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Abstract

Vitamin D deficiency has been related to metabolic syndrome (MetS) in polycystic ovary

syndrome (PCOS). The vitamin D-binding protein (DBP) is the main protein involved in vita-

min D transport. Two single-nucleotide polymorphisms (SNPs) of the DBP gene, rs4588

and rs7041, have been associated with low circulating levels of 25-hydroxyvitamin D [25

(OH)D] in various populations, but not in women with PCOS. Therefore, we determined the

genotype and haplotype distribution of DBP gene polymorphisms and investigated the asso-

ciations between these genetic variants and their haplotypes with PCOS, MetS, and 25(OH)

D levels in women with PCOS and controls from the South of Brazil. The sample included

291 women (191 with PCOS and 100 controls). All participants were genotyped for polymor-

phisms rs2282679, rs4588, and rs7041. Serum 25(OH)D levels were determined in a subset

of 102 participants. Women with PCOS were younger and had significantly higher body

mass index, blood pressure, and insulin resistance than the control group (p<0.05). The

prevalence of MetS in PCOS and controls was 26.5% and 4.8% respectively. Levels of 25

(OH)D were lower in PCOS women with MetS, even after adjustment for age (p = 0.033).

No associations were observed between PCOS and the polymorphisms or their haplotypes.

A higher frequency of genotype TT of rs7041 was found in PCOS participants with MetS

(OR: 2.21, 95%CI:1.08–4.52; p = 0.027). This same genotype was associated with lower 25

(OH)D levels in both PCOS and control women (OR: 4.40, 95%CI:1.62–12.00; p = 0.002).

In conclusion, these findings indicate that DBP gene polymorphisms and their haplotypes

are not directly associated with PCOS. In contrast, the TT genotype of SNP rs7041 was

associated with MetS in PCOS women, and with lower 25(OH)D levels in both PCOS and

control groups.
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Introduction

Polycystic ovary syndrome (PCOS), a heterogeneous disease characterized by chronic anovula-

tion and manifestations of hyperandrogenism [1, 2], affects between 9% and 18% of women of

reproductive age, depending on diagnostic criteria [1–3]. Women with PCOS suffer from met-

abolic abnormalities, including insulin resistance (IR), obesity, and metabolic syndrome

(MetS) [4–6]. Accumulating evidence suggests that vitamin D deficiency is associated with IR

and MetS in PCOS [7]. Vitamin D deficiency may also be linked to central obesity, lipid pro-

file, and body mass index (BMI) in these women [7–13].

Both the vitamin D receptor (VDR) and the vitamin D-binding protein (DBP) play a key

role in vitamin D metabolism. VDR is expressed in many tissues and organs, such as those

involved in calcium homeostasis, glucose metabolism, and reproduction [14], whereas DBP is

the main protein involved in vitamin D transport [15, 16]. Two well-studied single-nucleotide

polymorphisms (SNPs) of the DBP gene, rs4588 and rs7041, have been previously shown to be

strongly associated with low circulating 25-hydroxyvitamin D [25(OH)D] levels in genome-

wide association studies [17, 18] and in various populations [19–24].

Although there have been reports about VDR polymorphisms in PCOS [25–27], few studies

have focused on DBP gene polymorphisms in women with PCOS or androgen excess. The sin-

gle work published to date showed similar genotype frequencies of SNP rs2282679 in PCOS

and controls [25]. In other populations, polymorphisms of DBP gene were associated with sev-

eral endocrine and metabolic parameters [28–30].

Therefore, the aim of the present study was to compare the frequency of SNPs rs2282679,

rs4588, and rs7041 of the DBP gene and their haplotypes in women with PCOS and healthy

controls with regular ovulatory cycles from Southern Brazil. We also aimed to investigate

whether these genetic variants are related to MetS and 25(OH)D levels in PCOS women.

Materials and methods

Patients

Participants were enrolled by advertisement in the local media. The advertisement called for

women of reproductive age with excess hair (hirsutism) and irregular menses and for volun-

teers without hirsutism and with regular menses. The study population comprised 291

women: 191 patients with PCOS and 100 non-hirsute women with regular ovulatory cycles

(confirmed by progesterone levels higher than 3.8 ng/mL). Diagnostic investigation was per-

formed for all enrolled participants at a university hospital (Hospital de Clı́nicas de Porto Ale-

gre, state of Rio Grande do Sul).

Rotterdam criteria were used for the diagnosis of PCOS, which was defined in the presence

of two out of three of the following traits: 1) oligo/amenorrhea and/or chronic anovulation (�9

cycles/year and/or luteal phase progesterone�3.8 ng/mL), 2) clinical and/or biochemical

hyperandrogenism, and 3) polycystic ovary appearance on ultrasound examination. Exclusion

criteria were presence of hyperandrogenic disorders, having used drugs known to interfere with

hormone levels (such as oral contraceptive pills, antiandrogens, progestins, metformin, fibrates,

or statins) for 3 or more months before the study, pregnancy, liver disease, or kidney disease.

Approval for this study was obtained from the Institutional Review Board at Hospital de

Clı́nicas de Porto Alegre. Written informed consent was obtained from all participants.

Study protocol

Anthropometric measurements included BMI and waist circumference (WC). Blood pressure

(BP) was measured twice after a 10-minute rest [4, 5, 31–33].

DBP gene variants and metabolic syndrome in PCOS

PLOS ONE | DOI:10.1371/journal.pone.0173695 March 9, 2017 2 / 12

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.



Hirsutism was defined as a modified Ferriman-Gallwey score [34]�8. Homeostasis model

assessment index to estimate insulin resistance (HOMA-IR) was calculated by multiplying

insulin (mIU/mL) by glucose (mmol/L) and dividing this product by 22.5 [35]. Joint Scientific

Statement criteria were used to define MetS [36].

Laboratory measurements

Blood samples for determination of hormone levels were drawn from an antecubital vein after

a 12-h overnight fast, between 8:00 and 10:00 am. Samples were obtained between the 2nd and

10th days of the cycle, or on any day in amenorrheic women. Blood samples were also collected

for genomic DNA extraction.

Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG),

and fasting glucose levels were determined by colorimetric-enzymatic methods (Siemens

Advia 1650, Deerfield, USA). Low-density lipoprotein cholesterol (LDL-c) was estimated indi-

rectly with the Friedewald formula [37]. Total testosterone and insulin levels were measured

by chemiluminescence (Siemens Advia Centaur XP, Deerfield, USA). Serum 25(OH)D levels

were measured in a subset of 102 women by a chemiluminescence assay (Liaison, DiaSorin,

Saluggia, Italy) with sensitivity of�4.0 ng/mL and intra- and inter-assay CV of 7.7% and

10.9%, respectively.

Genotype analysis

Genomic DNA was extracted from peripheral blood leukocytes [38]. DNA samples were

diluted to 2 ng/mL. Duplicate measurements were performed in 10% of the samples to assess

the internal quality of genotype data. Molecular genotyping for rs4588 (substitution of C for

A), rs7041 (substitution of T for G), and rs2282679 (substitution of A for C) was performed

through real-time polymerase chain reaction (PCR) (7500 Fast Real-Time Polymerase Chain

Reaction System, Applied Biosystems, California, USA), using the allelic discrimination assay

with TaqMan MGB primers and probes (Applied Biosystems, California, USA).

Statistical analysis

Data distribution was assessed by Kolmogorov-Smirnov test and descriptive statistics. Results

are expressed as mean ± standard deviation (SD) for normally distributed variables, as median

and interquartile range for variables with a non-Gaussian distribution, or as absolute numbers

and percentages. Non-Gaussian variables were log-transformed for statistical analysis and

back-transformed into their original units for reporting. Unpaired two-tailed Student’s t-test

was used to compare group means. Pearson’s chi-square test (χ2) was applied to test categorical

variables and the agreement of genotype frequencies with Hardy-Weinberg equilibrium.

Haplotypes were constructed from the combination of the rs4588 and rs7041 polymor-

phisms. Lewontin’s D’ statistic for linkage disequilibrium was calculated for each pair of poly-

morphisms. Linkage disequilibrium was inferred using the Phase 2.1.1 software [39], which

employs Bayesian statistics. This software was also used to compare haplotype frequencies in

PCOS and control women by permutation testing. Data were considered as statistically signifi-

cant at p<0.05. The Statistical Package for the Social Sciences 18 (SPSS, Chicago, IL) was used

for analyses.

Results

Participants were mostly white (93.9%), and some (6.1%) had mixed African and European

ancestry. Clinical characteristics of the sample are shown in Table 1. The mean age of PCOS
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and control participants was 22.89±6.66 and 25.18±7.72 years respectively (p = 0.013, Student’s

t test). As expected, women with PCOS had significantly higher BMI, WC, BP, HOMA-IR, tri-

glycerides, Ferriman-Gallwey score, and total testosterone, as well as lower HDL-c than con-

trols (p<0.05 for all variables, Student’s t test). MetS was more frequent in PCOS participants

(p<0.001, Pearson’s χ2 test).

Serum 25(OH)D levels were measured in a subset of participants (54 PCOS and 48 con-

trols) who had an extra serum aliquot available for this measurement. Participants with and

without measured 25(OH)D levels were similar regarding BMI (p = 0.545), HOMA-IR

(p = 0.110), and presence of MetS (p = 0.540).

The mean 25(OH)D concentration in the subset was 21.48±7.25 ng/mL. Only 12.7% of

this subset had adequate circulating levels of 25(OH)D (� 30 ng/mL). In 45.1%, 25(OH)D

levels were insufficient (20–29 ng/mL), and 42.2% had vitamin D deficiency (<20 ng/mL).

Sufficient vitamin D status was similar in the PCOS and control women included in the sub-

set (14.8% vs. 10.4% respectively). Also, 25(OH)D values were similarly low in both subset

groups (21.50±6.90, controls and 21.47±7.61, PCOS; p = 0.985). A separate analysis of the

subset PCOS group revealed lower vitamin D levels in women with MetS (p = 0.018, Stu-

dent’s t test), even after adjustment for age (p = 0.033) (Fig 1).

Regarding DBP gene polymorphisms, all three SNPs were in Hardy-Weinberg equilibrium

in the PCOS and control groups. Only three, two, and one participants were not genotyped for

SNP rs2282679, rs7041, and rs4588 respectively. The genotype and allele frequencies of DBP

gene variants are presented in Table 2. The genotype and allele distribution of all three poly-

morphisms was similar in PCOS and controls.

Polymorphism rs4588 (C!A) was in linkage disequilibrium with rs7041 (T!G) (|D’| = 1;

r2 = 0.44). Three haplotypes were inferred in the sample: CT, CG, and AT, formally called GC-

1f, GC-1s, and GC-2 respectively. The first letter of each haplotype refers to SNP rs4588 and

the second to SNP rs7041. Haplotype frequencies were 0.21 for CT, 0.53 for CG, and 0.26 for

AT. The three common haplotype variants (CT, CG, and AT) formed six diplotypes: CT-CT,

Table 1. Clinical and biochemical profile of PCOS and control participants.

Variable Controls (n = 100) PCOS (n = 191) p

BMI (kg/m2) 27.04±6.09 29.70±6.40 0.001

WC (cm) 78.04±11.51 89.23±15.08 <0.001

Systolic BP (mmHg) 109.52±12.90 121.10±15.50 <0.001

Diastolic BP (mmHg) 70.83±9.39 78.06±11.53 <0.001

Fasting glucose (mg/dL) 88.53±7.57 88.89±15.30 0.797

HOMA-IR 2.18 (1.42–3.14) 3.52 (1.96–6.36) <0.001

TC (mg/dL) 170.11±30.72 174.69±38.31 0.290

HDL-c (mg/dL) 52.84±12.28 48.85±10.87 0.007

LDL-c (mg/dL) 101.70±26.30 104.51±31.82 0.443

Triglycerides (mg/dL) 66.00 (50.00–99.00) 89.00 (62.00–131.00) <0.001

Ferriman-Gallwey 2.19±2.10 15.55±6.11 <0.001

TT (ng/mL) 0.55 (0.42–0.64) 0.82 (0.62–1.11) <0.001

Metabolic syndrome 4.8% 26.5% <0.001

Data are expressed as mean ± SD, median (interquartile range) (Student’s t test), or percentage. p value by Pearson’s χ2 test. PCOS: polycystic ovary

syndrome; BMI: body mass index; WC: waist circumference; BP: blood pressure; HOMA-IR: homeostasis model assessment index to estimate insulin

resistance; TC: total cholesterol, HDL-c: high-density lipoprotein cholesterol, LDL-c: low-density lipoprotein cholesterol; TT: total testosterone.

doi:10.1371/journal.pone.0173695.t001
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CT-CG, CG-CG, CG-AT, CT-AT, and AT-AT, with frequencies of 0.06, 0.21, 0.30, 0.25, 0.09,

and 0.09 respectively.

Taking into consideration the results of individual polymorphism analyses and previous

data from the literature [19–24], AT was regarded as the risk haplotype and CG as the protec-

tive haplotype against lower 25(OH)D concentrations. Therefore, we grouped haplotype com-

binations accordingly: CG CG + CT CG, CG AT + CT CT, and CT AT + AT AT. Haplotype

frequencies were similar in PCOS and control groups (Table 2).

When all participants were analyzed (PCOS and controls), 69.6% of the women carrying

the TT genotype of rs7041 were deficient in vitamin D (<20 ng/mL) and 30.4% presented vita-

min D levels�20 ng/mL (OR: 4.402, 95% CI: 1.62–12.00; p = 0.002, Pearson’s χ2 test). Con-

versely, vitamin D status was similar for polymorphisms rs2282679 and rs4588 and haplotype

variants (Fig 2).

Fig 1. 25(OH)D levels according to presence of the metabolic syndrome in 54 PCOS participants. Data are expressed as mean ± SD. p value by

Student’s t test, adjusted for age. 25(OH)D: 25-hydroxyvitamin D.

doi:10.1371/journal.pone.0173695.g001
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Within the PCOS group, a higher frequency of the TT genotype of rs7041 was observed in

the presence of MetS (OR: 2.21, 95% CI: 1.08–4.52; p = 0.027, Pearson χ2 test). This was not

observed for rs2282679, rs4588, and the rs4588-rs7041 haplotype, whose frequencies were sim-

ilar in PCOS participants with or without MetS (Fig 3).

Discussion

In the present study, the frequency of SNPs rs2282679, rs4588, and rs7041 of the DBP gene

and their haplotypes was similar in women with PCOS and healthy controls with regular ovu-

latory cycles from Southern Brazil. In turn, polymorphism rs7041 in the DBP gene was related

to lower 25(OH)D levels in the overall group and to MetS in PCOS—women with PCOS carry-

ing the TT genotype of rs7041 were twice as likely to present MetS. To the best of our knowl-

edge, this is the first report to show an association between MetS and polymorphism rs7041 in

a PCOS population.

Our results also show that 25(OH)D levels were lower in PCOS participants with MetS. A

recent meta-analysis has reported that vitamin D levels are indeed related to metabolic and

hormonal disturbances in PCOS women. In that study, women with PCOS and vitamin D

deficiency were more likely to have dysglycemia compared to those without vitamin D defi-

ciency [11]. In addition, a study comparing PCOS women and controls showed that vitamin D

levels were lower in participants with both PCOS and MetS compared to those with PCOS but

without MetS. Furthermore, vitamin D levels decreased as the number of risk factors for MetS

Table 2. Genotype, allele, and haplotype frequencies of DBP gene variants in PCOS and control

women.

SNP Controls n (%) PCOS n (%) p

rs2282679

AA 61 (61%) 103 (55%) 0.360

AC 33 (33%) 65 (35%)

CC 6 (6%) 20 (10%)

A 155 (77%) 271 (72%) 0.159

C 45 (23%) 105 (27%)

rs4588

CC 61 (61%) 104 (55%) 0.479

CA 32 (32%) 66 (35%)

AA 7 (7%) 20 (10%)

C 154 (77%) 274 (72%) 0.203

A 46 (23%) 106 (28%)

rs7041

TT 24 (24%) 47 (25%) 0.911

TG 45 (45%) 88 (47%)

GG 31 (31%) 54 (28%)

T 93 (47%) 182 (48%) 0.706

G 107 (53%) 196 (52%)

Haplotypes

CG CG + CT CG 54 (54%) 94 (49.3%) 0.740

CG AT + CT CT 29 (29%) 61 (31.9%)

CT AT + AT AT 17 (17%) 36 (18.8%)

Data are expressed as percentage. p value by Pearson’s χ2 test. The rs4588-rs7041 haplotype is grouped

by presence of the risk haplotype.

doi:10.1371/journal.pone.0173695.t002
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increased [12]. Moreover, in PCOS women, lower vitamin D levels have been correlated with

clinical traits, insulin resistance measures, and lipid profile [8, 12, 13].

Only a few studies have assessed SNPs rs4588 and rs7041 in relation to metabolic parame-

ters in other populations. Some studies have shown an association of polymorphisms in exon

11 with circulating levels of insulin and HOMA-IR [28] and with glucose levels [29] in non-

diabetic individuals. Nevertheless, these polymorphisms have not been associated with type 2

diabetes [29, 30].

Regarding polymorphisms rs4588 and rs7041 and vitamin D levels, one study reported no

interaction between 25(OH)D and SNPs of DBP [40], while another showed a marginal inter-

action of 25(OH)D deficiency with rs7041 in white subjects [41]. In adult and elderly popula-

tions, two studies with Chinese participants have shown that both SNPs rs4588 and rs7041, as

well as the AT-AT haplotype, were related to lower 25(OH)D levels [22, 23]. Similar results

Fig 2. Genotype and haplotype distribution of DBP gene according to vitamin D status in participants with

and without PCOS. Data are expressed as percentages. p value by Pearson’s χ2 test. DBP: vitamin D-binding

protein. A: rs2282679 (p = 0.542). B: rs4588 (p = 0.542). C: rs7041 (p = 0.002). D: haplotype rs4588-rs7041, grouped

according to the presence of the risk haplotype (p = 0.104).

doi:10.1371/journal.pone.0173695.g002
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were reported in Canadian young adults [20] and elderly Caucasians [42]. Finally, lower 25

(OH)D concentrations have been observed in premenopausal white women [19] and early

postmenopausal women [43] carrying the AA genotype of rs4588 and the TT genotype of

rs7041. Taken together, data from the literature and the present results showing an association

between the TT genotype of rs7041 and vitamin D deficiency support the hypothesis that this

DBP gene variant is related to 25(OH)D concentrations. In addition, the main finding of this

study—that polymorphism rs7041 in the DBP gene is related to metabolic syndrome in PCOS

and to lower 25(OH)D levels in the overall group—might signal a genetic link between meta-

bolic disturbances in PCOS and low vitamin D levels.

In a previous study with 545 Austrian women with PCOS aged 16–45 years, no higher risk

of PCOS was found in association with genotypes of rs2282679. However, anthropometric var-

iables and lipid profile differed significantly among rs2282679 genotypes [25]. In contrast, we

Fig 3. Genotype and haplotype distribution of DBP gene according to metabolic syndrome in PCOS

participants. Data are expressed as percentage. p value by Pearson’s χ2 test. DBP: vitamin D-binding protein;

PCOS: polycystic ovary syndrome. A: rs2282679 (p = 0.593). B: rs4588 (p = 0.613). C: rs7041 (p = 0.027). D:

haplotype rs4588-rs7041, grouped according to the presence of the risk haplotype (p = 0.294).

doi:10.1371/journal.pone.0173695.g003
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did not find associations between MetS and rs2282679 genotypes. Ethnic differences between

the two populations, as well as the older age of participants in the study by Wehr et al. [25],

may explain this disagreement.

The DBP gene encodes a multifunctional plasma transport protein, DBP, also known as a

group-specific component, synthesized in the liver. DBP binds and transports vitamin D and

its metabolites to target tissues. DBP exerts important biological functions, including the bind-

ing of mainly monounsaturated and saturated fatty acids [15]. A link between obesity and vita-

min D has been described in PCOS [8] and in other populations [44–49]. The relationship

with DBP is, however, less clear. In elderly men, a positive relationship has been described

between DBP concentrations and BMI [50]. However, this association has not been confirmed

in women aged 18–44 years [51]. Overall, the mechanisms underlying this association are still

unknown, but deserve further investigation.

It should also be noted that polymorphisms rs4588 and rs7041, which are located in exon

11, were in linkage disequilibrium, making it difficult to discern the best single SNP surrogate

to detect genetic variability for this region. Indeed, rs4588 and rs7041, described as having an

association with 25(OH)D levels, were in linkage disequilibrium in a healthy population of

girls from Southern Brazil [24].

One strength of our study is the focus on a less well represented ethnic group, PCOS

women from Southern Brazil. Conversely, a limitation was the relatively small sample size of

291 participants, which does not allow supplemental analyses. However, the effect sizes

observed in our sample are similar to those reported in other PCOS populations. Another limi-

tation was the lack of data on DBP levels of participants. Nevertheless, DBP gene polymor-

phism seems to have no effect on the relationship between 25(OH)D and parathyroid

hormone in infants and toddlers [21]. Other possible limitations are the lack of data on dietary

vitamin D intake and daily sun exposure, even though it is well recognized that, below a lati-

tude of approximately 35˚, UVB radiation is sufficient for year-round vitamin D synthesis

[52]; furthermore, the season of blood collection seems not to interfere with vitamin D levels,

as we have previously shown in another group living in the same region as the present sample

[24]. While DBP measurements were not available in the present study, previous studies have

shown that DBP levels are associated with DBP gene polymorphisms [43, 53] and positively

correlated with 25(OH)D levels [21].

Conclusions

The present study is the first to describe that genotype TT of SNP rs7041 is associated with

MetS in PCOS and with lower 25(OH)D levels in both PCOS and healthy controls with regular

ovulatory cycles. Our results indicate that polymorphisms rs2282679, rs4588, and rs7041 of the

DBP gene, as well as their haplotypes, are not related to PCOS in southern Brazilian women.

Further studies in PCOS populations of different ethnicities are needed to confirm these

findings.
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