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Abstract

Emerging evidence has suggested a potential impact of gut microbiota on the pathophysiol-

ogy of heart failure (HF). However, it is still unknown whether HF is associated with dysbio-

sis in gut microbiota. We investigated the composition of gut microbiota in patients with HF

to elucidate whether gut microbial dysbiosis is associated with HF. We performed 16S ribo-

somal RNA gene sequencing of fecal samples obtained from 12 HF patients and 12 age-

matched healthy control (HC) subjects, and analyzed the differences in gut microbiota. We

further compared the composition of gut microbiota of 12 HF patients younger than 60 years

of age with that of 10 HF patients 60 years of age or older. The composition of gut microbial

communities of HF patients was distinct from that of HC subjects in both unweighted and

weighted UniFrac analyses. Eubacterium rectale and Dorea longicatena were less abun-

dant in the gut microbiota of HF patients than in that of HC subjects. Compared to younger

HF patients, older HF patients had diminished proportions of Bacteroidetes and larger quan-

tities of Proteobacteria. The genus Faecalibacterium was depleted, while Lactobacillus was

enriched in the gut microbiota of older HF patients. These results suggest that patients with

HF harbor significantly altered gut microbiota, which varies further according to age. New

concept of heart-gut axis has a great potential for breakthroughs in the development of

novel diagnostic and therapeutic approach for HF.

Introduction

In the human gut, there are more than 1014 bacterial cells, which exceed the number of human

cells in the body. Their combined genomes contain millions of genes, which are hundred
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times the number of human genes. These large quantities of gene products complement host

metabolism and facilitate the development of host immune system [1, 2]. In line with the cru-

cial link between gut microbiota and the maintenance of host health, there is growing evidence

that altered composition of gut microbiota, known as dysbiosis, contributes to the pathogene-

sis of host diseases [3]. Numerous experiments with fecal microbiota transplantation to germ-

free animals have suggested that gut microbiota can initiate and influence host diseases such as

obesity-related diseases, liver diseases, inflammatory bowel diseases, and colorectal cancer [4].

In patients with heart failure (HF), the structure and function of the gut are altered as a con-

sequence of microcirculatory disturbances [5, 6]. Impaired epithelial absorption may have det-

rimental effect on nutritional status of patients with HF, and disruption of epithelial barrier

may lead to translocation of microbial products into systemic circulation, possibly aggravating

HF by inducing systemic inflammatory responses [7–10]. Indeed, compared with healthy con-

trol (HC) subjects, patients with HF showed increases in the quantity of pathogenic bacteria in

feces and the density of bacteria adhered to colon mucosa [5, 6], in association with an increase

in intestinal permeability [5]. Gut microbe-derived metabolites such as indoxyl sulfate and tri-

methylamine N-oxide (TMAO) may also contribute to the pathogenesis of HF through unde-

fined mechanisms [11–13]. Therapeutic management of HF through manipulating gut

microbiota is under investigation in animal models. For example, oral administration of anti-

biotics or probiotics to rats has been reported to reduce myocardial infarct size in ischemia-

reperfusion injury and to attenuate cardiac remodeling after myocardial infarction [14, 15].

These observations suggest a significant impact of gut microbiota on the pathophysiological

process of HF. However, it is unclear whether dysbiosis in gut microbiota is associated with

HF.

To address this issue, we analyzed the gut microbiome of HF patients and HC subjects

using 16S ribosomal RNA (rRNA) gene sequencing. Our data revealed the presence of dys-

biosis in the gut microbiota of patients with HF. Moreover, the gut microbiota composition

of older HF patients differed from that of younger HF patients. Our studies provide new

insights into the heart-gut axis in the pathophysiology of HF, and pave the way toward

exploring the potential of manipulating gut microbiota as a future therapeutic strategy

against HF.

Materials & methods

Study population

We recruited a total of 22 patients with HF (New York Heart Association functional class II to

IV) who were hospitalized at the University of Tokyo Hospital. All patients were hospitalized

for acute decompensated HF or acute exacerbation of chronic HF. These HF patients were

classified into 2 groups according to age, those younger than 60 years of age (n = 12, aged

47.4 ± 2.8 years, 11 men and 1 woman) and those 60 years of age or older (n = 10, aged

73.8 ± 2.8 years, 7 men and 3 women). We excluded the patients with clinical signs of active

infection, chronic inflammatory diseases, malignancy, renal failure requiring renal replace-

ment therapy, or a history of gastrointestinal surgery. In addition, exclusion criteria included

receiving antibiotic, probiotic, steroid, or immunosuppressive therapy during the previous 2

months. Twelve age-matched healthy volunteers (aged 41.4 ± 2.0 years, 9 men and 3 women)

were recruited as HC subjects at Azabu University. Clinical characteristics of all subjects are

listed in S1–S3 Tables. This study complies with the Declaration of Helsinki, and was approved

by the Research Ethics Committee, Graduate School of Medicine and Faculty of Medicine,

The University of Tokyo and the Human Research Ethics Committee of Azabu University.

The written informed consent was obtained from all of the subjects.
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Fecal sample collection and bacterial DNA extraction

Fecal samples were freshly collected and transported to the laboratory under anaerobic condi-

tion in AnaeroPack (Mitsubishi Gas Chemical Company, Inc., Tokyo, Japan) at 4˚C. The fecal

samples were frozen by liquid nitrogen in phosphate-buffered saline containing 20% glycerol,

and stored at -80˚C until use. Bacterial DNA was extracted from the fecal samples by enzy-

matic lysis method using lysozyme (Sigma-Aldrich Co., St. Louis, Missouri) and achromopep-

tidase (Wako Pure Chemical Industries, Ltd., Osaka, Japan), as previously described [16, 17].

Sequencing of 16S ribosomal RNA gene amplicons

Bacterial DNA from the fecal samples was amplified by PCR, as previously described [17].

Primers 27Fmod and 338R with adaptor sequences for 454 pyrosequencing were used to

amplify the bacterial 16S rRNA gene V1-V2 region. PCR was run for 25 cycles, using Ex Taq

polymerase (Takara Bio Inc., Kusatsu, Japan). PCR amplicons were purified by AMPure XP

magnetic purification beads (Beckman Coulter, Inc, Brea, California) and quantified using the

Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific Inc., Waltham, Massachu-

setts). Equal amount of amplicons from each sample were sequenced with 454 GS FLX Tita-

nium or 454 GS JUNIOR (Roche Applied Science, Indianapolis, Indiana) according to the

manufacturer’s instructions.

Data analysis

The previously established analysis pipeline was utilized for data analysis [17]. Filter-passed

3,000 reads, with an average quality score of 25 or higher, were randomly selected from the

reads for each sample. The number of operational taxonomic units (OTUs) in each sample

was calculated by clustering the 3,000 reads at a 96% identity threshold. The richness and

diversity of microbial communities in each sample were evaluated by Chao1-estimated OTU

number and Shannon index respectively. For taxonomic assignment, the read sequences were

aligned against the 16S rRNA gene database constructed from RDP, CORE, and NCBI genome

databases, and were assigned to taxonomic groups at a 96% identity threshold. Taxonomic

groups with relative abundance in any subject above 0.1% were included in the analysis. Uni-

Frac analysis was used to calculate phylogenetic tree-based distances between microbial com-

munities of the individuals [18].

Statistical analysis

Data are presented as mean ± SEM. The unpaired Student t test was used to evaluate the

between-group differences. Values of p< 0.05 were considered statistically significant.

Results

Gut microbiota in patients with heart failure and healthy control subjects

We performed 16S rRNA gene sequencing of fecal samples from 12 younger HF patients

(younger than 60 years of age) and 12 age-matched HC subjects. Gut microbial richness in the

given individual was measured by Chao1-estimated OTU number, and gut microbial diversity

in the individual was evaluated by Shannon index. The richness and diversity of gut micro-

biota were similar between the samples from HF patients and HC subjects (Chao1-estimated

OTU number: 191 ± 20 vs. 195 ± 12, Shannon index: 3.38 ± 0.19 vs. 3.48 ± 0.06) (Fig 1A and

1B). We next estimated the distances between fecal samples obtained from the individuals

using UniFrac analysis [18, 19]. UniFrac distances between gut microbial communities of the

individuals were visualized by a scatter plot created by Principal Coordinate Analysis (PCoA).
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Fig 1. Richness, diversity, and UniFrac distances of gut microbiota in heart failure patients and healthy control

subjects. Chao1-estimated operational taxonomic unit (OTU) number (A) and Shannon index (B) of gut microbiota

samples obtained from younger heart failure (HF-Y) patients and healthy control (HC) subjects. Unweighted UniFrac

analysis (C, D) and weighted UniFrac analysis (E, F) of gut microbiota samples obtained from HF-Y patients and HC

subjects. Principal Coordinate Analysis (PCoA) of UniFrac distances between gut microbial communities of the individuals

Gut microbial dysbiosis in heart failure
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Unweighted UniFrac is a qualitative measure that reflects inter-individual differences in the

presence or absence of each taxon. Weighted UniFrac is a quantitative measure that reflects

inter-individual differences in the relative abundance of each taxon. Mean unweighted and

weighted UniFrac distances between gut microbiota of HF patients and HC subjects were

0.750 and 0.432, respectively, which were greater than inter-individual UniFrac distances in

the gut microbiota of HC subjects (0.722 and 0.383, respectively, both p< 0.00001) (Fig 1C–

1F). Accordingly, the composition of gut microbial communities of HF patients was distinct

from that of HC subjects in both unweighted and weighted UniFrac analyses. These data also

showed greater inter-individual diversity in the gut microbiota of HF patients compared to

HC subjects (Fig 1C–1F).

To investigate whether HF patients had significant changes in specific taxonomic groups of

gut microbial communities, we analyzed the relative abundances of 16S rRNA reads assigned

to each phylum, genus, or species. The majority of gut microbiota was dominated by the four

phyla, Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Significant differences

were not observed between the samples from HC subjects and HF patients in terms of relative

abundances of respective phyla (Firmicutes: 55.8 ± 3.2% vs. 59.4 ± 3.4%, Bacteroidetes:

27.0 ± 3.9% vs. 21.7 ± 4.1%, Actinobacteria: 14.7 ± 2.7% vs. 16.1 ± 4.1%, Proteobacteria:

1.3 ± 0.4% vs. 1.6 ± 0.5%) (Fig 2A). Taxonomic assignment performed at the genus level dem-

onstrated that Clostridium and Dorea were less abundant in the gut microbiota of HF patients

than in that of HC subjects (5.1 ± 1.1% vs. 10.1 ± 2.0%, p = 0.040, and 0.9 ± 0.2% vs.

1.8 ± 0.3%, p = 0.039, respectively) (Fig 2B). At the species level, Eubacterium rectale and

Dorea longicatena were significantly reduced in the samples from HF patients compared to

HC subjects (1.2 ± 0.7% vs. 3.8 ± 0.9%, p = 0.032, and 0.6 ± 0.2% vs. 1.4 ± 0.3%, p = 0.031,

respectively) (Fig 2C).

Gut microbiota in younger and older patients with heart failure

Given that clinical characteristics and outcomes of HF are influenced by aging process [20], we

next examined whether gut microbial communities of patients with HF varied according to

age. We sequenced 16S rRNA gene amplicons from additional fecal samples obtained from 10

HF patients who were 60 years of age or older. We then compared the composition of gut

microbiota of younger HF patients (younger than 60 years of age; n = 12) with that of older

HF patients (60 years of age or older; n = 10). The richness and diversity of gut microbial com-

munities within the individual, as evaluated by Chao1-estimated OTU number and Shannon

index respectively, were not significantly different between younger and older patients with

HF (191 ± 20 vs. 178 ± 13, and 3.38 ± 0.19 vs. 3.21 ± 0.11, respectively) (Fig 3A and 3B). How-

ever, both unweighted and weighted UniFrac analyses demonstrated that the differences in gut

microbiota composition between the two groups were larger than inter-individual differences

in the gut microbiota of older HF group (unweighted UniFrac distance: 0.743 ± 0.004 vs.

0.716 ± 0.007, weighted UniFrac distance: 0.490 ± 0.006 vs. 0.443 ± 0.011; both p< 0.01) (Fig

3C–3F). Interestingly, unweighted but not weighted UniFrac analysis revealed greater inter-

individual diversity in the gut microbiota of younger HF patients compared to older patients

(Fig 3C–3F). The phylum Bacteroidetes was less abundant (11.7 ± 2.3% vs. 21.7 ± 4.1%,

p = 0.047) whereas Proteobacteria was more abundant (8.4 ± 2.9% vs. 1.6 ± 0.5%, p = 0.046) in

the gut microbiota of older HF patients than in that of younger patients (Fig 4A). At the genus

and species level, the genus Faecalibacterium, F. prausnitzii, and Clostridium clostridioforme

(C, E), and UniFrac distances between gut microbial communities of the individuals within each group and between the two

groups (D, F). Data are presented as mean ± SEM. NS, not significant. * p < 0.05, ** p < 0.00001.

https://doi.org/10.1371/journal.pone.0174099.g001
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Fig 2. Abundances of taxa in gut microbiota of heart failure patients and healthy control subjects. Relative abundances of taxa in gut

microbiota samples obtained from younger heart failure (HF-Y) patients and healthy control (HC) subjects. (A) Phylum level. (B) Genus level.

(C) Species level. Data are presented as mean ± SEM. Horizontal bars indicate means. * p < 0.05. NS, not significant.

https://doi.org/10.1371/journal.pone.0174099.g002
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Fig 3. Richness, diversity, and UniFrac distances of gut microbiota in younger and older patients with heart

failure. Chao1-estimated operational taxonomic unit (OTU) number (A) and Shannon index (B) of gut microbiota samples

obtained from younger and older patients with heart failure (HF-Y and HF-O, respectively). Unweighted UniFrac analysis

(C, D) and weighted UniFrac analysis (E, F) of gut microbiota samples obtained from HF-Y and HF-O. Principal Coordinate

Analysis (PCoA) of UniFrac distances between gut microbial communities of the individuals (C, E), and UniFrac distances

Gut microbial dysbiosis in heart failure
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were reduced (3.1 ± 1.0% vs. 7.5 ± 1.4%, p = 0.021, 2.2 ± 0.6% vs. 6.2 ± 1.3%, p = 0.013, and

0.7 ± 0.3% vs. 2.3 ± 0.6%, p = 0.035, respectively), while the genus Lactobacillus and L. salivar-
ius were enriched (21.4 ± 5.1% vs. 2.0 ± 1.1%, p = 0.004, and 14.0 ± 4.7% vs. 0.4 ± 0.4%,

p = 0.018, respectively) in fecal samples from older HF patients compared to younger patients

(Fig 4B and 4C).

Discussion

This study provides the first evidence, to our knowledge, that patients with HF harbor altered

gut microbiota, pointing to the potential clinical significance of gut microbiota in the patho-

physiology of HF.

In patients with HF, there are disturbances in splanchnic microcirculation because of

reduced perfusion, increased congestion, and vasoconstriction caused by neurohumoral acti-

vation. These microcirculatory disturbances cause ischemia in the gut, resulting in dysfunction

of intestinal epithelial cells [7]. The composition of gut microbiota is influenced by the func-

tional crosstalk with intestinal epithelial cells, for example by antimicrobial proteins secreted

from these cells [21]. Previous studies demonstrated that HF patients harbored higher levels of

adherent bacteria in the sigmoid mucosal biofilm, as evaluated by fluorescence in situ hybrid-

ization [5], and larger quantities of pathogenic bacteria in feces such as Campylobacter, Shi-
gella, and Salmonella, as assessed by microbial culture method [22]. In our study, we used

high-throughput culture-independent 16S rRNA gene sequencing of fecal samples to analyze

the composition of gut microbiota. This technique has revealed the association of gut micro-

bial dysbiosis with many diseases [3, 4], including not only gastrointestinal diseases [23] but

also cardiovascular and metabolic diseases such as obesity, diabetes mellitus, and hypertension

[24–27]. Our study shows that gut dysbiosis is also associated with HF and that HF-associated

gut dysbiosis varies further according to age.

Eubacterium rectale and Dorea longicatena were reduced in patients with HF, and Faecali-
bacterium prausnitzii and Clostridium clostridioforme were less abundant in older HF patients

than in younger patients (Figs 2 and 4). E. rectale, D. longicatena, and C. clostridioforme belong

to Clostridia cluster XIVa, and F. prausnitzii is a member of Clostridia cluster IV [28, 29]. E.

rectale and F. prausnitzii produce the short-chain fatty acid butyrate as a major fermentation

product [30]. Butyrate has diverse beneficial effects on the host, such as serving as an energy

source for intestinal epithelial cells, regulating epithelial barrier integrity, and suppressing

intestinal and extra-intestinal inflammation [31–33]. Diminished proportions of butyrate-pro-

ducing bacteria in the gut have been associated with several intestinal and extra-intestinal dis-

orders, such as inflammatory bowel diseases, obesity, diabetes mellitus, and hypertension [23–

27]. D. longicatena produces another short-chain fatty acid acetate as a fermentation product

[29]. Acetate can be utilized by other microbes to generate butyrate [34]. In contrast, lactate-

producing Lactobacillus was found to be more abundant in older HF patients than in younger

patients. Decreases in acetate- and butyrate-producing bacteria and an increase in lactate-pro-

ducing bacteria have been demonstrated in animal models of hypertension [25]. It has been

reported that germ-free mice have negligible levels of acetate, propionate, and butyrate in

plasma and feces, as compared with conventionally-raised mice, indicating that gut microbiota

is responsible for generating most of these short-chain fatty acids in the host [35]. We presume

that HF-associated gut dysbiosis, which further varies with age, can be characterized by an

imbalance in gut microbe-derived metabolites such as short-chain fatty acids. The alteration in

between gut microbial communities of the individuals within each group and between the two groups (D, F). Data are

presented as mean ± SEM. NS, not significant. ** p < 0.01.

https://doi.org/10.1371/journal.pone.0174099.g003
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Fig 4. Abundances of taxa in gut microbiota of younger and older patients with heart failure. Relative abundances of taxa in gut microbiota

samples obtained from younger and older patients with heart failure (HF-Y and HF-O, respectively). (A) Phylum level. (B) Genus level. (C)

Species level. Data are presented as mean ± SEM. Horizontal bars indicate means. * p < 0.05, ** p < 0.01. NS, not significant.

https://doi.org/10.1371/journal.pone.0174099.g004
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gut microbiota and the disruption of gut barrier function may result in aberrant production

and absorption of microbe-derived metabolites, which can contribute to cardiac dysfunction,

inflammation, and malnutrition in HF patients. Further experiments are required to elucidate

the precise effects of gut microbe-derived metabolites on the pathogenesis of HF. While 16S

rRNA gene sequencing allows for taxonomic classification of microbes, whole metagenome

shotgun sequencing enables the identification of potential metabolic functions of microbiota

[36].

Recent studies have demonstrated that HF patients had higher plasma levels of TMAO, a

gut microbe-derived metabolite of choline or carnitine, than control subjects, and that elevated

plasma TMAO level was associated with higher mortality risk in HF patients [12]. Moreover,

increased dietary choline or TMAO intake aggravated adverse cardiac remodeling induced by

pressure overload in mice [13]. These observations suggest a potential contribution of TMAO

to the development of HF. Several microbial species, such as Proteus mirabilis, Proteus penneri
and Escherichia fergusonii, have been identified to be capable of producing trimethylamine

(TMA), a precursor of TMAO, in vitro as well as in gnotobiotic mouse model [37, 38]. How-

ever, none of those species reported were increased in the gut of HF patients in our study.

TMA may be produced in the human gut by highly complex community of microbial species

both defined and currently undefined to be capable of producing TMA.

The composition of gut microbiota in HF patients can be modified not only by hemody-

namic alterations, but also by dietary habits, comorbidities such as hypertension, diabetes, dys-

lipidemia, and chronic kidney disease, and therapeutic interventions. Medication use has been

shown to influence the composition of gut microbiota [39]. Besides antibiotics, several classes

of drugs such as proton pump inhibitors (PPIs), statins, β-adrenergic receptor blockers, angio-

tensin converting enzyme inhibitors, and angiotensin II receptor blockers, have potential

effects on the gut microbiome [40]. In particular, PPI use is profoundly associated with gut

microbiome composition and function. In PPI users, oral commensal bacteria such as the fam-

ily Streptococcaceae were increased in the gut, possibly due to the change in acidic environ-

ment of the stomach, allowing commensal bacteria in the upper gastrointestinal tract to move

beyond to the lower gut [41, 42]. In our study, PPIs were taken by 5 of 12 younger HF patients

and by 5 of 10 older HF patients. Although relative abundances of specific oral bacteria were

not significantly increased in the gut of HF patients in our study, the observed differences in

gut microbiota of HF patients can be affected by confounding factors such as medication. It is

challenging to dissect the contribution of each of these factors to the observed differences in

gut microbiota of HF patients in the larger-scale studies.

The composition of gut microbiota of older adults is known to be distinct from that of

younger adults [43], and gut microbiota profiles of older people vary substantially between

individuals, affected by several factors such as diet, habitation, morbidity, and medication [44].

According to a paper that characterized the microbiota composition of 161 subjects aged 65

years and older and 9 younger control subjects in Ireland [43], the microbiota of the elderly

was distinct from that of younger subjects, with a greater proportion of the phylum Bacteroi-

detes and a less proportion of the phylum Firmicutes. Our analysis revealed that the composi-

tion of gut microbiota of older HF patients was different from that of younger HF patients

(Figs 3 and 4). Interestingly, Bacteroidetes was less abundant in the gut microbiota of older HF

patients than in that of younger patients, while Firmicutes was not significantly different (Fig

4A). In addition, the phylum Proteobacteria was more abundant in the gut microbiota of older

HF patients (Fig 4A). Therefore, our data implicate that the observed alterations in gut micro-

biota with aging may occur specifically in HF patients. However, these alterations may be

caused by aging-related accumulation of complex background factors such as comorbidities

and medications rather than HF. Given the unavailability of gut microbiota profiles of older

Gut microbial dysbiosis in heart failure
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HC subjects in our study, it is currently uncertain how much HF affects the altered gut micro-

biota profiles of older HF patients observed. In our study, older HF patients were characterized

by higher proportions of hypertension (6 of 10 older patients vs. 1 of 12 younger patients) and

HF with preserved ejection fraction (HFpEF) (4 of 10 older patients vs. none of 12 younger

patients) (S1 Table). Gut microbiota profiles of older HF patients found in our study were con-

sistent with the previous report on gut microbiome observed in animal models of hypertension

in terms of increased lactate-producing bacteria, decreased butyrate-producing bacteria, and

diminished proportion of Bacteroidetes [25]. Although pathophysiology of HFpEF remains

poorly understood, aging and hypertension are key factors that contribute to pathophysiologi-

cal process of HFpEF [45]. Gut microbiota alterations observed in older HF patients could

have potential effects on the pathophysiology of HFpEF. It remains to be elucidated how gut

microbiota changes occurring during aging may affect the host physiological aging process per
se [46], and further investigations, including analysis of the composition of gut microbiota of

elderly HC subjects without comorbidities, will be needed to elucidate the impact of the alter-

ations in microbiota in older HF patients.

Our study cannot provide evidence for direct causal effects. Fecal microbial transplantation

studies in animal models of HF harboring human microbiota would be useful to establish the

role of gut microbial dysbiosis in the pathophysiology of HF. Finally, this is a cross-sectional

study with relatively small size of study population. Large-scale longitudinal studies are

required to explore the change in gut microbiome during the course of progression or regres-

sion of HF.

Our study reveals a novel link between HF and dysbiosis in gut microbiota. This finding

supports the novel concept of heart-gut axis. Further exploration of this axis would lead to

breakthroughs in the development of innovative diagnostic and therapeutic approach for HF.

Moreover, gut microbiota profiles of HF patients vary significantly between individuals. Per-

sonalized characterization of gut microbiome in HF patients could be useful in risk stratifica-

tion or treatment decision for each individual patient [47].
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