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Abstract

Peri-implantitis caused by multispecies biofilms is a major complication in dental implant

treatment. The bacterial infection surrounding dental implants can lead to bone loss and, in

turn, to implant failure. A promising strategy to prevent these common complications is the

development of implant surfaces that inhibit biofilm development. A reproducible and easy-

to-use biofilm model as a test system for large scale screening of new implant surfaces with

putative antibacterial potency is therefore of major importance. In the present study, we

developed a highly reproducible in vitro four-species biofilm model consisting of the highly

relevant oral bacterial species Streptococcus oralis, Actinomyces naeslundii, Veillonella dis-

par and Porphyromonas gingivalis. The application of live/dead staining, quantitative real

time PCR (qRT-PCR), scanning electron microscopy (SEM) and urea-NaCl fluorescence in

situ hybridization (urea-NaCl-FISH) revealed that the four-species biofilm community is

robust in terms of biovolume, live/dead distribution and individual species distribution over

time. The biofilm community is dominated by S. oralis, followed by V. dispar, A. naeslundii

and P. gingivalis. The percentage distribution in this model closely reflects the situation in

early native plaques and is therefore well suited as an in vitro model test system. Further-

more, despite its nearly native composition, the multispecies model does not depend on

nutrient additives, such as native human saliva or serum, and is an inexpensive, easy to

handle and highly reproducible alternative to the available model systems. The 96-well plate

format enables high content screening for optimized implant surfaces impeding biofilm for-

mation or the testing of multiple antimicrobial treatment strategies to fight multispecies bio-

film infections, both exemplary proven in the manuscript.
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Introduction

Dental implants play an important role in maintaining full oral function after tooth loss [1].

However, dental implant treatment is not without risks: Early implant failure due to biofilm-

associated infections can occur before osseointegration is complete. This early failure rate can

be up to 4% [2–7]. Furthermore, even after successful osseointegration of the implant, peri-

implant mucositis—bacteria-induced inflammation of the soft tissue around the implant—can

occur. If left untreated, this may develop into peri-implantitis. While peri-implant mucositis is

defined as a marginal and reversible inflammation, peri-implantitis can lead to destruction of

supporting bone and therefore to late implant failure [8–12]. In their review “The epidemiol-

ogy of peri-implantitis”, Mombelli et al. (2012) reported that 5–10 years after implant place-

ment, 20% of the patients and 10% of the implants developed these infections [13]. Previous

studies have shown that peri-implantitis is caused by polymicrobial communities [14, 15],

which grow as sessile microbial communities, so-called biofilms, on dental implant surfaces.

Within these biofilms, different bacterial species coexist synergistically, embedded in a self-

secreted, highly structured extracellular matrix [16–18].

Typical early colonizers in the initial biofilm are streptococci, veillonellae and actinomyces

[19–21]. Streptococci and actinomyces species are able to co-aggregate and provide attach-

ment sites and growth support to further bacteria, such as veillonellae, which form metabolic

relationships with streptococci [22]. Veillonella species in turn, are also able to develop mixed

communities with different “late colonizers” [23]. The presence of Porphyromonas gingivalis, a

so-called middle colonizer [21], is associated with periodontitis and these bacteria are fre-

quently found at sites of peri-implantitis [24–26].

A current objective in medical and dental research is to improve implant performance by

using new implant materials or surface coatings, in order to prevent or decelerate the forma-

tion of biofilms on the implant surface, and to optimize current antimicrobial treatment strate-

gies. For the evaluation of novel oral implant materials or anti-biofilm therapies, appropriate

test systems are required, such as multispecies biofilm models, which mimic the in vivo
situation.

Existing biofilm models have, for example, been established on saliva-coated hydroxyapatite

discs [27–31] or saliva-coated contact lenses [32]. Some models include cultivation in medium

supplemented with saliva and/or serum [27–29, 32–34] or use pooled saliva samples to grow

an in vitro biofilm [35]. These additives closely mimic the natural habitat, but are often directly

collected and then pooled from human sources (volunteers) and thus do not comply with uni-

form quality standards. Furthermore, the biofilms were sometimes grown in flow cells [33, 34]

or in culture plates with 24 or fewer wells [27–32, 35]. Few studies have investigated the repro-

ducibility of the biofilm structure and the species distribution. For these reasons, these models

allow investigations of interspecies interactions, but are less suited for high throughput screen-

ing applications.

Research in this area should aim at developing a multispecies biofilm with a reproducible

biofilm structure and bacterial composition, grown in a standardized medium, and which can

be used in 96-well plate formats for high content screening. The model should be robust, and

easy to handle and should provide precise time-resolved information about the bacterial com-

position and the spatial species distribution within the biofilms.

The aim of the present study was therefore to establish a four-species biofilm model in

96-well plate format, consisting of the four early and middle colonizers Streptococcus oralis,
Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis.

The anaerobically grown four-species biofilms were initially analyzed by confocal laser

scanning microscopy (CLSM), with respect to biofilm height, biovolume, live/dead
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distribution and spatio-temporal spreading of the individual species. For this purpose, live/

dead staining and simultaneous fluorescence in situ hybridization (FISH) were performed.

The use of scanning electron microscopy (SEM) enabled a detailed insight at the morphology

of the bacteria within the multispecies biofilm. To estimate the reproducibility of the individ-

ual species distribution, each bacterial species within the biofilms was analyzed by (PMA-)

qPCR with respect to total and viable cell numbers. The four species biofilm model was used

to determine the impact of antibiotics on biofilm formation either as solved additive or embed-

ded in a bioactive coating intended to be used for medical implants functionalization.

Materials & methods

Bacterial strains and culture conditions

Streptococcus oralis ATCC1 9811™, Actinomyces naeslundii DSM 43013, Veillonella dispar
DSM 20735 and Porphyromonas gingivalis DSM 20709 were acquired from the German Col-

lection of Microorganisms and Cell Cultures (DSMZ) and the American Type Culture Collec-

tion (ATCC). The bacteria were routinely cultured in brain heart infusion medium (BHl;

Oxoid, Wesel, Germany), supplemented with 10 μg/mL vitamin K (Roth, Karlsruhe, Ger-

many) under anaerobic conditions (80% N2, 10% H2, 10% CO2) at 37˚C.

Co-culture and biofilm formation

The optical densities (OD600) of bacterial cultures were measured (BioPhotometer, Eppendorf,

Hamburg, Germany), adjusted to 0.1 and subsequently diluted in fresh BHI/vitamin K

medium to OD600 0.01 for each bacterial species. The colony forming units (CFUs) of the cul-

tures were determined by plating 100 μL of serially diluted suspensions on BHI agar supple-

mented with 10 μg/mL vitamin K (Roth, Karlsruhe, Germany). The plates were incubated for

at least 48 hours at 37˚C under anaerobic conditions before counting bacterial colonies.

To obtain a multispecies biofilm, suspension cultures of OD600 = 0.1 of the four individual

species, were mixed equally and fresh BHI/vitamin K medium was added to achieve a final

OD600 of 0.01. 150 μL of the mixed suspension was applied to individual wells of a 96-well

glass bottom plate (Sensoplate; Greiner, Frickenhausen, Germany) and grown as described

above. Each experiment was run in triplicate. Additionally, 2.5 mL of the four-species mixtures

were cultured for 24 hours at 37˚C on glass discs (10 mm) in Petri dishes (35x10 mm; Sarstedt,

Nümbrecht, Germany) for subsequent scanning electron microscopy. Moreover, the pH of the

culture medium was measured. Therefore, 4 mL of the four-species suspension was cultured in

a cell culture multiwell plate (9.6 cm2; Greiner Bio-One, Frickenhausen, Germany) in tripli-

cate. At various time points during biofilm growth (0, 2, 4, 6, 22, 27 and 45 hours), 0.5 mL of

the culture medium was sampled and the pH was measured with pH indicator strips (MColor-

plast™; Merck Millipore, Darmstadt, Germany).

Quantitative and qualitative biofilm analysis

After 24 and 48 hours of growth, the biofilms were stained within the 96-well glass bottom

plates by adding SYTO19 and propidium iodide (LIVE/DEAD1 BacLight™ Bacterial Viability

Kit, Life Technologies, Carlsbad, California, USA) to final concentrations of 3.32 μM and

20 μM, respectively. Biofilm image stacks were acquired with an automated confocal laser

scanning microscope (CLSM) (SP-8, Leica Microsystems, Wetzlar, Germany), as described

elsewhere [36]. In brief, SYTO19 signals were detected using a multi-wavelength argon laser

(excitation wavelength 488 nm) and an emission range of 500–550 nm. Propidium iodide was

measured with a 561 nm laser and an emission range of 675–750 nm. Image stacks were
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acquired using a 1024 x 1024 pixel area with a total height of 23 μm and a z-step size of 1 μm.

Image data were processed using the Developer XD Software (Definiens, Munich, Germany),

with respect to quality (live/dead ratio) and quantity (total and relative biofilm volumes). The

IMARIS software (version 7.6, Bitplane, Zurich, Switzerland) was used for 3D reconstruction

of biofilms.

Fluorescence in situ hybridization

Biofilms were washed once with Dulbecco’s Phosphate Buffered Saline (PBS; Biochrom

GmbH, Berlin, Germany) and fixed using 50% ethanol. After drying the fixed biofilms, the

cells were permeabilized with 40 μL of 1 μg/μL lysozyme for 15 min at 37˚C. After stopping the

lysis by adding 200 μL absolute ethanol for 3 min, the samples were air dried. Fluorescence in
situ hybridization (FISH) was modified from Lawson et al. 2012 [37]: 50 μL urea-NaCl buffer

[1 M urea, 0.9 M NaCl, 20 μM Tris-HCl (pH 7.0)] together with 2 μL of 100 μM probe were

spotted onto the biofilms. The applied probes, their sequences and references are listed in S1

Table in the supporting information. Hybridization was performed for 25 min at 46˚C in a

Mini-Incubator 4010 (GFL, Burgwedel, Germany). The biofilms were washed twice with

100 μL of prewarmed urea-NaCl washing buffer [4 M urea, 0.9 M NaCl, 20 μM Tris-HCl (pH

7.0)] and then 100 μL urea-NaCl washing buffer was spotted onto the biofilms and incubated

for 5 min at 48˚C. After two further washing steps carried out as described above, the biofilms

were washed once with aqua bidest., covered with 150 μL PBS and visualized using the sequen-

tial imaging mode of the confocal microscope SP8 (Leica Microsystems, Wetzlar, Germany).

In the first sequence (see S1a Fig in the supporting information) ALEXA Fluor1405 signals

were detected with a HyD detector using a 405 nm laser and an emission range of 413–477

nm, together with ALEXA Fluor1568 (HyD detector / 561 nm laser / 576–648 nm emission

range). In the second sequence (see S1b Fig in the supporting information), ALEXA

Fluor1488 signals were detected with a PMT detector using a 488 nm laser and an emission

range of 509–576 nm, together with ALEXA Fluor1647 (PMT detector / 633 nm laser / 648–

777 nm emission range). Image stacks were acquired with a z-step size of 1 μm. Image stacks

were subsequently processed with the Leica Dye separation tool.

Scanning electron microscopy

After 24 hours, the biofilms were washed twice with PBS (Biochrom GmbH, Berlin, Germany)

and fixed for 30 min using 2.5% glutaraldehyde (Roth, Karlsruhe, Germany). After dehydrat-

ing the biofilms in an ascending series of ethanol concentrations (25%, 50%, 75%, 90%, 100%;

ethanol from J.T. Baker, Phillipsburg, New Jersey, USA) the samples were treated in a Balzer

CPD 030 Critical Point Dryer (BAL-TEC, Balzers, Liechtenstein). The dried samples were

sputter-coated with gold in an E5400 SEM Coating System (Polaron, Watford, United King-

dom). Scanning electron microscopy was performed with a SEM 505 microscope (Philips,

Eindhoven, Netherlands); images were processed with the SEM Software 4.5 [38].

PMA treatment and DNA isolation

The biofilms were detached from the glass surface after 24 and 48 hours by vigorous rinsing

with a pipette. Subsequently, the cells were washed once with PBS and resuspended in 100 μL

fresh PBS. PMA treatment was used for the examination of the viable parts within the biofilm.

For this purpose, 50 μL of the cell suspensions was treated with PMA (Biotum, Hayward, Cali-

fornia, USA) prior to DNA extraction. The protocol was modified from Alvarez et al. 2013

[30] as follows: PMA was added to the 50 μL aliquot of the cell suspension at a final concentra-

tion of 100 μM. The tubes were incubated for 10 min in the dark at 4˚C and the photo-reactive
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dye was activated by blue light irradiation at 470 nm (3W LED light source) for 20 min. To

remove unbound PMA, a final washing step with PBS was performed before total DNA extrac-

tion. For total and viable cell amounts, the bacterial DNA was isolated using the FastDNA™
SPIN Kit for Soil (MP Biomedicals, Irvine, California, USA), following the manufacturer’s

instructions. DNA was quantified using a NanoDrop 2000c photometer (Thermo Fisher Scien-

tific, Waltham, Massachusetts, USA) and stored at -20˚C until further processing.

Quantitative real time PCR

Quantitative real time PCR (qRT-PCR) was performed using the iQ5 real time PCR detection

system (Bio-Rad, Hercules, California, USA). The primers used in this study are shown in S2

Table in the supporting information. The primers for A. naeslundii and V. dispar were

designed using the Primer-BLAST tool from the National Center for Biotechnology Informa-

tion (http://www.ncbi.nlm.nih.gov/tools/primer-blast). The primer pairs were checked for

specificity against the three other species (data not shown). Each PCR was performed in a total

volume of 25 μL containing 12.5 μL iQ™ SYBR1 Green Supermix (Bio-Rad, Hercules, Califor-

nia, USA), 0.2 μM forward and reverse primers and 1–40 ng of template DNA, depending on

the ratio of the individual bacterial species within the biofilm. The qRT-PCR was carried out

with an initial incubation of 3 min at 95˚C, followed by 40 cycles of denaturation for 10 s at

95˚C, annealing for 20 s (individual temperatures see supplementary S1 Table), amplification

for 20 s at 72˚C and a melting curve analysis. For each species, a standard curve was generated

using defined concentrations of genomic input DNA. All experiments were carried out in trip-

licate. The genomic DNA amount of a target species in the unknown sample was calculated

from the standard curve. The corresponding number of bacterial cells was calculated by divid-

ing the measured amount of DNA by the total genome weight per cell (see S3 Table in the sup-

porting information).

Statistical analysis

Statistical analysis of the results was implemented using the software package “Statistical Pack-

age for the Social Sciences” (SPSS; IBM, Armonk, USA), version 23.0. The univariate Mann-

Whitney U test was applied to compare the cell numbers between independent experiments.

The level of significance was set at p� 0.05.

Application of the established biofilm model

To demonstrate its applicability, the established multispecies biofilm model was exemplarily

tested on a bioactive coating for medical implants with proven antimicrobial characteristics.

Therefore, round glass discs with a diameter of 5 mm were functionalized with a mesoporous

silica film and loaded with ciprofloxacin as described in Ehlert et al. 2011 [39]. The discs were

placed in a cell culture multiwell plate (9.6 cm2; Greiner Bio-One, Frickenhausen, Germany),

followed by a 24 h period of biofilm formation. Glassbottom wells, glass discs without coating

and glass discs with a mesoporous silica film were used as control.

In addition, the two antibiotics amoxicillin (amoxicillin trihydrate; Dr. Ehrenstorfer, Augs-

burg, Germany) and metronidazole (Dr. Ehrenstorfer, Augsburg, Germany) were added to the

medium (BHI / vitamin K) individually or in combination at two different concentrations

(14 μg/mL and 140 μg/mL). The latter is known as the “van Winkelhoff-cocktail” [40] which is

a standard treatment procedure for periodontal infections. Multispecies biofilms were pre-

pared and cultivated as described before. After 24 hours of incubation, the biofilms were

stained and analyzed (1024 x 1024 pixel area / total height of 30 μm / z-step size of 1 μm) as

mentioned above.
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Results

Qualitative and quantitative biofilm analysis revealed high reproducibility

of the four-species biofilm model

Biofilms, including the four bacterial species S. oralis, A. naeslundii, V. dispar and P. gingiva-
lis, were grown in 96-well plates. Precultures of OD600 = 0.1 of the four individual species

were mixed, diluted to a final OD600 = 0.01 and used for inoculation of the plates. An optical

density of 0.01 corresponded to 1.17x107 (± 7.81x106) CFU/mL for S. oralis, 1.63x106

(± 1.86x105) CFU/mL for A. naeslundii, 3.24x105 (± 2.30x104) CFU/mL for V. dispar and

7.38x104 (± 5.41x104) CFU/mL for P. gingivalis. (PMA-) qRT-PCR confirmed the results of

the CFU method (see S2 and S3 Figs in the supporting information). Thus, S. oralis domi-

nated the starting mixture amounting to 81.3% of the overall bacteria, followed by A. naeslun-
dii (11.3%), P. ginigvalis (5.1%) and V. dispar (2.2%).

The biofilms were subjected to live/dead staining and subsequently analyzed by CLSM

after 24 and 48 hours of biofilm development. Exemplary images of 24 and 48 hour

biofilms are depicted in Fig 1. The lower (bottom) parts of the biofilms are shown in Fig 1a

Fig 1. CLSM of the four-species biofilms. Images of the four-species biofilms comprising the bacterial species S. oralis,

A. naeslundii, V. dispar and P. gingivalis after (a) 24 hours (bottom of the biofilm), (b) 24 hours (top of the biofilm), (c) 48

hours (bottom of the biofilm) and (d) 48 hours (top of the biofilm) of biofilm growth. Bacteria were live/dead stained with

viable cells visualized in green and dead cells appearing red.

https://doi.org/10.1371/journal.pone.0173973.g001
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(24 hours) and 1c (48 hours); the higher (top) parts of the biofilms in Fig 1b (24 hours) and

1d (48 hours).

In order to quantify biofilm formation, mean biofilm height, total and relative biovolume

with respect to the viable parts (green), colocalized parts (orange) and dead parts (red) of the

biofilms were calculated from the image stacks.

The mean biofilm height was 6.20 μm (± 0.37) after 24 hours and increased to 6.64 μm

(± 0.49) after 48 hours. At both time points, the biofilm height of the three biological replicas

was comparable. Moreover, the total biovolume exhibited no significant difference between

the 24 or 48 hour replicas. However, the biovolume slightly increased from 4.38x105 μm3

(± 1.37x104) after 24 hours to 4.71x105 μm3 (± 2.81x104) after 48 hours (Fig 2a). Analysis of

the relative biovolumes revealed that the viable cells dominated the population, accounting for

97.9% (± 0.1) in the 24 hour and 95.2% (± 0.5) in the 48 hour biofilms. The proportion of dead

bacteria marginally increased from 24 to 48 hours (Fig 2b).

Different bacterial species organize in a distinct spatial pattern within

four-species biofilms

Localization of the four bacterial species (S. oralis, A. naeslundii, V. dispar, and P. gingivalis)
within biofilms was assessed by FISH. Simultaneous staining with specific probes against the

different bacterial species enabled a clear distinguishing of the individual species in 24h (Fig 3)

and 48h biofilms (Fig 4).

In order to assess the spatial-temporal distribution of the individual bacterial species within

the four-species biofilms, a three-dimensional reconstitution of the biofilms at 24h (Fig 5) and

48h (Fig 6) was performed by CLSM. We assessed the fluorescence staining of the four bacte-

rial species in different depths of the biofilm and could show that S. oralis (blue) was by far the

dominant species within the whole biofilm building up a hilly structure with areas where these

bacteria grew at high densities. This was observed at both time points, after 24 (Fig 5) and 48

Fig 2. Quantification of biovolume. (a) Total biovolume and (b) relative biovolume of the four-species biofilms, including

the bacterial species S. oralis, A. naeslundii, V. dispar and P. gingivalis. Each bar shows the mean ± standard error from

three different wells of one biofilm growth experiment of the three biological replicates measured after 24 and 48 hours.

https://doi.org/10.1371/journal.pone.0173973.g002
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hours (Fig 6). V. dispar (yellow) grew in cylindrical microcolonies spanning the entire height

of the biofilm longitudinal from the glas surface to the top. Interestingly, V. dispar colonies

appeared to grow in craters of the S. oralis layer, clearly separated from the latter one (Figs 5

and 6). Very small numbers of P. gingivalis (red) could be detected, either as single cells or in

microcolonies, up to a biofilm height of 7 μm (Figs 5a–5h and 6a–6h). The growth of A. nae-
slundii (green) could be detected from a biofilm height of 1 μm up to the top of the biofilm

(10 μm). A. naeslundii grew in close contact to S. oralis in areas of the biofilm, where S. oralis
also grew at high densities (Figs 5c–5k and 6b–6k).

The three-dimensional biofilm structure was further assessed by scanning electron micros-

copy (SEM) at a higher resolution than what was possible by CLSM. SEM of single-species bio-

films (Fig 7a–7d) enabled identification of individual species within a mixed four-species

biofilm (Fig 7e). In the mixed biofilm, the species A. naeslundii and V. dispar can be clearly dis-

tinguished. Separation of P. gingivalis and S. oralis is more difficult, but still possible due to the

typical long chains of S. oralis cocci. This method confirmed the dominance of S. oralis and

lower numbers of the three other species within the multispecies biofilm.

Fig 3. Maximum intensity projection of biofilm image stacks upon species-specific staining of a 24h four-species

biofilm by FISH. (a)–(d) Separate color channels showing the staining of individual bacterial species within the four-

species biofilm. (a) S. oralis (MIT-588-Alexa-405; blue), (b) A. naeslundii (ANA-103-Alexa-488; green), (c) V. dispar (VEI-

217-Alexa-568; yellow) and (d) P. gingivalis (POGI-Alexa-647; red), (e) Overlay of individual images of the four-species

biofilm. Image stacks of 11 single images with a z-step size of 1 μm.

https://doi.org/10.1371/journal.pone.0173973.g003
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Different bacterial cell numbers in the four-species biofilm model are

stable over time

Total and the viable cell numbers of each individual bacterial species were analyzed after 24

and 48 hours within the biofilm cultures by qPCR (Fig 8). Each experimental setting included

three technical replicates. The bacterial compositions of the biofilms were highly reproducible

at both time points and confirmed that S. oralis dominated the biofilms after both 24 and 48

hours. V. dispar and A. naeslundii were less frequent and the lowest cell numbers were found

for P. gingivalis. The relative frequency proved to be constant in all three experiments at both

time points. The mean percentage distributions (total cell amount) of the four bacterial species

were calculated for the 24 hour biofilm to be: 96.3% (± 1.5) for S. oralis, 2.3% (± 0.8) for V. dis-
par, 1.4% (± 0.9) for A. naeslundii and 0.0024% (± 0.0008) for P. gingivalis (Fig 8a). If only the

viable cell numbers were considered, the percentage of S. oralis decreased to 80.2% (± 3.1), the

other three species increased to 15.1% (± 3.3)–for V. dispar, 4.8% (± 1.2) for A. naeslundii and

0.0043% (± 0.0017) for P. gingivalis (Fig 8b). Comparing the averaged percentage distribution

of the 48 hour old biofilms to the values at 24 hours (total cell amount), the percentage of S.

oralis decreased at 48 hours to 86.5% (± 6.8), V. dispar increased to 10.9% (± 5.7), A. naeslundii

Fig 4. Maximum intensity projection of biofilm image stacks upon species-specific staining of a 48h four-species

biofilm by FISH. (a)–(d) Separate color channels showing the staining of individual bacterial species within the four-

species biofilm. (a) S. oralis (MIT-588-Alexa-405; blue), (b) A. naeslundii (ANA-103-Alexa-488; green), (c) V. dispar (VEI-

217-Alexa-568; yellow) and (d) P. gingivalis (POGI-Alexa-647; red), (e) Overlay of individual images of the four-species

biofilm. Image stacks of 11 single images with a z-step size of 1 μm.

https://doi.org/10.1371/journal.pone.0173973.g004
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increased to 2.6% (± 1.3) and P. gingivalis increased to 0.012% (± 0.007) (Fig 8c). If only the

viable cell numbers were taken into account and compared to the 24 hours viable cell numbers,

S. oralis decreased to 69.7% (± 12.9), V. dispar increased to 25.1% (± 12.1), A. naeslundii
increased to 5.1% (± 1.4) and P. gingivalis increased to 0.02% (± 0.0315) (Fig 8d).

Fig 5. Spatial-temporal distribution of the individual bacterial species within the 24 hours biofilm.

Fluorescence in situ hybridisation of the 24 hour four-species biofilm consisting of the bacterial species S.

oralis (MIT-588-Alexa-405; blue), A. naeslundii (ANA-103-Alexa-488; green), V. dispar (VEI-217-Alexa-568;

yellow) and P. gingivalis (POGI-Alexa-647; red). (a)–(k) show the 11 images of the biofilm with a z-step size of

1 μm. (l) shows the 3D-reconstruction of the complete biofilm.

https://doi.org/10.1371/journal.pone.0173973.g005
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pH of medium decreased upon prolonged biofilm growth

The pH of the biofilm medium was measured after 0, 2, 4, 6, 22, 27, 45 hours of biofilm develop-

ment. The pH was stable within the first 4 hours of biofilm growth at 7.0–7.5. After 22 hours,

the pH decreased to 5.0–5.5. Within the following 23 hours, it decreased to 4.5–5.0 (Fig 9).

Fig 6. Spatial-temporal distribution of the individual bacterial species within the 48 hours biofilm.

Fluorescence in situ hybridisation of the 48 hour four-species biofilm consisting of the bacterial species S.

oralis (MIT-588-Alexa-405; blue), A. naeslundii (ANA-103-Alexa-488; green), V. dispar (VEI-217-Alexa-568;

yellow) and P. gingivalis (POGI Alexa-647; red). (a)–(k) show the 11 images of the biofilm with a z-step size of

1 μm. (l) shows the 3D-reconstruction of the complete biofilm.

https://doi.org/10.1371/journal.pone.0173973.g006
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Application of the established biofilm model

The setup of the established biofilm model was tested to demonstrate the effect of antibiotics

(embedded or in solution) on biofilm formation: i) a bioactive coating for medical implants

with proven antimicrobial characteristics (mesoporous silica film loaded with ciprofloxacin)

and ii) amoxicillin and metronidazole solved in growth medium (BHI / vitamin K) individu-

ally or in combination (“van Winkelhoff-cocktail”). In order to evaluate the antimicrobial

effect, we calculated the relative amounts of the total biovolume with respect to the viable

(green), colocalized (orange) and the dead part (red) of the biofilms from the image stacks for

i) bioactive coating (Fig 10a) and ii) antibiotics dissolved in the culture medium (Fig 11a). In

addition, maximum intensity projections of the different samples were included (Figs 10b–10e

and 11b–11h).

Biofilm formation on glass discs (control) was augmented in comparison to glass wells

and resulted in a doubling of biovolume (Fig 10). The biovolume on glass discs coated with

Fig 7. Scanning Electron Micrograph (SEM) of 24 hours old biofilms. (a) S. oralis, (b) A. naeslundii, (c) V. dispar, (d)

P. gingivalis and (e) a four-species biofilm. In the mixed community, the individual species are exemplarily highlighted by

arrows: S. oralis (a), A. naeslundii (b), V. dispar (c), and P. gingivalis (d).

https://doi.org/10.1371/journal.pone.0173973.g007
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mesoporous silica was slightly decreased in comparison to the uncoated control. On glass

discs coated with mesoporous silica and ciprofloxacin the biovolume did not alter consider-

ably compared to the control without antibiotic but the proportion of dead cells massively

increased (up to 70%; Fig 10a and 10e).

Supplementation of culture media with 14 μg/mL amoxicillin, 14 μg/mL metronidazole or a

combination of both did not affect the total biovolume (Fig 11a). A reduction of the total bio-

volume to less than 20% of the control and a major increase up to 50–70% in the dead propor-

tion was observed for amoxicillin (140 μg/ mL) alone and in combination with metronidazole

(140 μg/mL).

Fig 8. qRT-PCR analysis representing the relative species distribution within the biofilms. These consisted of the

bacterial species S. oralis (blue), A. naeslundii (green), V. dispar (yellow) and P. gingivalis (red) and were incubated

anaerobically for 24 and 48 hours. Each independent biofilm approach (1–3) included three technical replicates (three

wells); qRT-PCR was run in triplicate for each biofilm sample. (a) Percentage distribution based on the total cell numbers

after 24 hours, (b) percentage distribution based on the viable cell numbers after 24 hours, (c) percentage distribution

based on the total cell numbers after 48 hours, (d) percentage distribution based on the viable cell numbers after 48 hours.

https://doi.org/10.1371/journal.pone.0173973.g008
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Fig 10. Biovolume quantification and maximum intensity projections of four-species biofilms grown on (coated)

glass discs. (a) Relative proportion of the total biovolume of biofilms grown on different surfaces as indicated in the figure.

(b-e) Images of 24 hour-old four-species biofilms established in glassbottom wells (b), on glass discs (c), on mesoporous

silica coated glass discs (d) and on mesoporous silica coated glass discs containing ciprofloxacin (e). Bacteria were

stained live/dead (viable cells: green; dead cells: red).

https://doi.org/10.1371/journal.pone.0173973.g010

Fig 9. pH value curve. pH measurement of the biofilm medium over 45 hours of biofilm growth.

https://doi.org/10.1371/journal.pone.0173973.g009

Multispecies biofilm model for screening applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0173973 March 15, 2017 14 / 21

https://doi.org/10.1371/journal.pone.0173973.g010
https://doi.org/10.1371/journal.pone.0173973.g009
https://doi.org/10.1371/journal.pone.0173973


Discussion

Bacterial adhesion and biofilm formation on dental implants often cause peri-implantitits that

can finally lead to implant loss. Methods for testing of implant surfaces concerning bacterial

adhesiveness or antimicrobial properties are highly demanded and thus in the present study,

we have established a multispecies biofilm model. Using an array of different methods, includ-

ing CLSM, SEM, qRT-PCR and FISH, we unambiguously demonstrated that this biofilm

model is robust and highly reproducible, which is a prerequisite for envisioned high through-

put analyses of e.g. anti-biofilm activity of implant surfaces. Our focus was on developing an

easy-to-use biofilm model without the need for nutritional supplements that are not manufac-

tured according to uniform quality standards and are of limited availability, such as human

saliva and to apply this test system to high content screening.

Different multispecies biofilm models have already been described [27–35, 41]. However,

they mainly focus on biological aspects of bacterial interactions or biofilm development and

they are less suitable for high content screening applications, due to (I) the use of human

saliva and/or serum, which makes the growth medium less reproducible [27–30, 33, 34]

and/or (II) the use of culture plates with 24 or fewer wells [27–33, 35]. For example a three-

species biofilm model, including S. oralis, A. naeslundii and F. nucleatum, and a four-species

biofilm model, consisting of S. gordonii, A. naeslundii, V. atypica and F. nucleatum, were

established in saliva-containing medium [33, 34]. Similarly, a five-species model (S. oralis,

Fig 11. Biovolume quantification and maximum intensity projections of grown four-species biofilms exposed to

medium supplemented with antibiotics. (a) Determination of total biovolumes of 24 hour-old four-species biofilms

grown under conditions as indicated in the figure. (b-h) Images of biofilms grown in glassbottom wells without

supplementation of antibiotic (b), with 14 μg/mL amoxicillin (c), with 140 μg/mL amoxicillin (d), with 14 μg/mL

metronidazole (e), with 140 μg/mL metronidazole (f), with 14 μg/mL amoxicillin and 14 μg/mL metronidazole (g) and with

140 μg/mL amoxicillin and 140 μg/mL metronidazole (h). Antibiotics were added to BHI / vitamin K medium. Bacteria were

stained live/dead (viable cells: green; dead cells: red).

https://doi.org/10.1371/journal.pone.0173973.g011
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S. sobrinus, A. naeslundii, V. dispar, F. nucleatum) and a six-species biofilm model (S. oralis,

A. naeslundii, V. parvula, F. nucleatum, P. gingivalis, A. actinomycetemcomitans) were culti-

vated on saliva-coated discs [27, 28]. The 10-species subgingival Zurich Biofilm model [29]

is very complex and close to in vivo situations. The bacterial composition and biofilm stabil-

ity were evaluated for three different growth media that, in part, contained saliva and/or

human serum. The results revealed that different growth media affect biofilm stability,

development and bacterial composition. Another in vitro biofilm model system has been

developed without saliva, on rigid gas-permeable hard contact lenses (RGPLs), in order to

study the interactions of the bacteria with epithelial cells [32]. The authors used commer-

cially available fetal bovine serum (FBS) for RGPL-coating, which is much more reproduc-

ible than collected and pooled saliva.

In the present study we demonstrated that biofilm height, as well as the total and relative

biovolumes of the four-species biofilm, were highly reproducible after 24 and 48 hours. Fur-

thermore, the individual cell distributions of the four bacterial species, as determined by

(PMA-) qRT-PCR, were also highly reproducible and did not change over time. When com-

paring the total and viable parts of a biofilm, there may be fluctuations in the percentage distri-

bution. It is therefore important to determine both the total and the viable fractions of the

biofilm.

In vivo studies on plaque development have demonstrated that streptococci are the pre-

dominant colonizers at early time points: They made up to 60% of the total after 4 hours

and up to 90% after 8 hours of plaque formation [19]. Moreover, 16S rRNA gene sequencing

studies with a retrievable enamel model have found that about 66% of all bacteria were

streptococci after 4 hours of enamel colonization and 80% after 8 hours [21]. In the same

study, veillonella made up to 10% and actinomyces up to 7.8% of the total after 4 hours of

plaque development. Porphyromonas were present at a maximum of only 1.5% [21]. These

findings therefore resemble those in our in vitro biofilm model: Assessing the viable part of

our biofilm model, the distributions of the four species S. oralis [24 hours: 80.2% (± 3.1);

48 hours: 69.7% (± 12.9)], V. dispar [24 hours: 15.1% (± 3.3); 48 hours: 25.1% (± 12.1)], A.

naeslundii [24 hours: 4.8% (± 1.2); 48 hours: 5.1% (± 1.4)] and P. gingivalis [24 hours:

0.0043% (± 0.0017); 48 hours: 0.019% (± 0.0315)] were very similar to the native situation in

early plaque.

The urea-NaCl-FISH assay was first described for Staphylococcus aureus [37]. We have

already used this method in a study on the simultaneous staining of three species [42]. Our

results show that urea-NaCl-FISH assay is also suitable for simultaneous FISH analysis of four

different gram-positive and gram-negative bacterial species embedded in a biofilm. The FISH

results not only confirmed the CSLM and qRT-PCR data but provided additional information

on biofilm architecture and species distribution. S. oralis built up the main structure of our in
vitro biofilm model, similarly described in in vivo biofilm studies [19–21]. A. naeslundii grew

closely together with S. oralis. This direct contact between streptococci and actinomyces has

already been described in literature and was first discovered in 1970 [43]. Later studies

revealed that coaggregation is, inter alia, mediated through the quorum-sensing regulatory

molecule AI-2 [44]. Furthermore, actinomyces are able to recognize receptor polysaccharides

(RPS) on streptococci through their type 2 fimbriae. The subsequent coaggregation is highly

specific [22, 45]. Veillonella also showed metabolic interactions with streptococci in previous

studies and some Veillonella species are able to use lactic acid, which can be produced by

streptococci, as fermentation substrate [46–48]. Interestingly, in our biofilm model colonies of

V. dispar were spatially clearly separated from S. oralis. It would be very interesting to analyze

interspecific interactions and their influence on biofilm formation within the described multi-

species biofilm model in further studies.
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The increase in A. naeslundii and V. dispar after 48 hours, which could be detected by

qPCR, could also be confirmed by FISH. No spatial change in the individual bacterial species

within the biofilm was identified.

The pH measurements revealed that the pH of the biofilm medium decreased from pH 7.0–

7.5 to pH 4.5–5.0 after 45 hours. In a study by Takahashi et al. (1990), P. gingivalis could only

grow at pH from 6.5 or higher, whereby the optimum pH for proteolytic activity was detected

at pH 7.5 to 8.0 [49]. Because P. gingivalis is very sensitive to pH, this may be the reason for the

low numbers of this species in our biofilm. The decrease in pH can be attributed to the species

S. oralis, A. naeslundii and V. dispar. S. oralis is known to be acid tolerant [50] and due to its

ability to metabolize sugar, it can even produce acids independently [51]. Veillonella species

are also known to produce acids (hydrogen sulfide; H2S) under appropriate conditions [52,

53]. Even A. naeslundii is able to produce acids from glucose, best at pH of 7.0 [54]. These

characteristics might explain why A. naeslundii and V. dispar have no problems growing in

medium with a lower pH and increase in cell number.

It is important to note that we have measured the pH of the medium which does not exactly

reflect the pH within the biofilm. Within multispecies biofilms the pH profiles can be hetero-

geneous depending on the location and the local microbial composition. Therefore, Hwang

et al. (2016) established a method for simultaneous spatio-temporal analysis of pH microenvi-

ronments [55]

It would be interesting to use such a method to analyze the pH within our biofilm model in

response to different culture conditions and the effect of the pH changes within the biofilm on

biofilm formation and composition in further studies. Since diverse bacterial species response

differently to pH shifts and are even able to produce acids themselves, antibiotic-treatment

may take an additional influence on the biofilm: Next to the primary effect of killing, it could

secondary influence the bacterial population due to pH shift (by eliminating acid producing

bacteria). This is another interesting aspect which we would like to investigate with our model.

The experiments shown in Figs 10 and 11 demonstrate the application of our biofilm model

which can be used for both, the testing of bioactive and antimicrobial surfaces and for the test-

ing of antimicrobials / antibiotics in solution.

In conclusion, a new four-species biofilm model was established that mimics the native situ-

ation, and is robust and highly reproducible. It is thus perfectly suited for the investigation of

protective effects of novel antimicrobial surfaces or alternative antimicrobial treatment strate-

gies. While live/dead staining can be used to determine overall viability, more labor-intensive

methods—(PMA-) qRT-PCR and FISH—are capable of resolving species-specific viability, in

addition to the spatial distribution of biofilms on selected, promising materials and thus, allow

a detailed understanding of bacteria-surface interactions.
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S1 Fig. Sequential scan of the FISH stained biofilms. (a) In the first sequence, ALEXA

Fluor1405 signals were detected with a HyD detector using a 405 nm laser and the emission

range of 413–477 nm, together with ALEXA Fluor1568 (HyD detector / 561 nm laser / 574–

648 nm). (b) In the second sequence, ALEXA Fluor1488 signals were detected with a PMT

detector using a 488 nm laser and a range of 509–579 nm, together with ALEXA Fluor1647

(PMT detector / 633 nm laser / 648–777 nm).

(TIF)

S2 Fig. (PMA)-qPCR results of the start-mixture. The results of qPCR (total cells) and PMA-

qPCR (viable cells) show the percentage distribution of the four species S. oralis, A. naeslundii,
V. dispar and P. ginigvalis in the start-mixture.

(TIF)

S3 Fig. Comparison of the percentage distribution of the viable cells determined by PMA-

qPCR with the results determined by CFU analysis.

(TIF)
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