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Abstract

The Nurses’ Health Study (NHS), Nurses’ Health Study II (NHSII), Health Professionals Fol-

low Up Study (HPFS) and the Physicians Health Study (PHS) have collected detailed longi-

tudinal data on multiple exposures and traits for approximately 310,000 study participants

over the last 35 years. Over 160,000 study participants across the cohorts have donated a

DNA sample and to date, 20,691 subjects have been genotyped as part of genome-wide

association studies (GWAS) of twelve primary outcomes. However, these studies utilized

six different GWAS arrays making it difficult to conduct analyses of secondary phenotypes

or share controls across studies. To allow for secondary analyses of these data, we have

created three new datasets merged by platform family and performed imputation using a

common reference panel, the 1,000 Genomes Phase I release. Here, we describe the meth-

odology behind the data merging and imputation and present imputation quality statistics

and association results from two GWAS of secondary phenotypes (body mass index (BMI)

and venous thromboembolism (VTE)). We observed the strongest BMI association for the

FTO SNP rs55872725 (β = 0.45, p = 3.48x10-22), and using a significance level of p = 0.05,
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we replicated 19 out of 32 known BMI SNPs. For VTE, we observed the strongest associa-

tion for the rs2040445 SNP (OR = 2.17, 95% CI: 1.79–2.63, p = 2.70x10-15), located down-

stream of F5 and also observed significant associations for the known ABO and F11

regions. This pooled resource can be used to maximize power in GWAS of phenotypes col-

lected across the cohorts and for studying gene-environment interactions as well as rare

phenotypes and genotypes.

Introduction

Large, well-phenotyped cohort studies have constituted the backbone of epidemiology for sev-

eral decades. Prospectively collected longitudinal information on exposures and outcomes

enables a broad spectrum of analyses and has led to novel insights into disease etiology, such

as the link between smoking and lung cancer [1,2] as well as the link between both high choles-

terol levels and trans fatty acids with coronary heart disease [3,4] Many existing cohorts collect

biological specimens from their participants, allowing for studies of inherited genetic variation

as well as prospectively measured biomarkers such as metabolomic profiles [5] and circulating

hormone levels [6]. Genome-wide association studies (GWAS) are currently a main engine of

genetic epidemiology and have led to the identification of thousands of loci for hundreds of

traits (for an overview and its clinical applications, see Manolio [7]). When designing a

GWAS, cost is still the determining factor and consequently, GWAS within cohorts are often

conducted within nested case-control studies or sub-cohorts. In contrast, the Women’s

Genome Health Study (WGHS) [8] genotyped the entire cohort of 27,000 women and the

Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort has generated

GWAS data on almost 100,000 individuals [9]. However, in many instances, GWAS are tied to

specific funding sources acquired for studying a pre-defined outcome and only a small fraction

of the cohort is genotyped at a specific time.

Within the Nurses’ Health Study (NHS) [10], Nurses’ Health Study II (NHSII) [11], Health

Professional Follow Up Study (HPFS) [12] and the Physicians’ Health Study (PHS) [13], since

2007, we have, conducted twelve GWAS of different traits including type 2 diabetes [14], coro-

nary heart disease [15], several cancer types [16–19] and mammographic density [20,21]. In

total, we have assembled GWAS data for 20,769 individuals across the cohorts, creating

unprecedented opportunities to conduct secondary analyses on other collected outcomes.

Indeed, we have used one or many of these GWAS to analyze secondary phenotypes including

but not limited to body anthropometrics [22–24], hair color [25], reproductive aging [26],

smoking behavior [27], telomere length [28], mammographic density [29], cutaneous nevi

[30], melanoma [30], depressive symptoms [31], coffee consumption [32] as well as circulating

levels of B12 [33], folate [34], hormones [35], vitamins [36,37], retinol [38] and e-selectin [39].

However, GWAS of secondary traits face practical issues in terms of different genotyping

arrays, low variability in the phenotype of interest within a single GWAS (e.g. rare diseases

where only a handful of cases may occur in the original GWAS), and theoretical issues includ-

ing ascertainment bias due to oversampling of cases [40] or differential genotype/imputation

quality between studies [41] (e.g. if controls are “utilized” from GWAS data generated on a dif-

ferent genotype platform).

Here, we describe our pipeline for merging and imputing the individual GWAS datasets

within NHS, NHSII, HPFS and PHS. Datasets were merged based on genotype platform family
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and all data were subsequently imputed to a common reference panel (the 1,000 Genomes

Phase I release [42]). We present proof-of-principle results from genome-wide analysis of

body mass index (BMI) and venous thromboembolism (VTE).

Materials and methods

Description of NHS, NHSII, HPFS and PHS

In 1976, the Nurses’ Health Study (NHS) was launched with the goal of studying women’s

health [10]. Since that time, 121,700 nurse participants have answered biennial questionnaires

(response rate>90% over time) about personal and physical characteristics, physical activity

and ability, reproductive history, family history of disease, environmental/personal exposures,

diet and dietary supplements, screening, disease and health conditions, prescription and over-

the-counter medications, and psychosocial history. In addition, 32,826 blood and 29,684 cheek

cell samples have been collected since the late 1980s. An additional 116,430 nurses were re-

cruited in 1989 as a part of Nurses’ Health Study II (NHSII) and have returned biennial ques-

tionnaires similar to those used for NHS [11]. For NHSII, we have collected blood samples for

29,612 women and cheek cell samples for an additional 29,859 women. The Health Profes-

sional Follow-Up Study (HPFS) began in 1986 with the aim of studying men’s health [12]. A

total of 51,529 men in health professions were recruited, and every two years, members of the

study receive questionnaires similar to the ones used in NHS. In HPFS, we have collected

blood samples from 18,159 participants and cheek cell samples from an additional 13,956

men. The Physicians’ Health Study (PHS) is a randomized primary prevention trial of aspirin

and supplements among 29,067 United States physicians followed with annual questionnaires

since 1982 [13]. A total of 14,916 men provided a baseline blood sample.

Ethics statement

Each GWAS study was approved by the Brigham and Women’s Hospital Institutional Review

Board. Return of the mailed self-administered questionnaires was voluntary. Thus, receipt of a

completed questionnaire was considered as evidence of a desire to participate in the study and

was taken as a formal indication of consent.

Description of GWAS studies and genotyping

Since 2007, twelve separate GWAS have been conducted within these four cohorts (Table 1).

The primary traits are breast cancer [16], pancreatic cancer [43], glaucoma [44], endometrial

cancer [17], colon cancer [19], glioma [45], prostate cancer [18], type 2 diabetes [14], coronary

heart disease [15], kidney stones, gout and mammographic density [20]. These studies were

genotyped on six different arrays (Table 1) at four different genotyping centers (National Can-

cer Institute, Broad Institute, University of Southern California and Rosetta/Merck). Standard

quality control filters for call rate, Hardy-Weinberg equilibrium, and other measures were

applied to the genotyped SNPs and/or samples. In total, these GWAS data sets comprise

20,769 participants including 11,522 from NHS, 934 subjects from NHSII, 7,018 subjects from

HPFS and 1,305 subjects from PHS.

Dataset merging

Successfully merging genotype data for different individuals requires complete overlap in

SNPs. SNPs that are missing by design (due to different genotyping platforms) from some

studies will be correlated with the primary phenotype for that dataset. This might cause spuri-

ous results in any secondary analysis on related traits. Although a missing SNP can be
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imputed, it will have a higher degree of inaccuracy in imputed compared with genotyped

SNPs, potentially creating differential measurement error that could also lead to bias

[41,46,47]. Therefore, we first looked at the overlap of SNPs between different genotyping

arrays and identified three broad platform families with high degree of overlap within category

Table 1. GWAS datasets in HPFS, NHS, NHSII and PHS.

Cohort Outcome Subjects (cases/

controls)

Platform GWAS dataset

HPFS Coronary Heart

Disease

435/878 Affymetrix 6.0 AffyMetrix

HPFS Type 2 Diabetes 1,189/1,298 Affymetrix 6.0 AffyMetrix

HPFS Pancreatic Cancer 54/52 Illumina 550k Illumina HumanHap

HPFS Kidney Stone 315/238 Illumina 610k Illumina HumanHap

HPFS Prostate Cancer 218/205 Illumina 610k Illumina HumanHap

HPFS Glaucoma 178/299 Illumina 660W Illumina HumanHap

HPFS Glioma 26/0 Illumina 660W Illumina HumanHap

HPFS Colon Cancer 229/230 Illumina

OmniExpress

Illumina OmniExpress

HPFS Gout 717/699 Illumina

OmniExpress

Illumina OmniExpress

SUBTOTAL 7,018 (1,511 Illumina Human Hapmap, 3,634 Affymetrix, 1,873

Illumina OmniExpress)

NHS Type 2 Diabetes 1,532/1,754 Affymetrix 6.0 AffyMetrix

NHS Coronary Heart

Disease

342/804 Affymetrix 6.0 AffyMetrix

NHS Ovarian Cancer 36/0 Illumina 317k Illumina HumanHap

NHS Breast Cancer 1,145/1,142 Illumina 550k Illumina HumanHap

NHS Pancreatic Cancer 82/84 Illumina 550k Illumina HumanHap

NHS Kidney Stone 328/166 Illumina 610k Illumina HumanHap

NHS Glaucoma 313/497 Illumina 660W Illumina HumanHap

NHS Glioma 38/0 Illumina 660W Illumina HumanHap

NHS Endometrial Cancer 396/348 Illumina

OmniExpress

Illumina OmniExpress

NHS Colon Cancer 394/774 Illumina

OmniExpress

Illumina OmniExpress

NHS Mammographic

density

153/641 Illumina

OmniExpress

Illumina OmniExpress

NHS Gout 319/392 Illumina

OmniExpress

Illumina OmniExpress

SUBTOTAL 11,522 (3,711 Illumina Human Hapmap, 4,413 Affymetrix, 3,380

Illumina OmniExpress)

NHSII Breast Cancer 289/0 Illumina 610k Illumina HumanHap

NHSII Kidney Stone 341/294 Illumina 610k Illumina HumanHap

SUBTOTAL 924 (924 Illumina Human Hapmap, 0 Affymetrix, 0 Illumina

OmniExpress)

PHS Pancreatic Cancer 49/54 Illumina 550k Illumina HumanHap

PHS Prostate Cancer 312/363 Illumina 610k Illumina HumanHap

PHS Colon Cancer 331/333 Illumina

OmniExpress

Illumina OmniExpress

SUBTOTAL 1,305 (641 Illumina Human Hapmap, 0 Affymetrix, 664 Illumina

OmniExpress)

TOTAL 20,769 (6,787 Illumina Human Hapmap, 8,065 Affymetrix, 5,917

Illumina OmniExpress)

https://doi.org/10.1371/journal.pone.0173997.t001
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but low overlap across categories–the earlier generation of Illumina arrays (HumanHap), the

Illumina OmniExpress array and Affymetrix 6.0 array. The HumanHap platform had a total of

459,999 SNPs compared with 565,810 SNPs for OmniExpress and 668,283 SNPs for Affyme-

trix 6.0. However, the intersection among all three platform families was only 75,285 SNPs

(Fig 1). To achieve the largest GWAS datasets as possible without losing SNP information, we

created three datasets–HumanHap comprising six GWAS datasets, OmniExpress comprising

four GWAS datasets and Affymetrix 6.0 comprising two GWAS datasets. In the merging pro-

cess, we removed any SNPs that were not in all studies for a specific platform or had a missing

Fig 1. Overlap in SNPs across genotype platforms.

https://doi.org/10.1371/journal.pone.0173997.g001
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call rate>5%. We flipped strands where appropriate and removed A/T and C/G SNPs to create

the final compiled datasets.

We ran a pairwise identity by descent (IBD) analysis within and across the combined data-

set to detect duplicate and related individuals based on resulting IBD probabilities Z0, Z1 and

Z2 (Zk is probability that a pair of subjects share k alleles identical by descent, estimated from

genome-wide SNP data). If 0�Z0�0.1 and 0�Z1�0.1 and 0.9�Z2�1.1 then a pair was flagged

as being identical twins or duplicates. Pairs were considered full siblings if 0.17�Z0�0.33 and

0.4�Z1�0.6 and 0.17�Z2�0.33. Half siblings or avunculars were defined as having 0.4�Z1�

0.6 and 0�Z2�0.1. Some of the duplicates flagged were expected, having been genotyped in

multiple datasets and hence having the same cohort identifiers. In this case, one of each pair

was randomly chosen for removal from the dataset. In instances where pairs showed pairwise

genotype concordance rate>0.999 but were not expected duplicates, both individuals were

removed. Related individuals (full siblings, half siblings/avunculars) were not removed from

the final datasets. In the HumanHap dataset, 107 individuals were removed because they were

duplicates or flagged for removal in the genotyping step, leaving 6,787 subjects. In addition, 8

pairs of individuals were flagged as related. In the OmniExpress dataset, we removed 39 sub-

jects leaving 5,917 IDs and 5 pairs of related subjects. In the Affymetrix dataset, 167 individuals

were removed because they were duplicates or were flagged for removal from secondary geno-

type data cleaning, leaving a total of 8,065 individuals. Across all three datasets, we identified

444 duplicate pairs (406 expected) and thus removed additional 482 individuals from analysis

across all three platform families.

After removing duplicate and related pairs of IDs, we used EIGENSTRAT [48] to run prin-

cipal component analysis (PCA) on each dataset, removing one member from each flagged

pair of related individuals. For Affymetrix and HumanHap, we used approximately 12,000

SNPs from Yu et al [49] that were filtered to ensure low pairwise linkage disequilibrium (LD).

For the OmniExpress dataset we used approximately 33,000 SNPs that were similarly filtered.

The top principal components were manually checked for outliers.

To identify any SNPs that created spurious associations, we ran several logistic regression

analyses among subjects that were selected as controls in the initial GWAS (i.e. excluding all

case subjects). For each regression, we used cohort-specific controls from one original GWAS

as cases and the rest of the controls in that dataset as controls. For example, in the OmniEx-

press dataset, we considered NHS controls from the gout GWAS as “cases” while treating con-

trols from the gout (HPFS), endometrial cancer (NHS), colon cancer (NHS, HPFS and PHS),

and mammographic density (NHS) as “controls”. We repeated this, treating each cohort-spe-

cific “controls set” as “cases” and all other controls as “controls”. For each GWAS, we extracted

genome-wide significant SNPs (p<10−8) and examined QQ plots. In the Affymetrix dataset,

100 SNPs were flagged and removed. In the HumanHap dataset, 8 SNPs had p<10−8 in at

least one of the QC regressions and were removed. No SNPs in the OmniExpress dataset had

p<10−8 and hence, no SNP was removed.

Imputation

After the datasets were combined and appropriate SNP and subjects filters applied, the com-

piled datasets were separately imputed. We used the 1000 Genomes Project ALL Phase I Inte-

grated Release Version 3 Haplotypes excluding monomorphic and singleton sites (2010–11

data freeze, 2012-03-14 haplotypes) as the reference panel. SNP and indel genotypes were

imputed in three steps. First, genotypes on each chromosome were split into chunks to facili-

tate windowed imputation in parallel using ChunkChromosome (v.2011-08-05). Then each

chunk of chromosome was phased using MACH [50,51] (v.1.0.18.c). In the final step, Minimac
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(v.2012-08-15) was used to impute the phased genotypes to approximately 31 million markers

in the 1000 Genomes Project.

“Proof of Principle” GWAS–BMI and VTE

To validate our merged GWAS datasets, we conducted two proof-of principle GWAS of one

quantitative trait (BMI) and one binary trait (VTE). We defined BMI as weight (kg)/height2

(cm) and obtained it by extracting information on weight from the accompanying question-

naire collected at time of blood draw. If weight information was missing, we extracted it from

the questionnaire closest in time to time of blood draw. Height was extracted from the baseline

questionnaire. We obtained data on BMI for 20,283 participants. VTE is a spectrum of disease

that includes pulmonary embolism (PE) and deep vein thromboembolism (DVT). Physician-

diagnosed PE has been asked on every biennial NHS questionnaire since 1982, and every

NHSII and HPFS questionnaire since cohort inception. In the NHS, DVT without PE is cap-

tured when a nurse answers that she has had phlebitis or thrombophlebitis (ICD-9 = 453.x). In

NHS, NHSII and HPFS cohorts through 2010 (we did not have VTE data for PHS), we identi-

fied 6,041 individuals who reported VTE. Self-reported PE was verified through medical rec-

ords review by a trained physician (CK). DVT cases are based on self-report, though a

validation study of 100 DVT cases found self-reports to be highly consistent (>96%) with med-

ical record review. In total, we identified 1,364 VTE cases with GWAS data. We treated all

non-VTE cases with GWAS data as controls (n = 17,628). Since we did not have data on VTE

in PHS, we excluded PHS from this analysis.

Statistical analysis–GWAS

SNPs and indels with an imputation quality score <0.3 (as defined by the RSQR_HAT value

in MACH) or a minor allele frequency (MAF) <0.01 were excluded. Primary association anal-

ysis was performed separately within each platform family (HumanHap, OmniExpress and

Affymetrix). For imputed SNPs, the estimated number of effect alleles (ranging from 0 to 2)

was used as a covariate. For BMI, we conducted linear regression adjusting for study (indicator

variables including cohort as well as primary GWAS outcome), age at blood draw and the top

four principal components. For VTE, we conducted logistic regression adjusting for study as

above and the top four principal components. For both BMI and VTE, we combined platform

family-specific results with fixed-effects meta-analysis using the METAL [52] software. We

used the Cochran’s Q statistic to test for heterogeneity across studies.

Results

Imputation statistics

We imputed a total of 31,326,389 markers (29,890,747 SNPs and 1,435,642 indels) and the

majority (69%) of these had a MAF�0.01. The average imputation quality score by minor fre-

quency for each platform family is shown in Fig 2 and the distribution of imputation quality

score for rare (MAF�0.01) variants is shown in S1 Table. The imputation quality was very

similar across all three datasets (S1–S3 Figs) with 49–51% of markers having an imputation

quality score�0.3. When restricting to markers with MAF>0.01 (~10 million), 92–94% of the

markers had a quality score�0.3, compared to 29–32% of markers with MAF�0.01. After fil-

tering markers based on MAF (>0.01) and imputation r-sq (�0.3), approximately 9.8 million

markers were available for analysis.
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BMI results

We had BMI and GWAS data for 20,283 individuals (n = 6,762 for HumanHap, n = 5,844 for

OmniExpress, n = 7,677 for AffyMetrix) within NHS, NHSII, HPFS and PHS. Platform-spe-

cific QQ-plots (S4A–S4C Fig) showed no indication of systematic bias (genomic inflation fac-

tor λ = 1.00–1.02). The results from the meta-analysis are shown in Figs 3 and 4. We observed

a tail of strongly associated SNPs with the top SNPs located in the known BMI FTO locus

(strongest associated SNP: rs55872725, β = 0.45, p = 3.48x10-22). Given that the FTO locus has

also been associated with Type 2 Diabetes, we reran the analysis excluding all Type 2 Diabetes

cases (n = 2,540), The association for the FTO SNP rs55872725 remained strongly significant

Fig 2. Imputation quality score by minor allele frequency for the three platform families.

https://doi.org/10.1371/journal.pone.0173997.g002
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Fig 3. QQ-plot for GWAS analysis of body mass index based on 20,283 individuals.

https://doi.org/10.1371/journal.pone.0173997.g003

Fig 4. Manhattan plot for GWAS analysis of body mass index based on 20,283 individuals.

https://doi.org/10.1371/journal.pone.0173997.g004
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(β = 0.41, p = 4.25x10-18). We also observed genome-wide significant associations for the pre-

viously identified TMEM18 (strongest associated SNP: rs7563362, β = -0.36, p = 1.76x10-8) and

FANCL loci (strongest associated SNP: rs980183, β = -0.26, p = 2.73x10-8). None of the SNPs

that were originally reported were the top SNP in our data. However, for these three regions

(S5A and S5B Fig, S2 Table), our top SNPs showed strong LD with the original reported

SNPs (FTO locus: r-sq = 0.97 for rs55872725 and rs1558902; TMEM18 locus: r-sq = 1.00 for

rs7563362 and rs13021737; FANCL locus: r-sq = 0.72 for rs980183 and rs1016287). Using a sig-

nificance level of p = 0.05, 59% (19/32) known BMI SNPs [53], showed association with BMI

in our data. In addition, 31 out of the 32 known SNPs showed associations in the same direc-

tion as the original BMI study (Fig 5).

VTE results

We had information on VTE status and GWAS data for 1,364 cases and 17,628 controls within

NHS, NHSII and HPFS. The median number of case subjects by dataset was 87.5 and ranged

from 16 in the NHSII breast cancer GWAS dataset (total of 289 individuals) to 417 in the type

2 diabetes GWAS dataset (total of 5,773 individuals). The small number of cases in many indi-

vidual GWAS data sets led to unstable study-specific association statistics. Restricting to stud-

ies with an expected case minor allele count>10 for SNPs with a MAF of 0.05 (i.e. studies with

at least 200 cases) reduced the sample size to 417 cases and 5,356 controls. However, within

each compiled imputed GWAS dataset, VTE case numbers ranged from 406 (OmniExpress)

to 532 (Affymetrix). Thus, combining the individual GWAS datasets into three main datasets

enabled association analysis of hundreds of cases rather than tens, leading to more stable esti-

mates in the regression analysis. Platform-specific QQ-plots (S5A–S5C Fig) showed no indica-

tion of systematic bias (genomic inflation factor λ = 1.00–1.01). The results from the meta-

analysis are shown in Figs 6 and 7 (genomic inflation factor λ = 1.00). We observed a strong

association located downstream of the F5 gene (strongest associated SNP: rs2040445, OR =

2.17, 95% CI: 1.79–2.63, p = 2.70x10-15). We also observed genome-wide significant associa-

tions for the ABO locus (strongest associated SNP: rs2519093, OR = 1.36, 95% CI: 1.23–1.49,

p = 1.51x10-10) and a nominal association (P = 0.007) with the previously VTE-associated F11
locus. For both the F5 and ABO regions (S6A and S6B Fig, S2 Table), our top SNPs showed

moderate correlation with previously reported top SNP (ABO locus: r-sq = 0.53 for rs529565

and rs2519093 and F5 locus: D’ = 1.00, r-sq = 0.00 for rs6025 and rs2040445 and D’ = 1.00, r-

sq = 0.03 for rs4524 and rs2040445). Using a significance level of p = 0.05, three of nine known

VTE SNPs [54], showed association with VTE in our data, however, the directions of associa-

tion were the same as previously observed for all SNPs (S3 Table).

Discussion

Thousands of genetic loci associated with hundreds of complex traits have been identified

through GWAS and as sample sizes continue to increase, more loci will be discovered.

Although the cost of GWAS has dropped, lack of financial resources is still the limiting factor

for generating new data. Most GWAS have been conducted in case-control studies, and this

has led to the creation of disease-specific consortia in which power can be maximized. How-

ever, there is usually only one disease phenotype available from these cases, and little capacity

to follow cases or controls to collect information on additional phenotypes that develop over

time. Cohort studies are designed to collect multiple endpoints on individuals, but often suffer

from limited power for a specific disease. To maximize the utility of existing cohort data

resources, it is important to explore associations with additional traits and outcomes that have

been collected for individuals in multiple cohorts. In particular, the accumulation of GWAS
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Fig 5. Associations for known body mass index SNPs based on 20,283 individuals.

https://doi.org/10.1371/journal.pone.0173997.g005
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Fig 6. QQ-plot for GWAS analysis of venous thromboembolism based on 1,364 cases and 17,628

controls.

https://doi.org/10.1371/journal.pone.0173997.g006

Fig 7. Manhattan plot for GWAS analysis of venous thromboembolism based on 1,364 cases and

17,628 controls.

https://doi.org/10.1371/journal.pone.0173997.g007
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data within large cohorts with rich environmental and outcome data creates new opportunities

to assess novel hypotheses. In addition, cohort studies provide unique opportunities to pro-

spectively assess biomarker-disease associations, thereby minimizing bias due to reverse

causation or treatment effects. However, “borrowing” GWAS data between traits is not

straightforward. Known issues that can cause bias include technical artifacts due to different

genotyping platforms, differences in imputation accuracy and ascertainment bias. Thus, care-

ful data management, imputation procedures and quality checks are needed. Furthermore, if

the secondary trait is rare, there will be low phenotypic variability within each GWAS dataset.

For example, we observed fewer than 100 VTE cases within the majority of individual GWAS,

compared to more than 400 cases within each combined dataset.

Our pipeline for combining and imputing twelve different GWAS datasets can overcome

both technical and methodological issues. We chose to create three different datasets defined

by platform family (in our case, Illumina HumanHap, Illumina OmniExpress and AffyMetrix)

since the SNP overlap across platforms was low on a genome-wide scale (75,285 SNPs). An

attempt to impute a genome-wide dataset comprising only 75,000 SNPs as starting point

would have resulted in decreased imputation accuracy in regions of the genome with sparse

genotype data. Moreover, it has been shown that different platforms might call SNPs differ-

ently and that SNP-specific allele frequencies can differ between platforms (see [41] for further

discussion). We conducted multiple case-control GWAS among control subjects within each

dataset (i.e. running multiple “null” GWAS) and identified and excluded more than 100 SNPs

that showed spurious associations. These results emphasize that although datasets are merged

by platform family, problematic SNPs giving rise to spurious associations might still exist and

it is important to carefully check for these.

To assess the validity of our data, we conducted two proof-of-principle GWAS. The first

trait we studied was BMI, and in line with what expected, we observed strong evidence of asso-

ciations with known BMI loci including FTO and TMEM18 that both reached genome-wide

significance (P<5x10-8). In addition, out of 32 known BMI SNPs we observed nominal signifi-

cance (P<0.05) for 19 of them, all in the same direction as expected from previous reports. Of

note, our sample size (n = 20,823) is less than 10% of the original GWAS that had a total sam-

ple size of 249,766 individuals. Therefore, we would not expect to observe significant associa-

tions for all BMI SNPs due to limited power. For VTE, we observed genome-wide significant

associations for the F5 and ABO loci that are both known to be associated with VTE. In addi-

tion, we also observed a nominal association (P = 0.007) with the F11 region. Our BMI and

VTE results confirm that GWAS analysis of secondary traits in this data is valid and provides a

platform for future studies of secondary traits. We ran the BMI and VTE analyses twice, the

first time without removing duplicates between the datasets (total of 444 pairs), and the second

time with the duplicates removed. Although the 444 pairs constitute less than 5% of our total

sample size, including them had an impact on the genomic inflation factor (for BMI, the geno-

mic inflation factor went from 1.09 to 1.05 and for VTE, the genomic inflation factor went

from 1.02 to 1.00). These results are especially interesting as it is often difficult to identify

duplicates across studies when raw data from all participating studies are not available. Care

should be taken to remove overlapping subjects across GWAS contributing to a meta-analysis,

but any remaining cryptic overlap may inflate association statistics. In that case, statistical

adjustment procedures like LD score regression [55] can be used to account for cryptic

overlap.

One of the main benefits with collecting comprehensive genetic information on cohort sub-

jects is the opportunity to assess interactions between genetic factors and prospectively col-

lected environmental data. To date, few gene-environment interactions have been identified

and although their extent and clinical impact remain an open empirical question, the current
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lack of homogenous large datasets with both genetic and environmental data has precluded

comprehensive investigation. Capitalizing on this GWAS resource, we will be able to explore

gene-environment interactions for a plethora of outcomes including complex traits such as

height and BMI, but also disease outcomes. It will also allow us to study the impact of environ-

mental factors within genetic strata to identify individuals for whom a particular intervention

might be especially important [56–59].

Accumulation of these GWAS data is ongoing and we expect to generate new GWAS data

for an additional 15,000 participants within the next two years, almost doubling our total

GWAS sample size. This growing resource will be a core component of future studies aiming

to elucidate how genes and the environment impact public health.
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