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Abstract

Leveraging smart metering solutions to support energy efficiency on the individual house-

hold level poses novel research challenges in monitoring usage and providing accurate load

forecasting. Forecasting electricity usage is an especially important component that can pro-

vide intelligence to smart meters. In this paper, we propose an enhanced approach for load

forecasting at the household level. The impacts of residents’ daily activities and appliance

usages on the power consumption of the entire household are incorporated to improve the

accuracy of the forecasting model. The contributions of this paper are threefold: (1) we

addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate

but on the individual household level, which fits into the Residential Power Load Forecasting

(RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behav-

iors that influence power consumption, which was derived using segmentation and

sequence mining algorithms; and (3) an extensive load forecasting study using different

forecasting algorithms enhanced by the household activity patterns was undertaken.

1. Introduction and problem statement

Throughout the EU, there has been considerable interest in smarter electricity networks,

where increased control over electricity supply and consumption is going to be achieved

thanks to investments and improvements in new technologies such as Advanced Metering

Infrastructure (AMI). Smart metering is part of this movement, and it is perceived as a neces-

sary step to achieving EU energy policy goals by the year 2020, that is, to cut greenhouse gas

emissions by 20%, to improve energy efficiency by 20% and to ensure that 20% of EU energy

demand is supplied by renewable energy sources.

Smart metering systems are a part of micro-grid which includes a variety of operational and

energy measures including smart appliances, renewable energy resources and energy efficient

resources. One of the most challenging problems associated with operation of micro-grids is

the optimal energy management of residential buildings with respect to multiple and often

conflicting objectives [1]. Recently, attention is paid to smart grid vision and smart homes that

can optimize energy consumption and lower electricity bills. Developing a smart home energy
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management system has become a common global priority to support the trend towards a

more sustainable and reliable energy supply for smart grid as indicated in [2–5].

First, the new metering infrastructure is expected to ensure automated reading and billing

based on actual usage. Second, by collecting high frequency consumption data, the system

meets prerequisite for the implementation of cost reflective prices, varying based on the time

of consumption. Third, these new metering systems are intended to contribute to reductions

in the overall energy consumption by increasing the energy awareness of the users. One of the

most important aspects of smart metering systems is to encourage users to use less electricity

by being better informed about their consumption patterns. Forecasting usage provides cus-

tomers with the possibility of linking current usage behaviors with future costs. Therefore, cus-

tomers may benefit from forecasting solutions through greater understanding of their own

energy consumption and their future projections, allowing them to better manage the costs of

their usage. By making energy consumption and future projections more transparent, it would

be easy to understand how much we are actually using and how it would affect our budget in

the future. Of course, we should remember that technology alone will not be enough to change

the way people consume energy, but it provides a method for using energy in a deliberate and

conscious way. Therefore, we believe that our research fits into an attempt to generate value

added for individual customers within the field of Residential Power Load Forecasting (RPLF)

methods.

In this paper, we will study an approach to forecast the hourly electricity loads of individual

consumers for 24 hours by taking into account historical electricity consumption and the

household’s behavioral data. In particular, based on smart metering data, we aim to provide

answers to the following research questions:

1. Is it possible to provide accurate load forecasting for 24 hours on the individual household

level and to what extent?

2. Are the clustering and sequence recognition algorithms good tools for identifying patterns

of household behavior?

3. Do the usage pattern variables of the household enhance the forecasting accuracy of indi-

vidual consumer loads?

4. What kind of forecasting methods and algorithms are appropriate to address high volatility

data?

The structure of the paper is organized as follows: a short literature review on similar prob-

lems is provided in section 2. In section 3, the approach to detect household activity patterns

based on the Almanac of Minutely Power Dataset (AMPds) [6] is shown. The household spe-

cific behavioral data influencing power consumption are derived using the segmentation and

sequence mining algorithms. Then, in section 4, a number of numerical experiments aimed to

provide accurate 24-hour forecasts on the household level are presented. The scalability of the

approach based on WikiEnergy data [7] gathered for 46 households is shown in section 5.

Finally, section 6 concludes the paper.

2. Literature review of similar problems

The field of electricity load forecasting is mature with numerous approaches that have been

proposed throughout the years. They have usually focused on system demand level forecasting,

which has a load reaching tens of megawatts or gigawatts. A general overview of short-term

load forecasting can be found in [8–9], and some more classic surveys are provided in [10] and

[11]. Different methods have been proposed for forecasting the electric load demand in the
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last decades. Some of the most popular include time series analyses with the autoregressive

integrated moving average (ARIMA) method [12], fuzzy logic [13], the neuro-fuzzy method

[14], artificial neural networks (ANNs) [15–17], and support vector machines (SVMs) [18–

19].

Recently, with advances in communication infrastructure for remote and automated data

reading, there has been increasing interest in RPLF. However, patterns of electricity use at a

system demand level and at an individual level are very different. For instance, Fig 1A) shows

the pattern of electricity use for a single random dwelling extracted from the WikiEnergy data

[7]. The profile shows a peak in the morning at approximately 7–8 am and a second peak that

is smaller than the peak in the morning between 4 pm and 6 pm. In contrast, Fig 1B) reflects a

distinctly different pattern of electricity use for a group of 46 households on the same day of

the year. The figure shows a smooth profile shape with relatively little electricity consumption

in the early afternoon, a clearly defined peak in the morning and a slightly smaller defined

peak in the evening.

Load forecasting on the individual household level is a challenging task due to the extreme

system volatility as a result of dynamic processes composed of many individual components.

Typical home loads are between 1 and 3 kWh and can be influenced by a number of factors,

such as the operational characteristics of devices, the behaviors of the users, economic factors,

time of the day, day of the week, holidays, weather conditions, geographic patterns and other

random effects. Aggregation reduces the inherent variability in electricity consumption result-

ing in increasingly smooth load shapes, and as a result, the relative forecasting errors typically

seen at the level of substations and power systems has been quite low in terms of MAPE (1%

Fig 1. Daily electricity demand load profiles across a 24 hr period on 21st July 2013 based on WikiEnergy

data [2]; (A) for an individual dwelling; (B) aggregated for 46 households.

https://doi.org/10.1371/journal.pone.0174098.g001
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− 2%) [20], [15], [21]. The forecasting performance at the individual level shows much higher

errors ranging from 20% to 100% (and even higher), and it depends on dwelling lifestyle and

regularity of appliance usage [22–25].

Some interesting examples of electricity forecasting on the individual household level are

indicated below.

Given sensor data collected from three residential homes, the authors of [26] aimed to

determine which machine learning technique performed best at predicting whole building

energy consumption for the next hour. The results showed that LS-SVM is the best technique

for predicting each home’s future electrical consumption. In general, the proposed methods

achieved MAPE of 1.60% to 13.41% for a 700 kWh commercial building and between 15% and

32% for three homes with mean consumptions close to 1.5 kWh.

In [27], the authors investigated high-resolution data from 3 private households collected

over 30 days. The conclusion was that advanced forecasting methods can yield better forecasts,

even when carried out on aggregated household consumption data that could be obtained

from smart meters. Based on disaggregated data from smart homes, sensors with persistence

and smart meter benchmarks reveal substantial forecast improvements of 4% to 33% in terms

of the mean absolute error.

In [28], various methods were utilized to forecast peak demand for individual homes. The

authors concluded that a home’s historic peak load and occupancy is a better predictor of peak

load than temperature or season. They also showed that Seasonal Auto-Regressive Moving

Average (SARMA) can be used to model both the intrinsic load pattern and consumer activity

in a home and that it has 30% lower mean square error than regression-based techniques.

In [22], Kalman filter-based forecasting resulted in load forecast with MAPE of 30% for a

sampling period and forecasting horizon equal to one hour. Shorter time intervals between

receiving real-time measurement data from the customers’ smart meter improved the accuracy

of the proposed method and resulted in MAPE of nearly 13%.

In [29], based on power consumption measurements from 23 households collected across

Japan, the authors proposed a support vector regression model and an activity sequence driven

approach for inferring future activities and enhancing load forecasting. The activity sequence

variable turned out to be an influencing factor that could improve the accuracy of load fore-

casting 15 minutes ahead for individual households, reaching 42% MAPE on average. Addi-

tionally, the study revealed that half of the households could not benefit from activity

sequences to reduce their forecasting error.

In [30], the authors applied a number of forecasting methods including ARIMA, neural

networks, and exponential smoothening using several strategies for training data selection

(including day type and sliding window) with forecasting horizons ranging between 15 min-

utes and 24 hours. The evaluation was performed on two data sets; the first one was a single

household in Germany, and the second one was for six households in the United States. The

results indicate that forecasting accuracy varies significantly depending on the choice of fore-

casting method/strategy and the parameter configuration. In general, the MAPE ranged

between 5% and greater than 100%, and the average MAPE for the first data set was approxi-

mately 30%, while it was approximately 85% for the other data set.

In [23], the authors presented an approach to forecast electricity loads on the individual

household level using CART, SVM and MLP neural networks for 24 hour short-term load

forecasts. The study concluded that a combination of historical usage data and household

behavioral data could greatly enhance the forecasting of individual consumer loads. The

obtained MAPE were 51% for the neural networks and 48% for the SVM.

Based on the literature review, there is a clear and increasingly recognizable research trend

that looks at challenges associated with behavioral factors that impact the energy usages of
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individual appliances observed at the household level. The rationale is to provide feedback on

usage patterns and derive significant underlying associations between several contextual fac-

tors including time of use and user activities. It is expected that the insights may increase

awareness and understanding of home energy consumption and may be used as an additional

variable that can enhance electricity forecasting.

3. Detecting household activity patterns

3.1. Data characteristics

The analysis was prepared based on the collection of electricity consumption data from a single

house. The dataset is known as the Almanac of Minutely Power dataset (AMPds) [6] and con-

tains two years of recorded energy consumption data (at one minute intervals) using 21 sub-

meters and covering the time span between April 1st, 2012, and March 31st, 2014. The moni-

tored house was built in 1955 in the greater Vancouver region in British Columbia, and it

underwent major renovations in 2005 and 2006, which resulted in it receiving a Canadian

Government EnerGuide rating of 82%.

The list of the monitored appliances is presented in Table 1. For the purpose of the numeri-

cal experiments, the cut-off value for each appliance was proposed based on visual analysis.

The analysis was narrowed to the most energy-intensive household appliances. These were

Clothes Dryer (Dryer), Clothes Washer (Wash), Dishwasher (Dish), Heat Pump (Heat), and

Instant Hot Water Unit (Instant). The other appliances were not considered due to their insig-

nificant activities (e.g., Basement Plugs and Lights), continuous activity (e.g., Entertainment:

TV, PVR, AMP), or those not showing any repetitive patterns (e.g., Electronics Workbench).

The starting point for the usage pattern detection was to prepare a matrix with switching on

probabilities for each of the individual devices over a specified time period. The probabilities

Table 1. Appliances monitored in AMPds.

Appliance Cut-off value (Watts)

North Bedroom 2

Master and South Bedroom 9

Basement Plugs and Lights 7

Clothes Dryer 7

Clothes Washer 1

Dining Room Plugs 1

Dishwasher 1

Electronics Workbench 1

Security/Network Equipment 1

Kitchen Fridge 1

Forced Air Furnace: Fan and Thermostat 1

Garage 1

Heat Pump 100

Instant Hot Water Unit 7

Home Office 20

Outside Plug 1

Rental Suite Sub-Panel 50

Entertainment: TV, PVR, AMP 30

Utility Room Plug 8

Wall Oven 1

https://doi.org/10.1371/journal.pone.0174098.t001
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were estimated using the following formula.

P ¼
Number of turn ON events in hour i
Total number of turn ON events

: ð1Þ

Table 2 presents the matrix with observed probabilities for each appliance turn ON event

over the analyzed period of 2 years. The probabilities for each appliance are equal to 1. The

highest probabilities (more than 0.07) for each appliance are shown in bold.

It can be noticed that the highest probabilities to use the cloth dryer are at midday (between

12 am and 2 pm) and in the evening (10 pm). The clothes washer is used frequently between 9

am and 2 pm. The use of the dishwasher usually occur in the evening between 6 pm and 10

pm. The heat pump operates more frequently in the morning at 7 am, while the instant hot

water unit reaches its peak in the evening, between 5 pm and 8 pm.

In the same manner, a larger table (S1 Table) has been created, which consists of 24 rows

(representing hours) and 35 columns (representing appliances over the seven days of the

week). For each appliance, seven columns show the probabilities of the turn ON events on a

specified day of the week. In this case, the probabilities over the whole week are equal to 1, for

each appliance.

3.2. Activity segmentation

In the industry, segmentation has been used by large electricity suppliers to group customers

together that share similar characteristics in terms of electricity usage. However, its use at the

Table 2. The matrix with the probabilities of appliance turn ON events in each hour.

hour Clothes Dryer Clothes Washer Dishwasher Heat Pump Instant Hot Water Unit

0 0.017 0 0.017 0.016 0.006

1 0.002 0 0.005 0.028 0.001

2 0.007 0 0 0.035 0.001

3 0.006 0 0 0.038 0.001

4 0.008 0 0 0.043 0.001

5 0.008 0 0 0.047 0.005

6 0.008 0.002 0 0.063 0.04

7 0.013 0.008 0.005 0.078 0.059

8 0.01 0.042 0.016 0.061 0.05

9 0.021 0.094 0.028 0.054 0.054

10 0.044 0.135 0.05 0.053 0.044

11 0.05 0.127 0.056 0.054 0.036

12 0.071 0.097 0.045 0.043 0.037

13 0.078 0.079 0.052 0.041 0.038

14 0.071 0.082 0.051 0.041 0.034

15 0.06 0.061 0.053 0.051 0.051

16 0.065 0.057 0.057 0.052 0.068

17 0.063 0.05 0.056 0.033 0.095

18 0.051 0.044 0.081 0.029 0.094

19 0.07 0.054 0.097 0.029 0.091

20 0.05 0.044 0.11 0.025 0.078

21 0.049 0.02 0.107 0.035 0.055

22 0.113 0.004 0.07 0.039 0.039

23 0.065 0 0.044 0.012 0.022

https://doi.org/10.1371/journal.pone.0174098.t002
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individual household level has been somewhat limited. Currently, thanks to smart meter data,

there is an opportunity to capture and present individual patterns of energy consumption

derived by the clustering algorithms. The discovered patterns of home appliance usage can be

visualized to help the users understand their own energy consumptions, and these patterns can

be used to feed the forecasting models, which is our motivation. We believe such an enhanced

set of explanatory variables can significantly improve the accuracy of the forecasts generated at

the household level.

For this purpose, we propose hierarchical clustering and grade data analysis.

Hierarchical cluster analysis is an algorithmic approach to find discrete groups with vary-

ing degrees of similarity in a dataset represented by a similarity matrix. These groups are hier-

archically organized as the algorithms proceed and may be presented as a dendrogram.

One of the most popular agglomerative clustering algorithm is Ward’s method [31]. Basi-

cally, it looks at cluster analysis as an analysis of variance problem, instead of using distance

metrics or measures of association. It looks for groups of leaves, which it forms into branches.

Then, the branches are formed into limbs and eventually into the trunk. Ward’s method starts

out with n clusters of size 1 and continues until all of the observations are included in one

cluster.

The purpose of this analysis is to discover similar profiles or, in other words, appliances

with similar switch ON probability distributions throughout the day or the week. As a result of

grouping using Ward’s method with the Euclidean distance measure, the following dendro-

gram for the data presented in Table 2 was obtained and presented in Fig 2.

The height of each edge of the dendrogram is proportional to the distance between the

joined groups. As shown in Fig 2, there are two groups that are distinctly separated from each

other. From the visual analysis of the dendrogram, it can be observed that the switch ON prob-

abilities of the clothes washer and heat pump are very similar (cluster marked in blue). A simi-

lar correlation in periods of joint work can be seen in the case of the dishwasher, clothes dryer

and instant hot water unit (clusters marked in red).

Graphical representation of the data from S1 Table is shown in Fig 3.

Fig 2. Dendrogram for grouping the electrical appliances throughout the day.

https://doi.org/10.1371/journal.pone.0174098.g002
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In the case of those data, it is difficult to draw clear conclusions about the dependencies of

the co-occurrences of the appliances by day of the week. However, at the bottom, there is a

cluster associated with the dishwasher activity on all of the week days (cluster marked in gray).

Another group (marked in green) represents the washing machine over the entire week except

Sunday. The usage profile of this device is most similar to the usage profile of the clothes dryer

on the weekends (yellow). Finally, the profiles of the heat pump over the entire week are clus-

tered in one group (on top of the chart, in purple). They are the least similar to the profiles of

the other devices.

Grade data analysis is an efficient technique that works on variables measured on any mea-

surement scales (including categorical) because it is based on dissimilarity measures such as

concentration curves and some precisely defined measure of monotonic dependence. Its main

framework is composed of grade transformation proposed by [32]. The idea is to transform

any distribution of two variables into a convenient form of the so called grade distribution.

This transformation leaves the orders of the variables, ranks, and values of monotone depen-

dence measures (such as Spearman’s ρ
�

and Kendall’s τ) unchanged. In case of empirical data,

this approach is focused on analyzing the two-way table with objects/variables, which is pre-

ceded by proper recoding of variable values.

The main tool of the grade data methods is Grade Correspondence Analysis (GCA), which

refers to classical correspondence analysis and extends it by the mean of the grade transforma-

tion. Briefly, GCA orders the variables/objects in a table in a way such that neighboring objects

are more similar than those that are further apart, and at the same time, neighboring variables

are also more similar than those that are further apart. After the optimal ordering is found, it is

possible to aggregate neighboring objects and neighboring variables and, therefore, to build

segments with similar distributions.

The data structure presented in Table 2 has been analyzed using the GradeStat tool [33],

which was developed at the Institute of Computer Science Polish Academy of Science.

The first step was to calculate over-representation ratios for each field (cell) of the table. A

given m × k data matrix with non-negative values can be visualized using an over-representa-

tion map in the same way as a contingency table [34]. Instead of frequency nij, the value of the

j-th variable for the i-th object is used. Next, it is compared in a contingency table with the cor-

responding neutral or fair representation ni• × n•j/∑∑nij where ni•/∑j nij, n•j/∑i nij. The ratio of

the first and second expressions is called the over-representation ratio. An over-representation

surface over a unit square is divided into m × k rectangles situated in m rows and k columns,

and the area of the rectangle placed in row i and column j being equal to fair representation of

normalized nij. For instance, taking into account the use of the dishwasher at 8 pm, the ratio

Fig 3. Dendrogram for grouping the electrical appliances throughout the week.

https://doi.org/10.1371/journal.pone.0174098.g003
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would be equal to 1.79153 because the probability of using the dishwasher in this hour is 0.11

and the row sum is 0.307 (for five appliances). Thus, we have 1.79153 = 0.11/(0.307/5). Using

the over-representation ratios, the over-representation map for the initial raw data can be con-

structed. The color of each field in the map depends on the comparison of two values: (1) the

real value of the measure connected to the considered field and corresponding to the popula-

tion element; (2) the expected value of the measure.

Fig 4 presents the initial over-representation map for the analyzed data. The colors of the

cells in the map are grouped into three classes:

1. gray–the measure for the element is neutral (ranging between 0.99 and 1.01). which means

that the real value of the measure is equal to its expected value;

2. black or dark gray–the measure for the element is over-represented (between 1.01 and 1.5

for weak over-representation and more than 1.5 for strong), which means that the real

value of the measure is greater than the expected one;

3. light gray or white the measure for the element is under-represented (between 0.66 and

0.99 for weak under-representation and less than 0.66 for strong under-representation).

which means that the real value of the measure is less than the expected one.

The next step was to apply the grade analysis to measure the dissimilarity between two data

distributions in order to reveal the structural trends in the data. For this reason. Spearman’s ρ
�

was used as the total diversity index. The value of ρ
�

strongly depends on the mutual order of

the map’s rows and columns. To calculate ρ
�

the concentration indices of differentiation

between the distributions are used. The basic procedure of GCA is executed through permut-

ing the rows and columns of a table in order to maximize the value of ρ
�

. After each sorting,

the ρ
�

value increases, and the map becomes more similar to the ideal one, which, means that

the darkest fields are placed in the upper-left and lower-right map corners while the rest of the

fields are assigned according to the following property: the farther from the diagonal towards

the two other map corners (the lower-left and the upper-right), the lighter gray (or white) the

field.

Fig 4. The initial over-representation map.

https://doi.org/10.1371/journal.pone.0174098.g004
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The result of the GCA procedure is presented in Fig 5. Additionally, cluster analysis was

performed through the aggregation of some columns into one column (and for the rows

respectively). The optimal number of clusters is obtained when the changes of the subsequent

ρ
�

values appear to be negligible as referenced in [35].

The resulting order presents the structure of the underlying trends in the data. The clusters

show typical usage patterns of home appliances. Two clusters in the top left corner (marked

A1 and A2) are similar in terms of the same usage hours; they represent the dishwasher and

the clothes dryer. This group of appliances is strongly over-represented in the evening hours,

whereas they are strongly under-represented in the morning. The clusters in the bottom right

corner are related to the heat pump and the clothes washer. The usages of these appliances usu-

ally occurred in the morning or at midday (marked with B1 and B2). The profile of the water

heating device (located in the center of the over-representation map) is not related to the

usages of the other appliances.

Additional, separate analysis was performed using the data from S1 Table. This was to

inspect the differences in household usage patterns between weekdays, please see Fig 6 for the

results.

The analysis revealed that the usage profiles for the devices broken down by day of the week

differ only slightly from those observed as a whole. Only some cases, e.g. clothes dryer on

Wednesday (marked with red border), are outside their natural group. In general, the patterns

of behavior are similar to those presented in Fig 5.

3.3. Activity sequence mining

Sequence mining is an exploration technique that focuses on discovering statistically relevant

patterns in the form of a sequence for a given data set. The resulting rules (patterns) adopt the

following form of conditional statements: if appliance A was used, then appliance B will be

used next.

In the home energy research field, sequence mining can be applied to capture the use of

appliances in sequence. This kind of analysis gives insight that can help understand how

Fig 5. The final GCA over-representation map with clusters.

https://doi.org/10.1371/journal.pone.0174098.g005

Electricity forecasting on the individual household level enhanced based on activity patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0174098 April 19, 2017 10 / 26

https://doi.org/10.1371/journal.pone.0174098.g005
https://doi.org/10.1371/journal.pone.0174098


power consumption is influenced by certain activities and their sequences and how those

activities are related to each other.

Within the collected data, it is possible to track sequences of different activities that a house-

hold performs throughout a day. To understand the daily activity sequences of a household, a

sequence is given by all of the activities performed by the household during the day, ordered

by the start time of the activity.

To discover only interesting and valuable rules from the dataset, three basic measures were

used for their evaluation [36]: (1) support is defined as the proportion of days containing a spe-

cific itemset of the appliances to all of the days; (2) confidence is defined as the proportion of

the observed support of the specific rule to the support of the left side item (corresponds to the

conditional probability denoting if the left side occurred then also with some probability the

right side of rule will occur); (3) lift is defined as the proportion of the observed support of the

rule to the product of the supports of both sides of the rule, and it shows, in business terms,

how many times more likely the appearance of appliance B with appliance A is than that with

any other randomly chosen appliance. These measures are calculated according to following

formulas:

support appliance A! appliance Bð Þ ¼
jappliance A! appliance Bj

jall daysj
: ð2Þ

confidence appliance A! appliance Bð Þ ¼
suppðappliance A! appliance BÞ

suppðappliance AÞ
: ð3Þ

lift appliance A! appliance Bð Þ ¼
suppðappliance A! appliance BÞ

suppðappliance AÞ � suppðappliance BÞ
: ð4Þ

The goal of sequence rules is to find all of the strong rules, such that support level and confi-

dence level are greater than a minimum threshold value.

Fig 6. The final GCA over-representation map including appliances and the days of their usage.

https://doi.org/10.1371/journal.pone.0174098.g006
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By considering only the rules with support greater than 1%, a minimum difference between

the appliances’ switch on events of at least 1 hour, and a maximum difference between conse-

cutive elements in the sequence, the usage patterns presented in Table 3 were discovered.

All of the observed sequential rules have lift greater than one, which means that the occur-

rence of the elements on the left side of the rules influences the occurrence of the elements

contained on the right side of the sequential rule. In particular, the following behavior patterns

were observed:

• with support equal to 4% and a confidence of 80%, if in a given hour the instant unit &

clothes washer & dishwasher have been used, then in the next hours, the clothes washer &

dishwasher will also have been used;

• with support equal to 3% and a confidence of 56%, if in a given hour the instant unit &

clothes washer have been used, then in the next hours, we could expect the dryer & dish-

washer to be switched on, and they could operate for the next hour;

• with support equal to 3% and a confidence of 67%, if in a given hour the heat pump & clothes

washer have been used, then in the next hours, the instant unit & heat pump & clothes

washer will also have been used and followed by the heat pump & dryer;

• with support equal to 3% and a confidence of 64%, if in a given hour the instant unit & heat

pump & clothes washer have been used, then in the next hours, the same set of appliances

will also have been used and followed by the heat pump & dryer;

• finally, with support equal to 5% and a confidence of 47%, if in a given hour the instant unit

was switched on, then in the next hours, the heat pump & clothes washer will also have been

used and followed by the instant unit & heat pump & dryer.

4. Forecasting experiments

4.1. Accuracy measures

To assess the model performance for forecasting, three measures were used. These were preci-

sion, resistant mean absolute percentage error and accuracy [37].

Precision is defined as the measure of how close the model is able to forecast the actual

load. To measure precision, the mean squared error (MSE) was used:

MSE ¼
1

n
Pn

i¼1
ðWhi � PhiÞ

2
: ð5Þ

where Whi is the observed load in hour i and Phi is the forecasted load in hour i.
Mean Absolute Percentage Error (MAPE) was the second measure that was used, This mea-

sure satisfies the criteria of reliability. ease of interpretation and clarity of presentation. How-

ever, it does not meet the validity criterion because the distribution of the absolute percentage

Table 3. Selected sequential rules extracted from AMPDs data.

Sequence rule Support (%) Confidence (%) Lift

instant & clothes washer & dishwasher == > clothes washer & dishwasher 4 80 13.86

instant & clothes washer == > dryer & dishwasher == > dryer & dishwasher 3 56 9.77

heat & clothes washer == > instant & heat & clothes washer == > heat & dryer 3 67 6.68

instant & heat & clothes washer == > instant & heat & clothes washer == > heat & dryer 3 64 6.40

instant == > heat & clothes washer == > instant & heat & dryer 5 47 5.62

https://doi.org/10.1371/journal.pone.0174098.t003
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errors is usually skewed to the right due to the presence of outlier values. In these cases, MAPE

can be highly over-influenced by some very bad instances and can disrupt quite good forecasts.

Therefore, we propose an alternative measure, called resistant MAPE or r-MAPE. based on the

calculation of the Huber M-estimator, which helps to overcome the aforementioned limitation

[38].

An M-estimator for the location parameter μ using the maximum likelihood (ML)-estima-

tor is defined as a solution θ to

Pn
i¼1

r
j
Whi � Phi
Whi
j � y

s

 !

¼ min
y
: ð6Þ

or

Pn
i¼1
φ
j
Whi � Phi
Whi
j � y

s

 !

¼ 0: ð7Þ

where φ = ρ0.σ is the scale parameter. For a given positive constant k, the Huber [39] estimator

is defined by the following function in φ (3)

φðkÞ ¼

k x > k

x � k � x � k

� k x < k

: ð8Þ

8
><

>:

where k is a tuning constant determining the degree of robustness and set at 1.5. The function

is known as metric Winsorizing and brings in extreme observations to μ� k. In practice, σ is

not known, thus, a MAD robust estimator was used:

MAD ¼ medianðjxi � medianðxiÞjÞ: ð9Þ

Finally, an accuracy measure was used, which identifies how many correct forecasts the

model makes, where the term correctness is defined by the user. This can be done by defining

correct forecasts as values within a percentage range of the actual load. However. for low loads,

a percentage range may become insignificant. For a load of 0.1 kWh, a 15% range would be

0.085–0.115, and a forecast of 0.2 kWh will be considered wrong, but in practice, such a fore-

cast would be acceptable. To address this false loss of accuracy, we set two scales to measure

the accuracy. In this study, we set a 15% range of error for accuracy, but if the load was smaller

than 1 kWh, then we considered the range of ±0.15 kWh as the range of acceptable forecasts.

Therefore, accuracy for hour i was given as:

Accuracy ¼
P

1fWhi > 1&jWhi � Phij < Phi � 0:15g þ
P

1fWhi:1&jWhi � Phij < 0:15g:ð10Þ

4.2. Predictors

In this research, we focused on forecasting the electricity usage of a particular household for 24

hours ahead. To forecast the load, we constructed a feature vector with attributes as presented

in Table 4. The attributes were constructed based on time series with hourly electricity

demand. Additionally, other variables were collected, including temperature, humidity, and

date.

Electricity demand varies over time depending on the time of day (daily cycles), day of the

week (weekly cycles), day of the month (monthly cycles), season (seasonal cycles) and occur-

rence of holidays. Therefore, we enriched the analysis with an additional 76 dummy variables

that described the hour (1–24), 31 variables associated with the day of the month, 7 variables
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associated with the day of the week, 12 variables associated with the month, one variable indi-

cating a holiday and one variable indicating the sunset in a particular hour.

The main variables taken into account in the forecasting process are those derived directly

from the time series. The features were created by the decomposition of the time series, and

they define, among others, minimum, maximum and actual demand at certain intervals (up to

35 days back).

In addition to the attributes that describe the historical electricity consumption, a set of

behavioral features describing the habits of the household was prepared. Those are associated

with the use of certain electrical appliances as presented in Table 5. The presented set of attri-

butes describes the household behavior patterns that were discovered during the earlier stages

of the research with the method of segmentation and sequence analysis.

The feature vector in Table 5 includes a number of switch on states (activations) collected

for individual appliances: Clothes Dryer (Dryer), Clothes Washer (Wash), Dishwasher (Dish),

Heat Pump (Heat), and Instant Hot Water Unit (Instant). The data report the appliances’

Table 4. Feature vector used in forecasting.

Attribute

No.

Description Formula

1–24 Hour indicator (dummy variable) Gi, i = 1,. . .,24

25–55 Day of the month indicator (dummy variable) Di, i = 1,. . .,31

56–62 Day of the week indicator (dummy variable) Ti, i = 1,. . .,7

63–74 Month indicator (dummy variable) Mi, i = 1,. . .,12

75 Holiday indicator (dummy variable) S

76 Sunset indicator (dummy variable) N

77–100 Load of previous 24 hours Zg−i, i = 1,. . .,24

101–104 Minimum load of previous 3, 6, 12, 24 hours min{Zg−1,. . .,Zg−i}. i = 3,6,12,24

105–108 Maximum load of previous 3, 6, 12, 24 hours max{Zg−1,. . .,Zg−i}. i = 3,6,12,24

109–114 Load in the same hour of the previous week (6 days) Zg,d−i, i = 2,. . .,7

115–118 Load in the same hour of the same day in previous weeks (4 weeks) Zg,d−i, i = 14,21,28,35

119–122 Average temperature observed over previous hourly periods avg{Tg−i,. . .,Tg−i[+1]} i = 1,3,6,12,24

123–128 Average temperature observed in the same hour over the previous week (6 days) Tg,d−i, i = 2,. . .,7

129–132 Average weekly temperature observed in previous i-day periods avg{Tg,d−i,. . .,Tg,d−i[+1]}. i = 7,14,21,28,35

133–136 Average humidity observed over previous hourly periods avg{Wg−i,. . .,Wg−i[+1]}. i = 1,3,6,12,24

137–142 Average humidity observed in the same hour over the previous week (6 days) Wg,d−i, i = 2,. . .,7

143–146 Average humidity observed in previous i-day periods avg{Wg,d−i,. . .,Wg,d−i[+1]}. i = 7,14,21,28,35

Notation [+1] stands for the next element from the set of indices i {1,3,6,12,24} e.g. avg{Tg,d−1,. . .,Tg,d−3} or avg{Tg,d−3,. . .,Tg,d−6}.

https://doi.org/10.1371/journal.pone.0174098.t004

Table 5. Feature vector to describe hourly usage patterns.

Attribute

No.

Description Formula

147–166 Number of switch on states (activations) for each appliance (Dryer, Wash, Dish, Heat,

Instant) over previous hourly periods

∑ON{Applianceg−i,. . .,Applianceg−i[+1]},

i = 1,3,6,12,24

167–176 Number of switch on states (activations) for each appliance (Dryer, Wash, Dish, Heat,

Instant) over previous daily periods

∑ON{Applianced−i,. . .,Applianced−i[+1]},

i = 1,3,7

177–196 Number of switch on states (activations) for each appliance (Dryer, Wash, Dish, Heat,

Instant) in previous i-day periods

∑ON{Applianced−i,. . .,Applianced−i[+1]},

i = 7,14,21,28,35

197–221 Number of hours between the most recent five successive activations of each device ∑G(ApplianceON, ApplianceON[+1]),

ON = 0,. . .,5

https://doi.org/10.1371/journal.pone.0174098.t005
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activations taking into account previous hours, previous days, previous weeks and the differ-

ence (in hours) between the most recent five successive activations (for each appliance).

The features presented in Table 5 are the outcome of segmentation and sequence analysis,

and they describe, as widely as possible, the existing dependencies in the data. In particular,

they revealed the following relations:

• The structures of the devices’ profiles over days, weeks and months, which were discovered

by analyzing appliances’ switch on (activations) events in each hour (see Table 2 and S1

Table), and the outcome of the analysis of the contributions from variables no. 147 to 196,

which are associated with the characteristics of a single device.

• The sequential patterns and the time periods between successive activations are reflected in

variables no. 197 to 221 as a result of the sequence mining approach (see Paragraph 3.3).

4.3. An approach to forecasting

Building predictive models is a task that requires dealing with both huge data volumes and

complex algorithms. Therefore, it becomes necessary to have an efficient computing environ-

ment with high-performance computers. In our case, all the numerical calculations were per-

formed on computing clusters located at the Interdisciplinary Center for Mathematical and

Computational Modelling at the University of Warsaw. The HYDRA engine with Scientific

Linux 6 operating system was used with the following nodes and their parameters:

• Istanbul–AMD Opteron(tm) 2435 2.6 GHz, 2 CPU x 6 cores, 32 GB RAM.

• Westmere–Intel(R) Xeon(R) CPU X5660 2.8 GHz, 2 CPU x 6 cores, 24 GB RAM.

R-CRAN was used as the computing environment, which is an advanced statistical package,

as well as an interpreted programming language that exists on Windows, Unix and MacOS

platforms. It is licensed under the GNU GPL and based on the S language.

The starting point for the numerical experiments was the division of the AMPDs dataset

into three parts, which corresponded to the training, validation and testing samples with the

following proportions.

The training sample consisted of 330 days (7920 observations) between May 6th. 2012, and

March 31st. 2013, the validation sample consisted of 28 days (672 observations) between April

1st. 2013, and April 28th. 2013, and finally, the testing sample consisted of 14 days (336 observa-

tions) between April 29th. 2013, and May 12th. 2013.

The main criterion taken into account while learning the models is to gain good generaliza-

tion of knowledge with the least error. The most commonly used measure to assess the quality

of forecasts in the electric power system is the MAPE. Therefore, to find the best parameters

for all models and to assure their generalization, the following function was minimized:

f MAPEU ;MAPEWð Þ ¼
1

2
jMAPEU � MAPEW j þ

1

2
MAPEW : ð11Þ

where MAPEU and MAPEW stand for the training and validation errors, respectively.

In the experiments, the broad set of the machine learning algorithms was tested including

artificial neural networks, regression trees, random forest regression, k-nearest neighbors

regression and support vector regression. In the following discussion, the algorithms are

briefly introduced along with their settings.

Artificial neural network. An artificial neural network (ANN) is a network that is often

used to estimate or approximate functions that can depend on a large number of inputs. In
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contrast to other machine learning algorithms, they required special preparation of the input

data. The vector of continuous variables has been standardized, while the binary variables

were converted such that the value of 0 was transformed into -1. Finally, the dependent vari-

able was normalized by zero unitarization. To propose the forecast, the reverse transformation

of the dependent variable was applied.

To train the neural networks, we used the BFGS (Broyden–Fletcher–Goldfarb–Shanno)

algorithm, which belongs to the broad family of quasi-Newton optimization methods (avail-

able in the nnet library). The network had an input layer with 146 and 221 variables, depending

on whether the additional variables with usage patterns were considered in the model. In the

hidden layer, a different number of neurons was tested, starting from 10 to 50 by 5 (nine sets).

A logistic function was used to activate all of the neurons in the network, and a regularization

factor was introduced to penalize weights that were too high in the network (to control overfit-

ting). Three different values of the factor were considered in the experiments: 0.01, 0.1 and 0.5.

Each time, 27 neural networks were learned with various parameters (the number of neu-

rons in the hidden layer multiplied by the number of penalties). To avoid overfitting, after the

completion of each learning iteration (with a maximum of 50 iterations), the models were

checked for the error measure defined in Eq (11).

At the end, out of 27 learned network, the one characterized by the smallest error defined

in formula (11) was chosen as the best for delivering forecasts.

K-Nearest Neighbors regression. The K-Nearest Neighbors algorithm is a non-paramet-

ric method used for regression. The input consists of the k-closest training examples in the fea-

ture space, and the property of an object is obtained via a similar averaging process, where the

value of the object is the average value of the k closest training points.

To improve the algorithm, we used the normalization of the explanatory variables (stan-

dardization for quantitative variables and replacement of 0 into -1 for the binary variables).

The normalization assures that all dimensions for which the Euclidean distance is calculated

have the same importance. Otherwise, it could lead to a situation in which a single dimension

would dominate other dimensions.

The algorithm was trained with knnreg implemented in caret library. Different numbers of

the k-nearest neighbors were proposed in the experiments including the following: {5, 10, 15,

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170,

180, 190, 200, 250, 300}.

As the optimal number of neighbors, and thus, the final form of the model was considered

the one characterized by the smallest error defined in formula (11).

Regression trees. To train regression trees, an rpart package that implements the CART

algorithm was used. The criterion that was minimized in the process of dividing a multidimen-

sional space was the dispersion (variance) around the mean value of the dependent variable for

observations belonging to the same node (leaf). At each stage of the splitting node, the variable

and its specific value that minimized the sum of squared was chosen. The minimum number

of observations in the node was set to 20, and the leaf was set to at least 6 observations, other-

wise the node was subject to splitting.

Instead of pruning the tree at the end of the algorithm, we used pruning during the growth

of the tree. Generally, this approach will stop the process of creating new splits in case the pre-

vious splits provided only a slight increase in predictive accuracy. The complexity parameter

(cp) was set from 0 to the value of 0.1 (with an increment value of 0.001), meaning that if any

split does not increase the model’s overall coefficient of determination by at least cp, then the

split is decreed to be, a priori, not worth pursuing. The tree was built up to a depth of 30 levels.

Out of 1.000 regression trees that were tested, the final structure was chosen, based on the

error measure defined according to formula (11).
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Random regression forests. To train the random regression forest, an algorithm from the

randomForest library was used.

Each time prior to the training, the n-element samples with replacement were drawn, and

they accounted for approximately 63% of the population. The samples were used to construct

the CART tree. Each tree has been built to its maximum size (without pruning), preventing the

occurrence of 5 or fewer observations in a leaf.

A randomized subset of variables was used to construct each tree. The number of variables

used in the models varied from 10 to 142 for the base model (without usage pattern variables)

and from 10 to 217 for the enhanced model with variables describing the appliances’ usage

patterns.

The total number of trees in the forest was 500. The final forecast was defined based on

Huber’s robust estimator, as defined in [39].

Finally, as in previous cases, the best forest structure was chosen, based on the error mea-

sure defined in (11).

Support vector regression. To construct the support vector regression, the ε-SVR version

was used from kernlab library with its SMO algorithm–Sequential Minimal Optimization to

solve the quadratic programming problem. The linear function was used as a kernel function.

The value of the ε–parameter, which defines the margin width for which the value of the error

function is zero, was arbitrarily taken from the following set {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}.

The regularized parameter that controls the overfitting, C, was arbitrarily set, and the simu-

lations were run for the following values {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,

0.75, 1}. Finally, as in all previous cases, based on the models’ results, the model that minimized

function (11) was chosen.

The proposed machine learning algorithms were challenged against some typical

approaches used for forecasting (benchmarks). Those were naive forecast, random forecast,

the ARIMA model and stepwise regression.

Naive forecast. The naive forecast was constructed in the following manner: for the fore-

casting horizon of 24 hours, the value recorded on a previous day and at the respective hour

was taken as the forecast.

Random forecast. The random forecast was constructed in the following way. Given the

electricity consumption in a given hour with respect to the day of the week, empirical distribu-

tion functions were computed. Then, using a runif function, a value from a uniform distribu-

tion between 0 and 1 was drawn (p probability). This value was then used to estimate the

quantile of empirical distribution (the final value of the forecast) by the weighted averaging of

order statistics zg (quantile function):

Qp ¼ ð1 � gÞzg þ gzgþ1: ð12Þ

where γ = np + m − g, n is number of observations, g = floor(np + m) and m = 1 − p.

ARIMA model. The third method used to compare was the forecast developed with the

ARIMA(p,d,q) model. The model was estimated using the auto.arima function implemented

in the forecast library. The function identifies and estimates the model by minimizing the

Akaike information criterion.

To estimate the model, the maximum values for the AR and MA order were arbitrary set to

p = 14 and q = 14. The degree of differencing was tested with the KPSS test (Kwiatkowski–Phil-

lips–Schmidt–Shin), which was used for testing a null hypothesis that an observable time series

is stationary around a deterministic trend

Stepwise regression. The last method was stepwise linear regression as an automated tool

used to identify a useful subset of predictors. Two procedures were tested: the one that adds
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the most significant variable (forward selection) and the second one that removes the least sig-

nificant variable during each step (backward elimination). The forward approach stops when

all variables not in the model have p-values that are greater than the specified alpha-to-enter

value (5% significance level was used). The backward stops when all variables in the model

have p-values that are less than or equal to the specified alpha-to-remove value (5% signifi-

cance level was used).

4.4. The results of numerical experiments

Taking into account the clarity of the presented results, the following notations were intro-

duced for the models: Z24 –naive forecast, Fg−random forecast, ARIMA–ARIMA model, L_f–

stepwise regression with forward selection, L_b–stepwise regression with backward elimina-

tion, KNN–k-nearest neighbors regression, RPART–regression trees, RF–random regression

forests, NNET–artificial neural network, and SVR–support vector regression.

The results of the models for the 24 hour forecasting horizon are presented in Table 6. For

the testing sample, the MAPE varied from 56.27% for the random forecast (Fg) to 26.78% for

support vector regression (SVR). In terms of the r-MAPE, the highest error were observed for

random forecast (Fg)– 42.66%, while the lowest error was observed for support vector regres-

sion (SVR)– 25.26%, as previously observed. A small difference between the MAPE and the r-

MAPE is observed, suggesting that the models do not exhibit very large errors in terms of both

underestimation and overestimation.

The precision of how close the model is able to forecast to the actual load (MSE) revealed

that artificial neural networks (NNET) are able to forecast with the least error– 0.21. In con-

trast, the random forecast (Fg) had an MSE of 0.63.

In the case of the accuracy (Acc), which measures how many correct forecasts the model

makes, it was observed that the highest accuracy was achieved with support vector regression

(SVR)– 47.02%. Surprisingly, the second best result was observed for the naive forecast (Z24)–

45.83%. The least precise forecast was obtained with the ARIMA model–an accuracy of only

20.83%.

In general, the proposed machine learning methods (except regression trees–RPART) in

comparison to benchmarking methods had smaller MSE, MAPE, and r-MAPE and higher

accuracy rates.

The same techniques were applied to the enhanced dataset including the behavioral vari-

ables. The results are summarized in Table 7.

Table 6. The average 24 hour forecasting results based on past usage data (without usage patterns variables).

Model MAPE (%) r_MAPE (%) Acc (%) MSE MAPE (%) r_MAPE (%) Acc (%) MSE MAPE (%) r_MAPE (%) Acc (%) MSE

Training dataset Validation dataset Testing dataset

Z24 42.94 33.79 40.90 0.61 40.33 31.58 43.68 0.59 37.69 29.78 45.83 0.44

Fg 51.86 41.66 34.28 0.72 45.74 37.89 37.59 0.77 56.27 42.66 37.80 0.63

ARIMA 38.24 35.27 31.01 0.35 50.60 49.34 18.57 0.49 41.14 39.39 20.83 0.26

L_f 36.08 33.67 34.37 0.32 33.72 32.08 35.81 0.43 36.50 34.25 35.71 0.23

L_b 36.03 33.64 34.51 0.32 34.19 32.37 35.07 0.40 36.05 34.07 33.63 0.22

KNN 33.36 31.42 36.15 0.31 35.01 33.67 33.28 0.39 30.27 28.89 41.37 0.22

RPART 37.08 33.66 36.36 0.32 38.69 35.33 37.00 0.42 38.50 34.20 35.12 0.24

RF 0.48 0.34 100.00 0.00 32.72 30.86 37.89 0.39 32.57 29.74 41.07 0.22

NNET 32.39 30.11 39.99 0.34 32.19 30.06 41.60 0.41 30.28 28.14 42.26 0.21

SVR 28.73 27.26 43.98 0.35 28.95 28.06 44.43 0.46 26.78 25.26 47.02 0.23

https://doi.org/10.1371/journal.pone.0174098.t006
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To identify situations in which additional explanatory (behavioral) variables describing

electricity usage patterns improved the final forecast, we introduced a percentage point sensi-

tivity range, denoted with the following colors:

• green shows forecast improvements in terms of Acc and MAPE/r-MAPE when building the

model using the enhanced features dataset (with usage pattern variables), e.g., for the model

that has 20% error, the improvement should be at least 0.5 p.p. so the model’s error should

be less than 19.5%;

• red shows forecast worsening in terms of Acc and MAPE/r-MAPE when building the model

using the enhanced features dataset (with usage pattern variables), e.g., for the model that

has 20% error, the error increase should be at least 0.5 p.p. so the model’s error should be

greater than 20.5%;

• no color shows neutral cases in which Acc and MAPE/r-MAPE stayed at similar levels, e.g.,

for the model that has 20% error, we define 1 p.p. range (19.5%–20.5%) to say that no

improvement is observed when building the model using enhanced features dataset (with

usage pattern variables).

In comparison to the modeling without behavioral pattern variables, the results associated

with the testing dataset are better for two machine learning algorithms, i.e., the random forests

and artificial neural networks, and for the stepwise regression model. In the case of the artifi-

cial neural network model, the improvement was substantial: the MAPE decreased by 6.66 p.p.

(23.62%), r-MAPE decreased by 5.6 p.p. (22.54%), and Acc was improved by 12.2 p.p.

(54.46%). Moreover, this model has the best results among all of the forecasting methods.

For the random regression forests, the forecast was improved by 3.16 p.p. (29.41%) in terms

of MAPE, by 2.41 p.p. (27.33%) in terms of r-MAPE, and finally, the accuracy was improved

by 7.14 p.p. (48.21%).

For the stepwise regression model with backward selection, the MAPE decreased by 2.79 p.

p. (33.26%), r-MAPE decreased by 2.77 p.p. (31.30%), and accuracy was improved by 5.06 p.p.

(38.69%).

The two techniques with the most accurate forecasts are presented in graphical form in Fig

7. For this reason, the real value and the forecasts provided by the neural networks and random

forests were presented for two randomly selected test days–May 7th and 8th. 2013.

The following notations were used: NNET_1 and RF_1 indicate forecasts prepared using

the dataset with past electricity consumption variables only, NNET_2 and RF_2 indicate fore-

casts build on the enhanced dataset including the household behavioral data.

Table 7. The average 24 hour forecasting results based on past usage data and enhanced data with usage pattern variables.

Model MAPE (%) r_MAPE (%) Acc (%) MSE MAPE (%) r_MAPE (%) Acc (%) MSE MAPE (%) r_MAPE (%) Acc (%) MSE

Training dataset Validation dataset Testing dataset

Z24 42.94 33.79 40.90 0.61 40.33 31.58 43.68 0.59 37.69 29.78 45.83 0.44

Fg 51.86 41.66 34.28 0.72 45.74 37.89 37.59 0.77 56.27 42.66 37.80 0.63

ARIMA 38.24 35.27 31.01 0.35 50.60 49.34 18.57 0.49 41.14 39.39 20.83 0.26

L_f 36.08 33.59 34.29 0.32 35.92 34.26 30.01 0.42 43.11 41.37 30.06 0.25

L_b 35.93 33.40 34.86 0.32 36.56 34.32 32.24 0.40 33.26 31.30 38.69 0.22

KNN 38.50 36.99 27.17 0.35 41.12 39.02 27.19 0.40 34.00 32.44 33.93 0.22

RPART 39.18 35.61 35.16 0.36 39.86 35.87 35.36 0.42 39.38 36.03 38.39 0.23

RF 0.48 0.36 100.00 0.00 33.26 31.13 37.15 0.39 29.41 27.33 48.21 0.21

NNET 29.65 28.10 42.05 0.36 27.61 26.28 46.21 0.45 23.62 22.54 54.46 0.25

SVR 32.94 31.53 34.67 0.34 32.39 31.39 35.51 0.46 40.49 38.80 23.51 0.24

https://doi.org/10.1371/journal.pone.0174098.t007
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For the neural networks (NNET_1) and the random forest regression (RF_1), which were

trained on the dataset with a limited number of variables, it was observed that the forecasts

were higher than the actual load value. Adding behavioral variables resulted in decreases in the

error. However, overestimation is eliminated, but at the same time, there are some problems

with underestimation. In particular, this is observed when relatively large energy loads occur.

In general, from the figure we can observe how the forecasts follow the real load curve. The

trend is followed well enough, but as expected, due to household behavior and other immea-

surable influences, there are some deviations when comparing the forecasts and the real load.

5. Scalability of the approach

To draw meaningful conclusions and to provide rationale for the proposed approach, addi-

tional experiments were undertaken. For this purpose, the numerical analyses were performed

for the group of 46 households based on the WikiEnergy data [7]. This enabled us to formulate

generalized conclusions about the modeling techniques and household specific behavioral

data in terms of the applicability of both for the benefit of accurate forecasting modeling.

The WikiEnergy dataset by Pecan Street Inc. is a large database of consumer energy infor-

mation. This database is highly granular, including the usage measurements collected from up

to 24 circuits within the home. The investigated households were located in Austin, Texas,

USA. From these data, we have extracted 14 months of data from 46 households at a granular-

ity of 1 hour, covering the same time window from March 2013 until April 2014.

The dataset was split into three parts, which corresponded to the training, validation and

testing samples with the following proportion. The training sample consisted of 330 days

(7920 observations) between April 5th. 2013, and February 28th. 2014; the validation sample

consisted of 28 days (672 observations) between March 1st. 2014, and March 28th. 2014; and

finally, the testing sample consisted of 14 days (336 observations) between March 29th. 2014,

and April 11th. 2014.

The same feature vectors describing basic electricity consumption and an enhanced dataset

with usage patterns were prepared, and the same techniques were trained, as previously for

AMPDs data.

The aggregated results for all 46 households are presented in Table 8. This is to check

whether the enhanced dataset, including the usage patterns, improved the forecasts in terms of

the MAPE observed on the test dataset for each of the modeling methods. The main finding is

that the neural networks forecasts prepared on the enhanced dataset (including usage patterns)

were more accurate than those prepared using the basic data set with only historical usage

variables.

Fig 7. The real load vs. forecasts of the neural network and random forest models.

https://doi.org/10.1371/journal.pone.0174098.g007
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The neural network outperformed the other methods in terms of MAPE. The forecast pro-

posed for 82.61% of the households (that is 38 households out of 46) had the lowest error,

RPART was the second most accurate forecasting method, which delivered accurate forecasts

for 39.13% of the households (that is 18 households out of 46).

The MAPE distributions were also analyzed as presented in Fig 8. The forecasts prepared based

on the dataset with past electricity consumption variables only are shown with the solid line (e.g.,

NNET_1, SVR_1). The forecasts build on the enhanced datasets including household behavioral

data are presented with dotted lines (e.g., NNET_2 and SVR_2). In general, it could be observed

that the machine learning models exhibit smaller errors than the benchmarking methods.

Finally, to provide a quantitative summary of the experiments, we tested the following:

1. Whether there are statistically significant differences in terms of the errors between the

forecasting algorithms, including the machine learning algorithms and the benchmarking

methods–please refer to Table 9 for details. The Duncan multiple range test (DMRT) was

used to compare differences among the error means between the modeling techniques

and across datasets (basic consumption variables vs. enhanced dataset). Differences were

found to be significant at P < 0.05.

2. Whether there are statistically significant differences in terms of the MAPE for the neural

networks (as the most accurate forecasting technique) with respect to the data, i.e., the

basic dataset vs. the enhanced dataset with household activity patterns. Please refer to

Table 10 for details. The Kolmogorov-Smirnov (K-S) test was used to compare two

empirical error distributions with respect to the data sets. The differences were found sig-

nificant at P< 0.05.

Table 8. Aggregated results in terms of the MAPE for 46 households. The number of households is presented in brackets.

Results Modeling method

L_f L_b KNN RPART RF NNET SVR

Improving 23.91% (11) 10.87% (5) 36.96% (17) 39.13% (18) 15.22% (7) 82.61% (38) 19.57% (9)

Worsening 71.74% (33) 84.78% (39) 56.52% (26) 26.09% (12) 71.74% (33) 6.52% (3) 69.57% (32)

Neutral 4.35% (2) 4.35% (2) 6.52% (3) 34.78% (16) 13.04% (6) 10.87% (5) 10.87% (5)

Sum 100.00% (46) 100.00% (46) 100.00% (46) 100.00% (46) 100.00% (46) 100.00% (46) 100.00% (46)

https://doi.org/10.1371/journal.pone.0174098.t008

Fig 8. Modelling techniques and their MAPE distributions observed on the testing dataset.

https://doi.org/10.1371/journal.pone.0174098.g008
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The results presented in Table 9 indicate that there are significant differences among the

forecasting results from the machine learning techniques (capital letter D), namely, SVR,

NNET, RF, RPART and the benchmarking methods (capital letter A), namely, Z24 and Fg,

observed when using the basic consumption dataset. No differences are observed between the

results provided by L_f, L_b, KNN, RPART, RF and NNET (capital letter C). For the enhanced

Table 9. Duncan’s Multiple Range Test to assess the differences between the forecasting algorithms.

The different capital letters within each column are significantly different (P < 0.05).

Modelling method Basic consumption dataset Enhanced dataset including usage patterns

Z24 A A

Fg A B

ARIMA B BC

L_f BC BCD

L_b BC BCDE

KNN BC BCDE

RPART BCD BCDE

RF BCD CDE

NNET CD DE

SVR D E

https://doi.org/10.1371/journal.pone.0174098.t009

Table 10. The Kolmogorov-Smirnov (K-S) test to determine the significance of the forecasting results between the basic dataset and the enhanced

dataset using the neural networks method, * denotes significance at P < 0.05.

Household Basic consumption

dataset MAPE (%)

Enhanced dataset

MAPE (%)

K-S p-

value

Household Basic consumption

dataset MAPE (%)

Enhanced dataset

MAPE (%)

K-S p-

value

1 46.07 36.13 0.039 * 24 29.11 31.89 0.864

2 52.33 44.56 0.008 * 25 33.18 30.51 0.097

3 99.46 97.68 0 * 26 35.61 32.80 0.269

4 21.43 21.28 0.381 27 49.08 45.74 0 *

5 67.71 39.69 0.000 * 28 39.48 38.04 0.423

6 59.28 56.43 0.026 * 29 37.98 35.13 0.114

7 37.21 32.15 0.269 30 44.62 45.13 0.269

8 45.20 39.14 0.207 31 60.89 50.11 0.304

9 45.96 45.65 0.511 32 46.18 46.10 0.651

10 40.13 39.24 0.010 * 33 50.08 45.45 0.180

11 67.01 63.61 0.097 34 48.89 46.55 0.155

12 30.00 28.61 0.341 35 42.95 33.53 0 *

13 48.33 45.27 0.010 * 36 40.78 38.28 0.269

14 45.61 34.34 0.001 * 37 29.74 26.71 0.01 *

15 43.29 39.54 0.03 * 38 42.08 37.00 0.047 *

16 57.77 55.06 0.03 * 39 45.54 70.94 0.864

17 50.16 40.31 0 * 40 65.02 55.70 0 *

18 31.67 27.67 0.001 * 41 51.30 45.85 0.003 *

19 41.24 42.89 0.097 42 38.69 36.28 0.207

20 38.62 37.49 0.697 43 39.54 27.72 0 *

21 49.86 43.26 0.026 * 44 27.60 25.13 0 *

22 54.68 50.08 0.014 * 45 46.61 42.56 0.133

23 38.51 34.87 0.017 * 46 37.91 34.30 0.068

https://doi.org/10.1371/journal.pone.0174098.t010
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dataset, the differences are less diverse, e.g., the NNET results are significantly different from

Z24, Fg and the ARIMA results and, at the same time, not significantly different from those

obtained with RF, RPART, KNN, L_B, and L_f (capital letter D). The analysis to determine the

significance of the forecasting results between the basic dataset vs. the enhanced dataset for the

neural networks (as the most accurate forecasting technique) revealed that a significant differ-

ence is observed for 50% of the households, although an improvement of at least 1 p.p. in

terms of the MAPE was observed for 82.61% of the households (in green), as presented in

Table 10. In three cases, the forecasts prepared using the enhanced dataset resulted in less

accurate forecasts (in red); however, the differences were not significant. The richer dataset

helped to reduce the MAPE by 8.5% on average, that is, from 45.5% to 41.7%, calculated over

the whole population of 46 households.

6. Conclusions

In this paper, we presented an extensive analysis aimed at forecasting electricity loads on the

individual household level, which potentially brings greater intelligence to smart meters and

delivers value added for individual customers.

The experiments were designed to find answers to research questions concerning the fore-

casting loads for individual customers. In particular, the findings are as follows:

1. Based on the results, we can conclude that it is possible to provide accurate load forecast-

ing for 24 hours ahead on the individual household level, and this can be obtained with

reasonable prediction accuracy. The forecasts of the neural network models show that

they have good performance characterized by low errors obtained on both datasets, i.e., a

basic one with past usage data and a richer dataset with usage patterns. Based on the

AMPDs data, the richer dataset helped to reduce the MAPE from 30.28% to 23.62% and, on

average, from 45.5% to 41.7% for the WikiEnergy data.

2. The clustering and sequence recognition algorithms are good tools for identifying pat-

terns of household behavior. They allowed quickly grasping general trends in data and

then clustering appliances based on their typical usage hours. The data obtained by grade

analysis might be the basis for the decision support for individual customers to consider the

price elasticity tariffs and for accurate forecasting in smart metering applications. Sequence

analysis gave insight that can help understand how power consumption is influenced by

certain activities and their sequences and how those activities are related to each other.

3. We showed through experiments that a combination of historical usage data and house-

hold behavioral data can greatly enhance the forecasting of individual consumer loads.

The richer data set can reduce MAPE by 8.5% on average and up to 41% for individual

households (e.g., household #5 from the WikiEnergy dataset) as observed on the test set for

the neural network model.

4. The results indicate that there are significant differences in forecasting in favor of the

machine learning techniques, namely, SVR, NNET, RF, and RPART, in comparison to ran-

dom forecasts or ARIMA models. In particular, artificial neural networks through their

hidden layers and ability to approximate complex nonlinear mappings directly from the

input samples seem to be very effective at solving short-term forecasting when dealing

with high volatility data. They are able to identify hidden trends and make use of richer

data, thereby finding the trends in household consumption data.

As a future work, we will explore algorithmic approaches for mining typical usage patterns

and utilize them for the purpose of energy consumption forecasting and the development of
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unique, individualized energy management strategies. Additionally, considerable interest and

high expectations worldwide are associated with attempts to combine research on forecasting

systems utilizing non-intrusive appliance recognition and user patterns with multi agent sys-

tems [40–42]. Such a multi-agent computer system can be used for managing the unbalanced

energy in a microgrid, and the main goal of the system would be to control and minimize the

differences between the current energy demand and the actual energy supply.

Supporting information

S1 Table. The matrix with the probabilities of appliance turn ON events in each hour over

whole week.
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