

though the latter association was only of borderline significance in the France series (Table 1).

Adjusting for age and sex did not materially affect these estimates. As information on HCC

clinical stage (according to the Barcelona Clinic Liver Cancer staging system) and etiology

were available only for the French cases we examined mean methylation levels by stage and eti-

ology in this series. As shown in Fig 4, although the results remained statistically borderline or

insignificant due to the small numbers and variation between cases, cases with higher HCC

stage appeared to have a consistently higher methylation levels for VIM and lower methylation

levels for FBLN1. Further analysis of DNA methylation data stratified by associated etiological

factors showed no significant differences between the strata (S3 Fig).

Methylation of FBLN1 and VIM in tissue samples and TCGA data

FBLN1 and VIM methylation was also studied in liver tissues (including HCC tissue and paired

adjacent non-tumor tissue) from separate nine cases from the French case series. The mean of

the differences between paired tumor and non-tumor methylation percentages was -15% (95%

CI [–32, 2]) for FBLN1 and 19% (95% CI [7, 32]) for VIM, consistent with the changes in meth-

ylation detected in cfDNA. The pattern of methylation in cfDNA from controls was similar to

the methylation in adjacent non-tumor tissue samples (Figs 2 and 3). Comparison with the

methylation data available in the TCGA for FBLN1 and VIM methylation in HCC confirmed

the differential methylation patterns of these genes in HCC and in control tissues (Fig 2D,

Fig 3D).

Methylation of FBLN1 and VIM in liver cell lines with different TP53

mutation status

As HBV alters the methylation and interacts with TP53 in HCC, we next analyzed the methyla-

tion of FBLN1 and VIM in six liver cell lines (HepaRG, HepG2, HepG2/2.2.15, Hep3B, Mah-

lavu and PCL/PRF/5) with different TP53 mutation and HBV-status. For FBLN1 the overall

methylation pattern resembled the one detected in plasma and tissue samples, with the
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exception of HepG2 and HepG2/2.2.15 that had lower mean methylation levels (10.1% and

56.2% respectively), whereas for VIM the methylation pattern seemed to vary with TP53 muta-

tion status. For the cell lines with wild type TP53 (HepaRG, HepG2 and HepG2/2.2.15), the

Fig 1. Mean methylation proportions and 95% confidence intervals for FBLN1 and VIM in France and in Thailand. HCC = hepatocellular carcinoma,

CTR = control, CLD = chronic liver disease.

https://doi.org/10.1371/journal.pone.0174265.g001
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methylation followed the pattern detected in plasma and tumor tissue samples. However, for

cell lines that were deficient or mutated for TP53 (Hep3B, Mahlavu and PCL/PRF/5), VIM
methylation was below the detection limit or very low (Fig 5).

Methylation of VIM and TP53 mutations

As the VIM methylation in liver cell lines appeared to be associated with TP53 mutation status,

we analyzed the HCC tissues for TP53 mutations in exons 4–10. TP53 mutations were detected

in two out of 9 tumors (22%). HCC case 9T carried p.E271V missense mutation that according

to the TP53 database [26] is causing p53 to be non-functional for DNA-binding, and HCC

case 10T carried p.L137Q missense mutation that according to the TP53 database does not

change the functionality of the p53 protein. The mean methylation level for 9T was 6.1%,

whereas for 10T it was 52.3%. Also in the TCGA dataset, VIM methylation on the CpG-sites

appeared to depend on the TP53 mutation status and type. Especially in early HCC tumor

Fig 2. VIM methylation in cfDNA. Cases from France (A) and Thailand (B), in tissue (C) (the arrows show the CpG-site analysed in TCGA data) and in

TCGA data (D) (the grey area represents the area analyzed by massively parallel sequencing in this study). CTR: controls, HCC: hepatocellular carcinoma

patients and CLD: chronic liver diseases. The error bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0174265.g002
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stages, stage I and II, the tumors with TP53 missense mutations appeared to have lower levels

of VIM methylation than the tumors with wild type TP53 (S4 Fig), but the association

remained statistically non-significant, possibly due to relatively small numbers.

Discussion

Epigenetic alterations, including global DNA hypomethylation and specific CpG island hyper-

methylation linked with inactivation of tumor suppressor genes, have been detected in many

types of human cancers, including HCC. These alterations can play a role in early carcinogene-

sis and therefore could potentially be useful as biomarkers for early detection, prognostic and

prediction of therapy responses [2,27]. Recently, there has been a growing interest in the pre-

dictive and prognostic value of detecting tumor-specific genetic and epigenetic alterations in

cfDNA from biofluids, such as plasma, serum or urine [28,29], as biofluids are more easily

available compared with primary tissues and can be analyzed regardless of the patient’s condi-

tion and disease progression. Since HCC carcinogenesis has a strong epigenetic component,

there is interest in studying epigenetic changes as potential biomarkers for HCC, especially

Table 1. Odds ratios (OR) of hepatocellular carcinoma and 95% confidence intervals (CI) for a per-

centage point increment in methylation.

Gene Country OR [95% CI] p

FBLN1 France 0.89 [0.76, 1.03] 1.03E-01

FBLN1 Thailand 0.75 [0.63, 0.88] 2.82E-05

VIM France 1.48 [1.02, 2.16] 9.43E-03

VIM Thailand 2.18 [1.28, 3.72] 7.74E-08

https://doi.org/10.1371/journal.pone.0174265.t001

Fig 3. FBLN1 methylation in cfDNA. Cases from France (A) and Thailand (B), in tissue (C) (the arrows

show the CpG-site analysed in TCGA data) and in TCGA data (D) (the grey area represents the area

analyzed by massively parallel sequencing in this study). CTR: controls, HCC: hepatocellular carcinoma

patients and CLD: chronic liver diseases. The error bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0174265.g003
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since HCC still lacks sensitive and robust biomarkers [7]. Specifically, the possibility of detect-

ing changes in HCC methylation in cfDNA ahead of conventional tumor diagnosis may help

to develop new strategies for early detection [30].

The aim of this study was to evaluate whether methylation changes related to HCC could be

detected in cfDNA using targeted massively parallel deep sequencing. A previous study demon-

strated that this technique could reproducibly detect and measure methylated cfDNA fragments

in the plasma and requires very little DNA for the analysis and therefore has the advantage com-

pared with the methylation arrays [9]. Here, the cfDNA methylation was analyzed in controls

and HCC cases in two different series, one from France and one from Thailand, corresponding

to two different epidemiological contexts for the development of HCC. The methylation in

cfDNA was detected for FBLN1, PSMA7, PXDN and VIM and the differences in the methylation

patterns were found for FBLN1 and VIM when comparing HCC cases to controls in both series,

whereas for PSMA7 and PXDN no differences were seen. FBLN1 and VIM methylation levels

did not appear to correlate with AFP levels or with distinct etiological factors. It is of note that

the differences in methylation between HCC cases and controls were larger in the Thailand

series compared to the France series. This may be attributable to the pathologically more

advanced stage of HCC at diagnosis of the cases from the Thailand series, due to the later detec-

tion of HCC in a context of limited access to diagnostic facilities [31].

VIM and FBLN1 are key components of the extracellular matrix (ECM) that are involved in

epithelium to mesenchyme transition (EMT). VIM is a member of intermediate filament pro-

tein family involved in cytoskeleton structure regulation associated with physiological and

Fig 4. Mean methylation proportions and 95% confidence intervals for HCC cases by tumor stages. A, B and C (Barcelona Clinic Liver Cancer

staging system) and controls from France.

https://doi.org/10.1371/journal.pone.0174265.g004
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pathological changes [32]. VIM has also been associated with signaling transduction and has

been proposed to transfer information from the ECM to the nuclei, which is an important step

in the EMT that leads to loss of cellular adhesion and invasion of tumor cells [33]. In human

cancers, aberrant methylation of VIM has been shown in colorectal cancer [34], gastric cancer

[35], bladder cancer [36], pancreatic cancer [37], cervical cancer [38] and breast cancer [39].

Detection of VIM methylation from DNA in serum, urine or feces has already been proposed

as a biomarker for colorectal, gastric and bladder cancers [36,40,41,42,43]. In HCC, aberrant

methylation of VIM has been suggested to be associated with primary HCC and correlated

with clinicopathological variables, including alpha-fetoprotein levels and maximal tumor size

[20]. FBLN1 is a secreted glycoprotein that is found in association with ECM structures includ-

ing fibronectin and elastin containing fibers and basement membranes and it has been impli-

cated in cellular transformation and tumor invasion [44,45]. FBLN1 has been reported to act

as a tumor suppressor gene and to be regulated by promoter hypermethylation in gastric and

prostate cancer [46,47], and in renal cell carcinoma and bladder cancer the FBLN1 promoter

hypermethylation has been shown to correlate with gene expression and tumor stage [44,48].

Also in HCC, the promoter hypermethylation of FBLN1 has been described and shown to be

associated with reduced expression of FBLN1 mRNA, advanced stage HCC, multiple tumors

and increased tumor size [17]. In our study the FBLN1 methylation was described to be lower

among the HCC cases than controls, this is probably due to the different area of proximal pro-

moter analyzed compared to the other studies. The altered methylation levels of VIM and

FBLN1 may be a consequence of remodeling of tissue structures associated with altered

Fig 5. VIM methylation in liver cell lines with different TP53 mutation and HBV–status. WT = wild type, R249S = missense mutation in the codon 249 of

TP53.

https://doi.org/10.1371/journal.pone.0174265.g005
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signaling transduction involved in hepatocyte/matrix interactions in EMT that could influence

ECM protein capacity to contribute or regulate migration, adhesion and invasion of cells dur-

ing a liver fibrogenic process and subsequent development of HCC.

As cfDNA can in principle originate from different tissue and organ locations, we also

sought to analyze FBLN1 and VIM methylation in liver tissues, including HCC tissue and adja-

cent non-tumor tissues, of patients recruited in the French series. The patterns of methylation

detected in tissues were similar to the one detected in cfDNA, which were both analyzed by us

using massively parallel sequencing methodology, and were consistent with the TCGA data

based on Illumina methylation arrays. Methylation levels were higher in HCC tissues com-

pared with cfDNA from HCC patients as would be expected, since the cfDNA originating

from HCC most likely represents only a fraction of the total cfDNA. The pattern of methyla-

tion in adjacent non-tumor tissue samples was similar to the methylation in cfDNA from con-

trols. These data provide indirect evidence that the methylation differences detected in cfDNA

are reflecting those in tumor cell DNA, even though we did not have the access to both plasma

and tissue samples from the same HCC patients. Of note, according to TCGA dataset, impor-

tant differences in methylation status between cases and controls are associated with a 100bp

region of VIM located immediately upstream of the region we analyzed by massively parallel

sequencing. Thus, including this region in analysis would be expected to reveal even larger dif-

ferences in VIM methylation than those reported here.

In liver cell lines, the FBLN1 methylation pattern was similar to the cfDNA and tissue,

whereas for VIM different methylation patterns were found. In cell lines harboring wild type

TP53, the VIM methylation pattern was similar to the one detected in cfDNA and in tissues,

even though overall methylation levels were much higher (near 100%). Strikingly in the cell

lines with TP53 mutation, either missense mutation or null TP53 genotype, the VIM methyla-

tion was very low (near 0%). This prompted us to analyze the TP53 mutation status also in the

HCC tissues. We characterized two tumors in our limited study set that harbored a missense

mutation, one with predicted transcriptionally functional mutation most likely representing a

“passenger” genetic event in the tumor, and the other with predicted non-functional mutation

likely to represent “driver” mutational event. The HCC tumor with predicted functional TP53
showed similar methylation pattern to the tumors with wild type TP53, whereas the tumor

with predicted non-functional TP53 had very low levels of methylation. These observations

seem to suggest that low methylation of VIM is associated with impaired p53 function. We

also compared the TP53 mutations to the VIM methylation in the TCGA dataset and overall,

the HCC tumors harboring TP53 mutation seemed to have lower levels of VIM methylation

than the tumors with wild type TP53, especially in the earlier tumor stages. Nevertheless, these

results remain preliminary due to the limited numbers of cases with TP53 mutations both in

our sample set and TCGA data sets.

Altogether, our study provides evidence that measuring methylation levels of VIM and

FBLN1 in plasma cfDNA may be effective for biomarker-based detection and follow-up of

HCC, contributing to novel strategies for improved diagnosis accuracy and patient surveil-

lance. The main limitations of this study are the heterogeneous stages at which HCC was diag-

nosed and differing basis for patient recruitment and diagnosis between the two different case

series. Also, we did not define sensitivity and specificity even though they are important mea-

sures that in general partly characterize the performance of diagnostic biomarkers. The calcu-

lation of sensitivity and specificity requires definition of a cut-point which defines high- and

low-probability groups which in turn necessitates a full decision theoretic analysis, that in turn

takes into account the baseline risk in the target population, as well as the relative benefits and

harms of false positive and false negative results. Such an analysis for methylation of VIM and

FBLN1 is premature at this stage, and beyond the scope of this manuscript. We have shown
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that the average methylation level across analyzed CpG-sites in cfDNA was associated with

higher odds of HCC for VIM (1.48 [1.02, 2.16] for French cases and 2.18 [1.28, 3.72] for Thai

cases), and lower odds of HCC for FBLN1 (0.89 [0.76, 1.03] for French cases and 0.75 [0.63,

0.88] for Thai cases) which represents a critical first step in the evaluation of these as potential

biomarkers. Larger validation studies, including prospective studies on groups of participants

with different risk factors and patterns of chronic liver disease, would be needed, allowing for

detailed analyses of association with tumor occurrence, size and clinical parameters. It would

also be important to evaluate how VIM and FBLN1 methylation patterns vary in liver metasta-

ses. Nevertheless, in the context of diagnosis and potential early detection of HCC, detecting

the changes to VIM and FBLN1 methylation patterns in plasma cfDNA holds a promise for

improved diagnosis and disease progression monitoring.
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