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Abstract

Subclinical chronic inflammation (SCI) is associated with impaired animal growth. Previous

work has demonstrated that olive-derived plant bioactives exhibit anti-inflammatory proper-

ties that could possibly counteract the growth-depressing effects of SCI. To test this hypoth-

esis and define the underlying mechanism, we conducted a 30-day study in which piglets

fed an olive-oil bioactive extract (OBE) and their control counterparts (C+) were injected

repeatedly during the last 10 days of the study with increasing doses of Escherichia coli lipo-

polysaccharides (LPS) to induce SCI. A third group of piglets remained untreated through-

out the study and served as a negative control (C-). In C+ pigs, SCI increased the circulating

concentration of interleukin 1 beta (p < 0.001) and decreased feed ingestion (p < 0.05) and

weight gain (p < 0.05). These responses were not observed in OBE animals. Although

intestinal inflammation and colonic microbial ecology was not altered by treatments, OBE

enhanced ileal mRNA abundance of tight and adherens junctional proteins (p < 0.05) and

plasma recovery of mannitol (p < 0.05) compared with C+ and C-. In line with these findings,

OBE improved transepithelial electrical resistance (p < 0.01) in TNF-α-challenged Caco-2/

TC-7 cells, and repressed the production of inflammatory cytokines (p < 0.05) in LPS-stimu-

lated macrophages. In summary, this work demonstrates that OBE attenuates the sup-

pressing effect of SCI on animal growth through a mechanism that appears to involve

improvements in intestinal integrity unrelated to alterations in gut microbial ecology and

function.

Introduction

Inflammation is a protective mechanism of higher organisms that aids in coping with stressors

and harmful environmental stimuli [1]. Despite being tremendously complex and involving a

variety of immune cells, blood vessels, and molecular mediators, inflammatory processes can

be distinguished into two somewhat different types [2; 3] termed herein clinical and subclinical
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chronic inflammation (SCI). In contrast to clinical inflammation resulting for instance from

injury or bacterial infection, SCI appears as a much milder but persistent response of the host’s

immune system [4].

Initial steps following immune system activation involve the release of pro-inflammatory

cytokines to counteract migration and spreading of potential antigens. Tumor necrosis factor

alpha (TNF-α) and interleukin 1 beta (IL1B) belong to the group of pro-inflammatory first

order cytokines, released in the early stages of inflammation [5]. Immediate effects of these

cytokines are numerous and include fever as well as recruitment, activation and differentiation

of immune cells at the site of ongoing inflammation [6; 7; 8]. Usually the period of cytokine

action is tightly regulated through various control mechanisms and thereby strictly limited to

the initial phases of the inflammation process [9]. However, under certain circumstances ele-

vated plasma levels of pro-inflammatory mediators are maintained throughout a prolonged

period ultimately manifesting as SCI. In addition to mediate tissue specific disorders, SCI can

cause significant metabolic alterations in the organism as a consequence of cytokine-induced

anorexia. Decreased feed intake along with a shift in nutrient utilization from maintenance,

growth or processes that involve anabolic conditions towards immune defense bring the meta-

bolic state of the animal into catabolism [10].

Even though there are several ways to treat inflammation with high efficiency (e.g., through

administration of corticosteroids or non-steroidal anti-inflammatory drugs), especially long

term application of these interventions usually comes along with numerous side effects. Fruits

and leaves of the olive oil tree (Olea europaea L.) contain significant amounts of hydrophilic

and lipophilic bioactives including flavones, phenolic acids, phenolic alcohols, secoiridoids

and hydroxycinnamic acid derivates [11; 12; 13; 14; 15]. As a result of their anti-inflammatory,

antioxidant, and antimicrobial actions, olive-derived plant bioactives have been shown to

cause several beneficial effects under pathological conditions [16; 17; 18; 19; 20], which renders

them promising feed additives.

We postulated that dietary supplementation with an olive-oil extract enriched in olive

bioactives (OBE) may contribute to counteract SCI-induced growth depression. To test this

hypothesis we used a model of experimentally induced chronic inflammation in weaned pigs

fed a diet supplemented with OBE. An emerging body of evidence indicates that plant bioac-

tives, including those from Olea europaea, exert partly their beneficial actions indirectly via
modulation of or modification by the intestinal microbiota [21]. Consequently, we also investi-

gated the impact that OBE has on gut microbiota of control and SCI-challenged pigs. Addi-

tionally, a series of cell culture studies were conducted to delineate mechanistic components of

the in vivomode of action of OBE.

Materials and methods

Animals and housing

A total of 31 male piglets (Landrace X Landrace X Pietrain) were housed in the nursing facili-

ties of Lucta S.A. (Girona, Spain). Piglets were weaned at 25.0 ± 1.0 d of age weighing 7.1 ± 1.2

kg. Animals were housed into individual pens (0.35 m2/pen) equipped with fully slatted plastic

floor plus a nipple drinker and a feeder with ad libitum access to water and a commercial non-

medicated pre-starter diet (Table 1). Room temperature was thermostatically set at 30˚C, and

the daily lighting photoperiod lasted 12 h (from 08:00 a.m. to 08:00 p.m.). Body weight (BW)

was measured at weaning (d 1) and d 7, 14, 19 and 29 after weaning. Feed consumption was

measured weekly until d 19 and daily from d 20 to d 29. Health status of individual animals

was assessed daily according to the Guidelines on the recognition of pain, distress and discom-

fort (Table 2, adapted from Morton and Griffiths, 1985 [22]). In case of death, animals were
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Table 1. Ingredients and chemical composition of the experimental diet.

Ingredient (g/kg air-dried diet)

Corn 320

Full fat soy 200

Wheat 136

Soybean meal concentrate (56% CP) 120

Lactose 86

Barley 64

Soybean oil 34

Monocalcium phosphate 12.7

Calcium carbonate 10.8

Salt 3

L-Lysine-HCl 5

Trace elements and vitamin premix a 4

DL-Methionine 2.2

L-Threonine 2

L-Tryptophan 0.3

Calculated analysis (% or as specified)

Crude protein (N x 6.25) 19.4

Digestible amino acidsb

Lysine 1.38

Methionine 0.50

Methionine + Cysteine 0.83

Threonine 0.90

Tryptophan 0.26

aThe mineral and vitamin premix (TEGASA, Barcelona, Spain) provided the following per kg of diet: vitamin

A 10,000 IU; vitamin D3 2000 IU; vitamin E 25 mg; vitamin B1 1.5 mg; vitamin B2 3.5 mg; vitamin B6 2.4 mg;

vitamin B12 20 μg; vitamin K3 1.5 mg; calcium pantothenate 14 mg; nicotinic acid 20 mg; folic acid 0.5 mg;

biotin 50 μg; iron 120 mg; iodine 0.75 mg; cobalt 0.6 mg; copper 150 mg; manganese 60 mg; zinc 110 mg;

selenium 0.37 mg
bIleal standardized digestibility

https://doi.org/10.1371/journal.pone.0174239.t001

Table 2. Guidelines on the recognition of pain, distress and discomfort.

Weight Appearance Feeding

behaviour

Response to handling Clinical parameters

0: normal weight. 0: no diarrhea, normal skin,

normal walk and no injuries.

0: normal food

and water

intake.

0: normal pattern behaviour. 0: Checking of temperature, respiratory

and digestive systems are ok.

1: light losses (less than

10% of BW)

1: any signs of disease (diarrhea

or respiratory problem), lameness,

any injuries and furry piglet.

1: reduced food

and water

intake.

1: signs of pain to handling

(heavy vocalisations and

abnormal locomotion)

1: fever, abnormal breathing pattern,

nasal discharge, abnormal faeces,

decrease in BW and abnormal

locomotion.

2: heavy losses (more

than 20% of BW).

Underweight animals.

2: appear sleepy, less active, with

a pinched abdomen and sunken

eyes

2: no feeding

behaviour.

2: no reactivity to handling. 2: reduced breathing pattern, no

activity, and hypothermia.

Piglets would have been sacrificed when all evaluations are in level number 2.

https://doi.org/10.1371/journal.pone.0174239.t002
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disposed promptly by a commercial rendering service (Sereca Bio, SL; Spain). A post-mortem

examination was performed to provide important animal health information to prevent fur-

ther losses.

Experimental design and treatments

On d 1, animals were divided into 3 groups balanced by BW and assigned to 3 experimental

treatments that were negative control (C-, n = 10), positive control (C+, n = 11) offered same

feed as C-, and OBE (OBE, n = 10) offered same feed as C- but supplemented with 500 mg/kg

of an olive-oil extract enriched in polyphenols and triterpenic acids. Starting on d 20, pigs

received an intraperitoneal (i.p.) injection every 72 h for a total of 3 injections/pig. Pigs in the

C- group were injected with saline, whereas C+ and OBE pigs were administered LPS from E.

coli (serotype O55:B5; Sigma-Aldrich, Madrid, Spain) reconstituted in saline at increasing

doses (60, 66, 72 μg/kg BW) to induce SCI. The doses of LPS were established in line with pre-

vious work [23]. On d 28 and 29 after 2 h of fasting, pigs received an additional i.p. injection of

LPS (78 μg/kg BW) and 3 h later were sacrificed for sample collection.

Olive-oil bioactive extract

The olive-oil bioactive extract (Lucta S.A., Barcelona, Spain) was obtained by a proprietary

process described in patent US8361518B2 [24]. Pomace olive-oil was filtrated and bioactive

compounds present in the solid fraction were extracted and purified with ethanol. The final

product (OBE) was dissolved in methanol (5 mg/mL) and quantified by HPLC following the

chromatographic conditions described by Romero et al. [25] for triterpenic acids and by Muli-

nacci et al. [26] for hydroxytyrosol. Finally, OBE was standardized to 10% maslinic acid, 4%

oleanolic acid and 2% hydroxytyrosol (16% on DM basis).

Collection of plasma and intestinal samples

Three h after the final LPS challenge, blood samples were collected via jugular venipuncture in

tubes containing EDTA and aprotinin (BD Vacutainer1), held in ice-cold water for 30 min,

centrifuged at 2,000×g for 10 min, and stored frozen at -80˚C until analyses. Immediately after

bleeding, pigs were stunned with captive bolt and sacrificed via exsanguination. The abdomen

was opened, the intestine was removed and the ileum (from the first Peyer’s patch to the ileo-

cecal valve) was dissected. A 5 cm segment was removed from the midsection of the ileum,

opened longitudinally and flushed with saline. The mucosa was scraped, placed in RNAlater
(Applied Biosystems via Thermo Fisher Scientific, Darmstadt, Germany) and then stored at

-80˚C until gene expression analysis. In addition, the content of a 10-cm section of the ascen-

dant colon proximal to the ileo-cecal valve was placed in 50-mL cryovials, snap-frozen, and

stored at -80˚C until microbiota analysis.

Determination of plasma cytokines and acute-phase proteins

Plasma concentrations of IL1B and the acute-phase protein (APP) pigMAP were analyzed by

ELISA (Cusabio, Wuhan, China). All experimental steps were executed as mentioned in the

manufactures protocol. In brief, diluted samples and standards were applied to the microwell

assay plate incubated for 2 h at 37˚C to allow bounding of target proteins. Subsequently, sam-

ples were incubated with biotin-conjugated antibody for 1 h at 37˚C and after multiple wash-

ings were treated with horseradish peroxidase (HRP) conjugated avidin. Following repeated

washings to remove unbound avidin, 3, 3’, 5, 5’-tetramethylbenzidin (TMB) substrate solution

Olive oil bioactives counteract chronic inflammation
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was added and color intensity was determined photometrically at 450nm. Values were calcu-

lated via standard curve (CurveExpert, version 1.4, Madison, United States of America).

Analysis of intestinal microbiota

Samples of colonic content were thawed and immediately processed to isolate bacterial DNA

to assess the microbiome profile by massive sequencing of the hypervariable regions of the 16S

rRNA gene. Briefly, amplicons of the V1-V2 16S rRNA region were amplified with barcoded

forward primer F27 and reverse primer R338, with sequencing adaptors at the 50 end. Concen-

tration and quality were determined using Agilent Bioanalyzer 2100 for each amplicon. Sam-

ples were sequenced on an Ion Torrent Personal Genome Machine (PGM) with the Ion 318

Chip Kit v2 (Life Technologies) under manufacturer’s conditions.

Assessment of intestinal permeability

Intestinal permeability was assessed in vivo on d 28 and 29 after weaning. Eight pigs per treat-

ment (representative of the median BW of each treatment) were fasted for 2 h and subse-

quently sedated with a mixture of xylazine (1.5 mg/kg BW) and ketamine (11 mg/kg BW)

administered intramuscularly (i.m.) in order to minimize handling stress. After 10 min, ani-

mals were intragastrically dosed (gastroduodenal feeding tube, Levin type; VEC Medical) with

a marker solution containing 0.15 g mannitol/kg BW (Sigma-Aldrich, Madrid, Spain) and 0.1

g Co-EDTA/kg BW [27] dissolved in 15 mL deionized water and immediately after were chal-

lenged with LPS as previously described. Blood samples were collected by jugular venipuncture

1 h after oral infusion of permeability markers into 5 mL evacuated fluoride/K-oxalate glucose

blood collection tubes (BD vacutainer, Madrid, Spain). Plasma mannitol was determined by

ultra-high performance liquid-chromatography mass-spectrometry (Xevo G2 TOF, Waters)

as previously described [28]. The plasma concentration of cobalt was determined by atomic

absorption spectroscopy [27].

Ethics statement

The study with pigs was carried out according to the recommendations of the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health, making all possible

efforts to minimize animal suffering. All experimental procedures were approved by the Labo-

ratory Animal Care Advisory Committee of the Faculty of Veterinary Sciences of the Universi-

tat Autónoma de Barcelona, Spain.

Cell culture studies

Caco-2/TC-7 [29] human colon carcinoma epithelial cells and RAW 264.7 [30] murine macro-

phages were maintained in Dulbecco’s Modified Eagle Medium (DMEM) containing 4.5 g/L

glucose, 4 mmol/L L-glutamine, 1 mmol/L sodium pyruvate, 100 U/mL penicillin, 100 μg/mL

streptomycin and fetal calf serum (FCS, 20 and 10% (v/v), respectively, Gibco via Thermo

Fisher Scientific, Darmstadt, Germany). Both cell lines were grown in 5% CO2/95% air at 37˚C

in a humidified atmosphere. For sub-culturing, cells were detached with 0.05% trypsin and

0.02% EDTA (Caco-2/TC-7) or were scraped off (RAW 264.7). Cell culture reagents were pur-

chased from PAN-Biotech GmbH (Aidenbach, Germany). Cell culture plastic labware was

obtained from Sarstedt (Nuembrecht, Germany) except when otherwise mentioned.
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Assessment of cytotoxicity

Determination of treatment-related cytotoxicity was performed with the neutral red assay as

described previously [31]. Both, Caco-2/TC-7 and RAW 264.7 cells were pre-cultured for 24 h

before being incubated with increasing concentrations of OBE (1–100 μg/mL) for 24 or 48 h.

Ethanol (10% v/v) was used as positive control to induce cell death. Following treatment

medium was replaced with culture medium containing 50 μg/mL neutral red dye (Carl Roth,

Karlsruhe, Germany) and incubated for 2 h. Cells were washed once with phosphate buffered

saline (PBS, Gibco via Thermo Fisher Scientific, Darmstadt, Germany) and incubated with

neutral red extraction buffer (50% ethanol, 49% double distilled water, 1% glacial acetic acid)

for 15 min on a shaking platform. The absorbance of neutral red dye was measured at 450 nm

and viability of the compound-treated cells was calculated as percentage absorbance of the

vehicle treated cells for each treatment.

Determination of inflammatory response in vitro

To investigate cytokine gene expression in vitro murine RAW 264.7 macrophages were seeded

at an initial density of 4.0x106cells/cm2 into polysterol cell culture plates. After 24 h of pre-cul-

tivation cells were incubated with the highest non-toxic concentration of OBE (50 and 25 μg/

mL) for another 24 h and subsequently stimulated with Salmonella enterica-derived LPS (10

ng/mL, Sigma-Aldrich, Taufkirchen, Germany) for 6 h to induce macrophage activation. Cells

were washed once with ice cold PBS and subsequently prepared for RNA isolation (see below).

Determination of intestinal barrier function in vitro

Caco-2/TC-7 cells spontaneously start to differentiate after reaching confluence and develop a

polarized small intestinal enterocyte-like phenotype [32] thus providing a suitable model to

quantify epithelial barrier function in vitro [33]. For the determination of the transepithelial

electrical resistance (TEER) Caco-2/TC-7 cells were grown on permeable filters (Corning, Inc.,

Corning, NY, USA, 0.4 mm pore size) at an initial density of 9.0x104 cells/cm2. After 4 d of

pre-cultivation, confluent monolayers were apically treated with the highest non-toxic concen-

tration of OBE (OBE; 100 μg/mL) for a further 5 d. TEER was measured with a chopstick

electrode (Millicell ERS-2V-Ohm Meter, Darmstadt, Germany) on d 0, 2, 4 and 5 of OBE treat-

ment to determine barrier tightness. To induce barrier disruption, TNF-α (100 ng/mL; Immu-

notools, Friesoythe, Germany) was added to the basolateral compartment for 24 h prior to

final TEER measurement. To eliminate temperature-related changes in TEER cells were equili-

brated for 15 min at room temperatures before each readout. The numerical calculation of

TEER was done as follows:

TEER
O

cm2

� �

¼

ðresistance of treated cells ðOÞ � resistance of blank well ðOÞÞ �

effective membrane area ðcm2Þ normalized to the control ðvehicle treated cellsÞ

Determination of cytokine and junctional protein mRNA levels in vitro

and in porcine tissue samples (qRT-PCR analyses)

Total RNA from ileal tissue and murine macrophages was isolated with peqGOLDTriFast™
(PEQLAB Biotechnologie GmbH, Erlangen, Germany) following manufacturer’s instructions.

Olive oil bioactives counteract chronic inflammation
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To measure junctional protein mRNA levels in porcine samples, tissues were homogenized

with a TissueLyser II (Qiagen, Hilden, Germany) and total RNA was extracted with TriFast

reagent according to the manufacturer’s protocol. RT-PCR primers were designed using

PRIMER 3 software (v. 0.4.0) and were purchased from MWG Eurofins (Ebersberg, Ger-

many). Gene expression levels in tissues and cells were determined by quantitative RT-PCR

using the SensiFAST™ SYBR1 No-ROX One-Step Kit (Bioline, Luckenwalde, Germany) with

SybrGreen detection in a Rotorgene 6000 cycler (Corbett Life Science, Sydney, Australia).

Relative mRNA quantification was calculated using a standard curve. Target gene expression

(Table 3) was normalized to the expression of the housekeeping gene GAPDH or the mean of

GAPDH and beta-actin.

Statistical analysis

In view of the objectives of the study, parameters for animal performance including feed con-

sumption, body weight gain, and efficiency of feed conversion were analyzed from weaning

until the end of nursing phase (d 29) by using a mixed-effect model with repeated measures

in time. In the model, the pig nested within the treatment entered as random variable and

Table 3. Oligonucleotide sequences used to determine target gene expression.

Target gene Gene ID Nucleotide sequence Annealing temperature (˚C)

Sus scrofa

GAPDH 396823 GTCGGTTGTGGATCTGACCT 60

TCACAGGACACAACCTGGTC

CDH1 100048953 TGAAGAAGGAGGTGGAGAAG 57

GTGCCACATCATTACGAGTC

OCLN 397236 GGCCATATCCAGAGTCTTCG 60

ACGCCTCCAAGTTACCACTG

ZO-1 396567 GGCCATATCCAGAGTCTTCG 57

ACGCCTCCAAGTTACCACTG

IL1B 397122 CCTCTCCAGCCAGTCTTC 57

GGGTGCAGCACTTCATCTCT

iNOS 396859 GTCCAGCGCTACAACATCCT 57

TCCATGATGGTCACGTTCTG

TNF-α 397086 CTCTTCTCCTTCCTCCTGGT 57

ACGATGATCTGAGTCCTTGG

Mus musculus

IL1B 16176 CAG GCA GGC AGT ATC ACT CA 55

AGC TCA TAT GGG TCC GAC AG

iNOS 18126 GGCAGCCTGTGAGACCTTTG 58

GCATTGGAAGTGAAGCGTTTC

Mip1a 20302 CCT CTG TCA CCT GCT CAA CA 58

GAT GAA TTG GCG TGG AAT CT

ACTB 11461 GAC AGG ATG CAG AAG AGA TTA CT 55

TGA TCC ACA TCT GCT GGA AGG T

GAPDH 14433 CCG CAT CTT CTT GTG CAG T 57

GGC AAC AAT CTC CAC TTT GC

ACTB, beta-actin; CDH1, E-cadherin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IL1B, interleukin 1 beta; Mip1a, macrophage inflammatory

protein 1 alpha; iNOS, nitric oxide synthase 2; OCLN, occludin; TNF-α, tumor necrosis factor alpha; ZO-1, zonula occludens 1

https://doi.org/10.1371/journal.pone.0174239.t003
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treatment, time and their two-way interaction were considered as fixed effects. The smallest

value for the Akaike’s information criterion was used to identify the most appropriate covari-

ance structure. The same model but without repeated measures was used to analyze plasma

concentrations of permeability markers (cobalt and mannitol), cytokines, and APP. Model

diagnostics included testing for a normal distribution of the error residuals and homogeneity

of variance. Gene expression (mRNA) and TEER data were analyzed for normality of distribu-

tion by Kolmogorov-Smirnov test. If distributed normally, means of each group were com-

pared by ANOVA with LSD (homogeneity of variances) or Games-Howell (heterogeneous

variances) used as post hoc comparisons. Otherwise, non-parametrical Kruskal Wallis test was

carried out. Statistical analyses were performed with SAS (release 9.2; SAS Institute) and SPSS

(version 19; SPSS, Inc.). Microbial raw sequencing reads were demultiplexed, quality-filtered

and analyzed using QIIME 1.9.1 [34]. Quality-filtered reads were clustered into operational

taxonomic units (OTUs) for taxonomy analyses. Taxonomic assignment of representative

OTUs was performed using the RDP Classifier [35]. Alignment of sequences was performed

using PyNast [36] as default in QIIME pipeline, with an extra filtering step in aligned and tax-

onomy-assigned OTU table to filter-out sequences that represent less than 0.005% of total

OTUs. Downstream analyses were performed at the same depth per sample to standardize for

unequal sequencing depth of the samples. Alpha diversity (within group) was assessed using

the Shannon index, whose statistical significance was determined with 999 permutations using

the non-parametric Monte Carlo permutation test.

Beta diversity (between groups) was assessed calculating weighted UniFrac distances,

which were used to conduct principal component analysis. The ANOSIM statistical meth-

ods was subsequently applied to evaluate if some variables determined grouping and to

which extent. PICRUSt [37] was used to predict the functional profile based on 16S

RNA gene sequences. Linear Discriminant Analysis (LDA) Effect Size (LEfSe: https://

huttenhower.sph.harvard.edu/galaxy/) was used to compare treatment groups (C+ and

OBE) with the negative control (C-) and identify differences in the abundance of predicted

functions (α = 0.05 and LDA score > 3.0). Differences were considered significant when

p< 0.05, whereas when p> 0.05 but � 0.10, differences were considered to indicate a trend

toward a significant effect.

Results

Diet supplementation with OBE attenuates SCI-induced depression of

intake and growth

During the experimental trial one animal of the OBE-group died (d28). Post-mortem exami-

nation did not provide any information on the cause of that mortality. Total feed consumption

was significantly decreased from 6.6 ± 0.4 kg/pig to 5.1 ± 0.3 kg/pig by the repeated LPS injec-

tions (C- compared to C+, p< 0.05). This effect was partly (5.5 ± 0.2 kg/pig; Fig 1A) counter-

acted by supplementing the diet with OBE. AS projected, LPS injections depressed BW gain

significantly by 24%, whereas feeding OBE attenuated such a negative effect (12%; Fig 1B). As

a result, exposure to SCI worsened the efficiency of feed conversion by about 13% in sham-

treated pigs but only by 7% in OBE-treated animals, although differences among treatments

were not significant (Fig 1C).

Feeding OBE represses the LPS-induced increase in circulating IL1B

Compared to untreated pigs (C-), the repeated administration of LPS to C+ animals raised

significantly the circulating concentration of pigMAP by almost 2 fold (0.70 vs. 1.36 mg/mL,

Olive oil bioactives counteract chronic inflammation
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Fig 2A), confirming that the experimental model successfully caused a systemic and chronic

activation of the immune system. This response was not affected by the feeding of OBE (Fig

2A). In some (n = 4), but not all animals LPS injection resulted in an increase of IL1B concen-

tration in plasma. Supplementing the diet with OBE partly (n = 5) abrogated the increase in

plasma IL1B otherwise triggered by the chronic challenge with LPS (C+ = 39 vs. C- = 13 pg/

mL; p< 0.001; Fig 2B). To confirm the in vivo anti-inflammatory effect of OBE we challenged

macrophages with LPS in vitro, thereby inducing the expression of the pro-inflammatory

markers IL1B (Fig 2C), nitric oxide synthase 2 (iNOS; Fig 2D) and macrophage inflammatory

protein 1 alpha (Mip1a; Fig 2E). Pre-exposing macrophages to OBE significantly attenuated

LPS-induced inflammatory response by 20 to 40% irrespective of the concentration of OBE

(Fig 2C, 2D and 2E).

Fig 1. Accumulated feed consumption (kg/pig) and body weight gain (kg) of pigs challenged chronically with LPS and fed an

Olive-oil Bioactive Extract (OBE). (A) Feed consumption (kg/pig) of pigs chronically challenged with LPS and fed a commercial pre-

starter diet untreated (C-, C+) or supplemented with an olive-oil extract (OBE; 500 mg/kg diet). On d 20, 23, 26 and 29, OBE and positive

control (C+) pigs received E.coli-derived LPS injections at increasing doses (60, 66, 72 and 78 μg/kg). Negative control animals (C-)

were injected with saline. (B) Body weight gain (kg) and (C) efficiency of feed conversion (kg of feed consumed/kg of BW gain during the

experiment) of the pigs treated as described in A. Bars are least squares means ± SEM (n = 10–11). Different letters indicate significant

differences among groups (p < 0.05).

https://doi.org/10.1371/journal.pone.0174239.g001
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Fig 2. Immune-inflammatory response of pigs and macrophages treated with an Olive-oil Bioactive Extract (OBE)

and challenged with LPS. (A, B) Concentration of pigMAP and ILB1 in peripheral circulation of pigs. Piglets were fed a

commercial diet untreated (C-, C+) or supplemented with an olive-oil extract (OBE; 500 mg/kg diet). On d 20, 23, 26 and

29, OBE and positive control (C+) pigs received E.coli-derived LPS injections at increasing doses (60, 66, 72 and 78 μg/

kg). Negative control animals (C-) were injected with saline. Plasma samples were collected 3 h after final LPS

Olive oil bioactives counteract chronic inflammation
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Both chronic systemic LPS challenge and OBE do not affect intestinal

inflammation

In order to elucidate if the repeated i.p. injections of LPS and the feeding of OBE within such

an experimental setting alter intestinal inflammation, the mRNA abundance of selected pro-

inflammatory markers were measured in ileal mucosa. Transcript levels of IL1B, TNF-α and

iNOS did not reveal any significant change in ileal inflammation in response to the experimen-

tal model or dietary treatment (Fig 3).

OBE improves intestinal integrity in pigs chronically challenged with LPS

Intestinal permeability was investigated by infusing pigs intragastrically with a marker solu-

tion containing mannitol and cobalt-EDTA. Plasma recovery of these permeability markers

was not significantly affected by the chronic LPS challenge, indicating that the experimental

model did not impair the paracellular and transcellular transport routes (Fig 4A and 4B).

Interestingly, the highest (p< 0.05) concentration of mannitol was found in animals receiv-

ing the OBE treatment (Fig 4C). As a result, feeding OBE tended (p = 0.12) to reduce the

ratio between markers compared to both C- and C+ (Fig 4C). To determine if the impact of

OBE on mannitol permeation was associated with structural alterations of the intestinal

mucosa, gene expression of tight-junctional proteins was measured in the ileum. The relative

concentration of CDH1 mRNA (Fig 4D), but not that of ZO-1 (Fig 4E) and OCLN (Fig 4F),

was significantly decreased by 25% in C+ animals compared to untreated controls. Notably,

the feeding of OBE rescued or even enhanced the mRNA level of CDH1, OCLN and ZO-1 in

ileal mucosa in comparison to sham-treated animals (Fig 4D–4F). Furthermore, OBE-fed

pigs also tended to have higher transcript levels of OCLN and ZO-1 than C- animals (Fig 4E

and 4F). In stark agreement with in vivo results, treatment of human Caco-2/TC-7 monolay-

ers grown on semipermeable membranes with OBE resulted in a significant increase in

TEER values comparable to genistein which was used as the positive control (Fig 5A). Simul-

taneous administration of TNF-α induced a significant loss of barrier integrity as indicated

by a drop in TEER of 30%. OBE significantly counteracted TNF-α mediated barrier disrup-

tion (Fig 5B) comparable to the positive control genistein. Taken together, these results indi-

cate that the integrity of the intestinal mucosa of pigs and Caco-2/TC-7 cells was improved

by OBE.

Gut microbial composition and functions are unaffected by OBE and

chronic LPS challenge

Provided that some bioactive compounds in olive oil have antimicrobial actions [11] and that

their health-promoting effects may require interaction with the gut microbiota [21], we aimed

to elucidate if the mode of action of OBE involves changes in the colonic microbial ecology of

LPS-challenged pigs by using massive sequencing. At the phylum level, all treatments groups

presented normal [38] and similar structures of the gut microbiome (Fig 6A). In addition, met-

rics of biodiversity within (Shannon index, Fig 6B) and among groups (weighted UniFrac

administration and pigMAP and cytokine levels were determined by sandwich ELISA. Bars are least squares

means ± SEM (pigMAP, n = 10–11, IL1B, n = 3–6). (C, D, E) Expression of IL1B, iNOS and Mip1a genes in RAW 264.7

macrophages. Cells were treated with OBE (50 and 25 μg/mL) and DMSO (0.1% v/v) for 24 h and subsequently

challenged with LPS (10 ng/mL) for 6 h. The concentration of mRNA was measured via qRT-PCR. Bars represent

means ± SEM of 3 independent experiments performed in duplicate. Values are normalized to the sham-treated control.

Different letters indicate significant differences among groups (p < 0.05).

https://doi.org/10.1371/journal.pone.0174239.g002
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distances, ANOSIM p< 0.743) of animals were not significantly different. Furthermore, both

OBE and the repeated administration of LPS (C+) elicited minor changes in microbial func-

tions as predicted by PICRUSt (Fig 6C). It appears therefore that in our study gut microbial

composition and metabolism remained rather constant among groups of pigs.

Discussion

Our data indicate that dietary supplementation with OBE can alleviate detrimental effects of

SCI by modulating the immune-inflammatory response of pigs and thereby inducing persis-

tent effects on animal health and performance.

Fig 3. Relative concentrations of IL1B (A), TNF-α (B), and iNOS (C) mRNA in ileal mucosa of pigs challenged chronically with

LPS and fed an Olive-oil Bioactive Extract (OBE). Piglets were fed a commercial diet either untreated (C-, C+) or supplemented with

an olive-oil extract (OBE; 500 mg/kg diet). On d 20, 23, 26 and 29, OBE and positive control (C+) pigs received E.coli-derived LPS

injections at increasing doses (60, 66, 72 and 78 μg/kg). Negative control animals (C-) were injected with saline. Mucosa samples were

collected 3 h after final LPS administration and mRNA levels of the abovementioned markers were measured via qRT-PCR. Bars are

means ± SEM (n = 9–10).

https://doi.org/10.1371/journal.pone.0174239.g003
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Fig 4. Concentrations of permeability markers (A-C) in plasma and relative concentrations of CDH1; (D), OCLN (E), and ZO-1

(F) in the ileal mucosa of pigs challenged chronically with LPS and fed an Olive-oil Bioactive Extract (OBE). Piglets were fed a

standard diet either untreated (C-, C+) or supplemented with an olive-oil extract (OBE; 500 mg/kg diet). On d 20, 23, 26 and 29, OBE

and positive control (C+) pigs received E.coli-derived LPS injections at increasing doses (60, 66, 72 and 78 μg/kg). Negative control

animals (C-) were injected with saline. Plasma samples were collected via jugular venipuncture 1 h after intragastric infusion of the

Olive oil bioactives counteract chronic inflammation
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According to recent literature, repeated intraperitoneal injections of bacterial LPS at low

doses represent a suitable approach to create a phenotype exhibiting typical characteristics of

SCI in weaned piglets [24]. More precisely, these characteristics include partial suppression

of feed intake and BW gain as well as elevation of inflammatory markers in peripheral circula-

tion, including cytokines and APP [23; 39]. In contrast to models of acute inflammation, in

which LPS is usually administered in a single dose of about 120–180 mg/kg BW, reduction of

feed intake is less pronounced but persists over the challenge period [40; 41]. In line with these

reports, we also observed that the intraperitoneal challenge with low doses of LPS (60 to 78

mg/kg BW) significantly suppressed feed consumption and BW gain in C+ pigs compared to

untreated controls (C-). In addition, this response was associated with enhanced levels of pig-

MAP and ILB1 in systemic circulation. These observations confirm that the experimental

model used in our study successfully induce SCI as previously reported. Under this experimen-

tal setting, supplementation of the diet with OBE attenuated the negative impact of SCI on ani-

mal performance (i.e., improved feed ingestion and growth) and repressed the LPS-induced

increase in circulating IL1B without affecting pigMAP. Interestingly, these effects were paral-

leled by an improvement in intestinal integrity otherwise compromised by SCI. Furthermore,

from a mechanistic standpoint the actions of OBE were apparently independent of alterations

in gut microbial ecology.

Under inflammatory conditions acute immune response is followed by the synthesis and

release of different APP, including C-reactive protein, haptoglobulin, alkaline phosphatase and

marker solution containing 0.15 g mannitol/kg BW and 0.1 g cobalt-EDTA/kg BW. Mucosa samples were collected 3 h after final LPS

administration and mRNA levels of junctional proteins were measured via qRT-PCR. Bars are least squares means ± SEM (n = 9–11).

Different letters indicate significant differences among groups (p < 0.05).

https://doi.org/10.1371/journal.pone.0174239.g004

Fig 5. Effect of an olive-oil bioactive extract on basal TEER (A) and TNF-α induced decrease in TEER (B) in vitro. Caco-2/TC-7

cells were allowed to differentiate on permeable filters in the presence of an olive-oil bioactive extract (OBE; 100 μg/mL), genistein

(50 μmol/L; positive control), and DMSO (0.1% v/v; vehicle control [C]) for 5 d. (A) Barrier integrity was assessed by measuring the

TEER over time. To investigate potential protective effects of OBE on Caco-2/TC-7 barrier integrity, TNF-α (100 ng/mL) was added to

the basolateral side for 24 h on d 5 to induce monolayer disruption. (B) TEER was measured before and after TNF-α administration

and values were normalized to the untreated control. Bars represent means of 3 individual experiments ± SEM. Different letters

indicate significant differences among treatments (p < 0.05).

https://doi.org/10.1371/journal.pone.0174239.g005
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Fig 6. Gut microbial composition and predicted functions in pigs chronically challenged with LPS and fed an Olive-oil Bioactive Extract

(OBE). (A) Percent reads at the phylum level in colonic contents resulting from the 16S rRNA gene sequencing analysis. (B) Diversity of colonic

microbiota within groups of pigs (alpha diversity; C- vs. C+ p < 0.12, C- vs. OBE p < 1.0, C+ vs. OBE p < 1.0). (C) Linear discriminant analysis (LDA)

scores for microbial functions predicted by PICRUSt (α = 0.05, LDA score > 3.0). Piglets were fed a standard diet either untreated (C-, C+) or

supplemented with an olive-oil extract (OBE; 500 mg/kg diet). On d 20, 23, 26 and 29, OBE and positive control (C+) pigs received E.coli-derived LPS

injections at increasing doses (60, 66, 72 and 78 μg/kg). Negative control animals (C-) were injected with saline. Samples of colonic content were

collected 3 h after final LPS administration and analyzed via massive sequencing of the V1-V2 hypervariable regions of the 16S rRNA gene (n = 9–11).

https://doi.org/10.1371/journal.pone.0174239.g006
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pigMAP [42]. Although their exact physiological actions have not been entirely elucidated,

APP seem to control inflammatory response [43]. As an APP specific to infections [44], pig-

MAP was found to be significantly raised in our sham-treated piglets as compared to controls,

providing further evidence that the experimental model induced SCI. The finding that OBE

did not affect such a response indicates that the synthesis and secretion of APP is not a mecha-

nistic target of its anti-inflammatory action. The effects of IL1B on feeding behavior are well-

known and diverse, including decreased gastric emptying and motility as well as direct actions

on the central nervous system [45; 46]. Considering that IL1B serves as one of the main sup-

pressors of feed intake in response to inflammation [47; 48; 49], in the study reported herein it

seems plausible to associate decreased animal performance with the partly increased plasma

concentration of IL1B. Remarkably, the increase in IL1B and the concurrent reduction in feed

ingestion were not observed in LPS-challenged animals receiving the OBE treatment, suggest-

ing that the growth permitting effect of OBE under SCI involves modulation of the inflamma-

tory response.

In support of these findings, we also found compelling evidence of anti-inflammatory

effects of OBE in cultured cells. In murine RAW 264.7 macrophages LPS is known to trigger

an inflammatory response via activation of the NF-kB pathway [50; 51]. Accordingly, we

observed a significant increase in the mRNA level of the NF-kB target genes IL1B and iNOS 6

h post challenge with LPS (10 ng/mL). Treating macrophages with OBE before the stimulation

with LPS partly counteracted such responses by about 30%. These results are similar to find-

ings from recent studies demonstrating anti-inflammatory properties of polyphenols and

other plant bioactives in cell cultures [52; 53] and farm animals [54]. Furthermore, our in vivo
and in vitro results indicate that inhibition of IL1B production is a key component of the OBE

anti-inflammatory action. Interestingly, the anti-IL1B activity of OBE seems to be higher in
vivo than in vitro. Considering that OBE could not have undergone major metabolism in
vitro, it seems reasonable to expect that extensive transformations of OBE in vivomight have

occurred thereby enhancing its bioactivity. Additionally, we found that the gene expression

of pro-inflammatory cytokines, including IL1B, in ileal mucosa remained constant among

experimental groups. Therefore, data indicate that both the experimental setting and dietary

treatment did not modulate the immune-inflammatory axis locally within the intestine. The

intestinal absorption of polyphenols is known to be rather low [55; 56] which may question

the impact of dietary polyphenols on systemic immune response. However, since secondary

plant metabolites, including those of Olea europaea are intensively metabolized before entering

systemic circulation glucuronide and sulfate conjugates may significantly contribute to poten-

tial in vivo effects [57; 58].

Although intestinal inflammation was not apparent in this study, several pieces of evidence

demonstrate that OBE improved the integrity of the intestinal mucosa of pigs challenged with

SCI. From a functional view point, supplementing the diet with OBE enhanced permeation of

the inert probe mannitol while tended to reduce the ratio between permeability markers com-

pared to both control groups. Provided that the extent of permeation of these inert markers in
vivo permits to discriminate between the paracellular (Co-EDTA) and transcellular (mannitol)

pathways of transepithelial transport and that their ratio gives information about the integrity

of the gastrointestinal epithelium [59; 60], these findings denote that OBE improved the func-

tional capacity for molecular sieving of the intestinal mucosa of SCI-affected animals. This

ability was later confirmed in vitro by showing that OBE partly prevented disruption of the

transjunctional flux of ions (TEER) in TNF-α-challenged Caco-2/TC-7 cells, a model that

resembles impairment of intestinal barrier function associated with chronic inflammation

[61; 62; 63]. The concentration of OBE, as used within this study, is comparable to the ones

used for other extracts in Caco-2-cell culture studies [64]. Interestingly, the finding that the
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magnitude of the improvement on gut mucosal integrity even exceeded the negative control

group suggests that OBE may exert such an action in the absence of SCI. Furthermore, the pro-

tective effect of OBE even exceeded that of genistein, an isoflavonoid known for its barrier

strengthening action in epithelial cell lines [65; 66] and used as a positive control in the present

study. Similar findings have been reported by Piegholdt and coworkers [67], who showed a sig-

nificant increase in TEER through treatment of cell cultures with hydroxytyrosol, a bioactive

phenolic molecule found in Olea europaea. In relation to structural aspects of the intestinal

mucosa, administration of OBE increased gene expression of proteins (CDH1, ZO-1, OCLN)

that form apical junctional complexes [68] in the ileum of SCI-challenged pigs. Pro-inflamma-

tory cytokines compromise intestinal barrier and gut health partly by regulating the expression

of such junctional proteins [68; 69; 70], suggesting that reduced IL1B in peripheral circulation

might be a mechanistic component of the enteroprotective action of OBE. It is important to

note, however, that IL1B [68; 71] and other pro-inflammatory cytokines [72; 73; 74] disrupt

barrier integrity by enhancing the expression and activity of myosin light chain kinase and

thereby inducing contraction of the cytoskeleton. In addition, olive-derived polyphenols and

triterpenoids may mediate cytoprotective actions via inhibition of NF-kB and/or activation of

the Nrf2 pathways [75; 76; 77]. Based on its chemical composition, it is likely that the described

impact of OBE on gut mucosal integrity might have involved modulation of such signaling

cascades.

In the past decade the intestinal microbiome has gained massive scientific attention because

of the complex crosstalk between gut microbiota and host metabolism [78; 79]. Recent work

has shown that modifications of the abundance and diversity of certain microbial taxa is asso-

ciated with increased intestinal permeability and thus contribute to SCI through elevated

migration of bacterial antigens into systemic circulation [80; 81; 82]. A second line of evidence

indicates that plant polyphenols, including those from Olea europaea, require interaction

with the intestinal microbiota to exert some, if not all, of their health-promoting effects which

expand beyond the proper functioning of the intestinal barrier [21]. Furthermore, a number

of bioactive compounds present in different parts of the olive tree possess inhibitory activity

against some gut-resident bacteria [11].

In view of this knowledge, we hypothesized that the protective action of OBE against SCI

may involve changes in the structure and/or function of the gut microbiome. We observed,

however, that the composition, diversity, and predicted functions of colonic microbiota were

similar among treatment groups, suggesting that the anti-SCI effects of OBE are not mediated

through changes in gut microbial ecology. Nonetheless, the interplay between plant bioactives

and gut microbes is bidirectional [21]; therefore, the implication of potential microbial trans-

formations of bioactive compounds in OBE cannot be ruled out.

We suggest that our pig data may have also relevance to human health and disease. There is

a high degree of similarity in terms of anatomy, physiology, immune function and gut micro-

biota between pigs and humans [83]. Furthermore pigs exhibit similar syndromes to humans

including intestinal inflammation and diarrhea [84].

Conclusion

Overall, data reported herein demonstrate that olive-derived bioactive compounds have

growth-permitting action in pigs challenged experimentally with SCI. The underlying mode of

action apparently includes anti-inflammatory effects, in particular inhibition of IL1B produc-

tion and protection of intestinal integrity unrelated to alterations in gut microbial ecology

(Fig 7). Taken together, supplementing the diet of pigs with OBE might represent a promising

strategy to counteract SCI-related disorders in commercial settings of pig production.
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Supporting information

S1 Fig. Cytotoxicity of the Olive-oil Bioactive Extract (OBE) in Caco-2/TC-7 (A) and

RAW 264.7 (B) cells. Cytotoxicity of OBE as assessed by neutral red assay and expressed as

remaining cell viability after treatment. Cells were incubated with DMSO (0.1% v/v, C-), etha-

nol (10%, C+) or increasing concentrations of OBE. Bars represent means ± SEM of 2 inde-

pendent experiments performed in triplicate. Different letters indicate significant differences

among treatments (p< 0.05).

(TIF)

Fig 7. Supposed metabolic targets involved in OBE mediated effects. Repeated LPS injection stimulates the systemic secretion of pro-inflammatory

IL1B and simultaneously suppresses feed intake and growth in challenged animals. OBE is capable of counteracting LPS stimulated IL1B secretion most

likely through interaction with NF-κB signal cascade. OBE treatment further increases the concentration of junctional mRNA (OCLN, CDH1, ZO-1) and

promotes TJ-functionality as indicated by decreased ion flux (TEER) and improved cobalt to mannitol ratio. Increased gene expression of junctional

proteins as well as an improved TJ-functionality can be linked to enhanced gut integrity, further supporting animal growth and performance. Particular

importance is devoted to the finding that the growth promoting effect of OBE is mediated independent of changes in gut microbial composition and

diversity. Plain connections represent observed (solid) and supposed (interrupted) metabolic effects of chronic LPS challenge. Colour-filled arrows

indicate effects of OBE treatment.

https://doi.org/10.1371/journal.pone.0174239.g007
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