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Abstract

Fish and marine animals are important components of the subsistence diet of Alaska Native

people, resulting in a high ω3 PUFA intake. The historical record for circumpolar populations

highlights a tendency for facile bleeding, possibly related toω3 PUFA effects on platelet acti-

vation and/or vitamin K-dependent clotting factors. To evaluate these two scenarios in

Yup’ik people of southwestern Alaska, we examined the association between dietary ω3

PUFA intake and activities of clotting factor II, V, fibrinogen, PT, INR, PTT, and sP-selectin

in 733 study participants, using the nitrogen isotope ratio of red blood cells as a biomarker of

ω3 PUFA consumption. sP-selectin alone correlated strongly and inversely with ω3 PUFA

consumption. Approximately 36% of study participants exhibited PIVKA-II values above the

threshold of 2 ng/ml, indicative of low vitamin K status. To assess genetic influences on vita-

min K status, study participants were genotyped for common vitamin K cycle polymorphisms

in VKORC1, GGCX and CYP4F2. Only CYP4F2*3 associated significantly with vitamin K

status, for both acute (plasma vitamin K) and long-term (PIVKA-II) measures. These find-

ings suggest: (i) a primary association of ω3 PUFAs on platelet activation, as opposed to

vitamin K-dependent clotting factor activity, (ii) that reduced CYP4F2 enzyme activity asso-

ciates with vitamin K status. We conclude that high ω3 PUFA intake promotes an anti-plate-

let effect and speculate that the high frequency of the CYP4F2*3 allele in Yup’ik people

(~45%) evolved in response to a need to conserve body stores of vitamin K due to environ-

mental limitations on its availability.
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Introduction

Interactions between environment (diet) and genotype play an important role in determining

an individual’s susceptibility to disease and response to environmental agents, including drugs

[1]. For native communities living in the circumpolar north, fish and marine animals are

important subsistence foods. Such foods are rich in ω3 polyunsaturated fatty acids (ω3

PUFAs), the high consumption of which has been associated with improved health with

respect to several chronic disease states [2–6]. Research into the benefits of a high ω3 PUFA

diet was stimulated in large part by the early studies of Dyerberg and Bang in Greenland Inuit

[7]. These investigators reported that this population, who consumed very high dietary

amounts of ω3 PUFAs, exhibited prolonged bleeding times and decreased platelet aggregation

relative to Danish controls. Over the past 50 years high ω3 PUFA intake has been associated

with a plethora of biological effects relating to cardiovascular physiology and many studies

emphasize their beneficial role in cardiac health [8–10].

A nutritionally-based bleeding diathesis in circumpolar populations might be expected

to be modulated by vitamin K status. Vitamin K1 (VK1) has a critical role in coagulation,

serving as a cofactor to the enzyme γ-glutamyl carboxylase (GGCX) that catalyzes the

posttranslational carboxylation of N-terminal glutamic acid (Glu) residues to γ-carboxy

glutamic acids (Gla) on vitamin K-dependent clotting factors (see Fig 1). Some studies con-

ducted in rodents suggest that ω3 PUFAs may precipitate bleeding events through interfer-

ence with clotting factor activity [11, 12]. However, in humans, the evidence for an effect of

ω3 PUFAs on vitamin K-dependent hemostatic measures of coagulation has not been strong

[13–15].

It is plausible that circumpolar populations are historically prone to a hypocoagulable

state, in part, because of low intake of vitamin K, particularly during seasons when

traditional sources such as “tundra greens” and seaweed are unavailable and consumption

of commercial greens is limited by access and cost. Recently, we analyzed Alaska Native

populations for variation in genes encoding vitamin K recycling (GGCX, VKORC1) and

catabolizing (CYP4F2) enzymes (see Fig 1) and found particularly high frequencies in

Yup’ik people of variants of VKORC1 and CYP4F2 associated with reduced enzyme function

[16]. Therefore, in order to better understand how gene-environment interactions might

impact the health of Yup’ik people in relation to blood coagulation, we have evaluated the

effect of genetic variation in key vitamin K-associated genes on dietary influences in hemo-

stasis. A scheme illustrating potential interplay between these various factors is shown in

Fig 1.

This study, therefore, had two main elements. First, we determined the relationship

between ω3 PUFA intake and platelet function, clotting factor activity and blood coagulation

using the nitrogen isotope ratio (15N/14N, expressed as the δ15N value) in red blood cell (RBC)

membranes as a biomarker of dietary ω3 PUFA intake in Yup’ik study participants. This

method has been validated as a rapid, medium throughput assay for assigning ω3 PUFA intake

status in the Yup’ik population [17]. Importantly, RBCs provide a stable and informative mea-

sure of ω3 PUFA intake because they reflect dietary intake over 1–3 months. Second, we mea-

sured plasma vitamin K1 and PIVKA-II levels in study participants to assess both acute and

longer-term vitamin K status and evaluated associations between these indices of vitamin K

status and the common vitamin K cycle polymorphisms; VKORC1 1173 A>G, CYP4F2�3 and

GGCX R325Q. These studies provide new insights into dietary and genetic factors influencing

hemostasis in Yup’ik people and have important implications for treatment of this population

with oral anticoagulants.
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Methods

Study recruitment and sample collection

This study was conducted according to the guidelines in the Declaration of Helsinki and all

procedures involving human study volunteers were approved by the Institutional Review

Boards at the University of Alaska Fairbanks and the University of Washington, and by the

Yukon–Kuskokwim Health Corporation Executive Board. Informed, written consent was

obtained from all individuals prior to participation in the study. The procedure for obtaining

consent was reviewed and approved by the YKHC Executive Board and IRB committees.

A cross-sectional, community-based, participatory research study of genetic and nutritional

factors affecting blood coagulation in Yup’ik people living in the Yukon–Kuskokwim region of

Southwestern Alaska was designed as a collaboration between the Northwest-Alaska Pharma-

cogenetic Research Network and the Center for Alaska Native Health Research (CANHR)[18].

In total, 733 study participants were recruited across ten communities between October 2010

and November 2013. Four communities were considered inland (greater than 5 miles away

from the Bering Sea coast) and six were defined as coastal (within 5 miles of the Bering Sea

coast). Participants were excluded from analysis if they self-reported their ethnicity as non-

Alaska Native or ‘other’. Demographic data on age, sex, and community location were

recorded. Blood was collected into 10 ml K2-EDTA, and 2.7 ml Na Citrate (BD Vacutainer1)

Fig 1. Scheme illustrating potential vitamin K cycle gene-diet interplay in modifying hemostasis. Vitamin K cycle-related genes

highlighted in red are VKORC1, GGCX, CYP4F2. The dietary factors investigated; vitamin K andω3 polyunsaturated fatty acids (ω3

PUFAs), are boxed in green.

https://doi.org/10.1371/journal.pone.0173616.g001

Diet, genes and hemostasis in the Yup’ik people

PLOS ONE | https://doi.org/10.1371/journal.pone.0173616 April 4, 2017 3 / 16

https://doi.org/10.1371/journal.pone.0173616.g001
https://doi.org/10.1371/journal.pone.0173616


tubes, and processed at the site of collection using a portable centrifuge. Samples were centri-

fuged for 15 minutes at 2500 rpm. Plasma, serum, and RBCs were isolated and stored in ali-

quots at -15˚C in a portable freezer. Lymphocytes were isolated and stored in Puregene Cell

Lysis Solution until DNA purification using the Gentra Puregene kit (Qiagen, Valencia, Cali-

fornia, USA). All study participants fasted for 12 hours prior to blood draws and all samples

were shipped to the University of Alaska Fairbanks within seven days and stored at -80˚C

prior to further analyses.

Samples for platelet function, clotting factor activity, and coagulation status measurements

were sent to the University of Washington Medicinal Chemistry Department and subsequently

transferred to Laboratory Medicine for these analyses. DNA samples were sent to the Univer-

sity of Washington Center for Ecogenetics and Environmental Health Functional Genomics

and Proteomics Core lab for genotyping.

Nitrogen isotope ratio analysis

The nitrogen isotope ratios of RBC samples were analyzed at the Alaska Stable Isotope Facility

at the University of Alaska Fairbanks (UAF) by continuous-flow isotope ratio mass spectrome-

try as previously described by O’Brien et al. [17]. Nitrogen isotope ratios are represented as

delta values, which give ‘permil (‰)’ abundance of heavy isotope relative to international stan-

dards: [δ15N = (Rsample—Rstandard)/Rstandard] × 1000‰, where R is the ratio of heavy to light

isotope, and the standard is atmospheric nitrogen (15N/14N atm-N = 0.0036765). Multiple pep-

tone working standards (δ15N = 7.0, n = 128) were analyzed concurrently to assess analytical

accuracy and precision, measured as the standard deviation of these analyses. Accuracy was

within 0.1‰ and precision was within 0.2‰ [19]. The relationship between EPA and δ15N as

previously reported was positive and linear (EPA = 1.04(δ15N)– 0.67, R2 = 0.70, p<0.0001),

while that between DHA and δ15N was exponential non-linear and fitted as y = a (1-e-r x)

(p<0.0001) [17].

Clinical laboratory measurements

We included several coagulation indices to assess hemostasis in this study. All coagulation

assays were performed at the University of Washington Department of Laboratory Medicine.

Because samples were collected in remote regions where clinical laboratories are unavailable,

platelet aggregation tests that require analysis within a few hours after collection were not fea-

sible. Therefore, we used a surrogate marker for platelet activation, soluble P-selectin (sP-selec-

tin), to assess the relationship between ω3 PUFA intake and platelet status. A commercially

available sP-selectin ELISA kit (R&D systems), which contained microplates pre-coated with

monoclonal antibodies specific for sP-selectin was used according to the manufacturer’s direc-

tions. Prothrombin time (PT) and partial thromboplastin time (PTT) was measured using a

STA-Compact coagulation analyzer (Diagnostica Stagl). Clotting factors II and V were mea-

sured as percent activities, determined from a standard curve (log-based) prepared using dilu-

tions of Unicalibrator against a normal plasma pool (Diagnostica Stago) containing known

levels of each clotting factor. PIVKA-II was measured using a commercially available kit from

Diagnostica Stago (Asserachrom PIVKA-II) with a limit of quantitation of 2.0 ng/mL. Fibrino-

gen concentration, quantitatively assessed by the Clauss clotting method, was used to deter-

mine whether clots found in samples would affect coagulation assays. Hemolyzed samples

were excluded from sP-selectin and PIVKA-II analysis. Samples containing clots were

excluded if fibrinogen concentrations were<150 ng/mL.

Diet, genes and hemostasis in the Yup’ik people

PLOS ONE | https://doi.org/10.1371/journal.pone.0173616 April 4, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0173616


Vitamin K analysis in plasma

Reagents and standards. Vitamin (VK1) was obtained from Supelco and deuterated vita-

min K1 (VK1-d7) from Aldrich. Vitamin K standards were prepared in methanol and concen-

trations confirmed using a molar extinction coefficient of 19000 M-1 at 248 nm [20, 21].

Plasma sample preparation for vitamin K analysis. All handling procedures for vitamin

K analysis were performed under reduced (yellow) light. Plasma samples (0.5 ml) were pre-

pared in duplicate prior to LC-MS analysis and extracted using minor modifications to the

method of Paroni et al [22], after addition of 4.0 ng/ml of VK1-d7. Ethanol (2.0 mL) was

added, and vigorously mixed. Samples were centrifuged at 3,000 rpm for 5 minutes, the super-

natant transferred into a separate tube and then applied to 1.0 mL Oasis HLB Polymeric SPE

columns. The column cartridges were initially conditioned with 1.0 mL of methanol and 1.0

mL of water. Samples were loaded onto the columns and then washed with 1.0 mL of water,

1.0 mL of 50:50 (v/v) water/methanol, and 1.0 mL 20:80 (v/v) water/methanol. The columns

were dried in air for 1 minute and finally eluted with 1.0 mL of acetonitrile/isopropanol/

dichloromethane (70:10:20). The eluate was evaporated under nitrogen and the residue dis-

solved in 100 μL of methanol for analysis of 15 μL aliquots that were automatically injected

onto the LC/MS system for determination of plasma vitamin K1 concentrations.

LC-MS conditions for plasma vitamin K analysis. Plasma vitamin K1 was analyzed by

LC-MS with modifications to the method of Fu et al. [23]. The assay was established on a

Waters TQ-S mass spectrometer connected to a Waters Acquity I-Class UPLC system with an

APCI source operating in negative mode. The APCI probe temperature was set to 650˚C. The

corona voltage was set to 30 μA and the desolvation gas flow was 500 L/hr. The temperature-

controlled UPLC column compartment was set to 50˚C. Chromatographic separation of ana-

lytes was achieved on a Waters Acquity UPLC BEH phenyl 1.7 μm, 2.1 x 50 mm column with a

Phenomenex SecurityGuard Cartridge System equipped with a 4.0 x 2.0 mm C8 SecurityGuard

cartridge. The mobile phase consisted of solvent A (water) and solvent B (0.05% formic acid in

methanol). A linear gradient was run as follows: 85% solvent B at 0 minutes to 100% solvent B

at 3 minutes with a flow rate of 0.35 mL/min. Elution continued with Solvent B at 100% for 3

more minutes before re-equilibration back to 85% solvent B over a final 2 minutes. The cycle

was complete at 8 minutes. Under these conditions vitamin K1 eluted at 3.5 min. Optimized

cone and collision voltage conditions for the analyte were 58V and 30V, respectively. The lin-

earity of response was tested by spiking the analyte into 0.5 mL of FBS in concentrations that

ranged from 0.10 to 2.00 ng/mL. Linear regression was used to compare measurements

obtained by LC-MS to expected concentrations of calibration standards. Standard curves were

linear with R2 values of>0.99. The limit of quantitation was 0.20 ng/mL. Plasma samples were

excluded from data analysis if the variation in measured vitamin K between duplicates was

greater than 20%.

Genotyping of CYP4F2, VKORC1 and GGCX

SNPs for CYP4F2�3 (rs2108622), GGCX R325Q (rs 699664), and VKORC1 1173 G>A
(rs9934438) were analyzed using TaqMan SNP Genotyping Assays (Applied Biosystems, Inc.)

on 96.96 Dynamic Genotyping Arrays (Fluidigm). Dynamic Arrays were primed and loaded

on the Fluidigm HX and thermo-cycled on the Fluidigm FC1 controller. End-point fluores-

cence was read on a BioMark™ Real-Time PCR System (Fluidigm) and analyzed using SNP

Genotyping Analysis software (Fluidigm). Samples with call rates <95% were excluded from

analysis. A subset of genotypes samples were selected for DNA sequencing with>99.5% con-

cordance between the two methods. Methods and allele frequencies for each of these variants

are detailed in a recent paper [16].
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Statistical analysis

Statistical analyses were performed using STATA (version 11.0 SE) and a P-value�0.05 was

considered significant for all tests. In total, samples from 733 study participants were evaluated

for an association with measures of coagulation (where available). Of these, 682 had measure-

able PIVKA-II data free from interferences and complete information on genotype data for

CYP4F2�3, GGCX R325Q and VKORC1-1173 T>C (excluding no calls). Due to limited avail-

ability of plasma, a subset of 185 plasma samples that had complete genotype information was

analyzed for vitamin K content. We evaluated the relationship between the δ15N value and

measures of coagulation (sP-selectin, activities of clotting factors II and V, fibrinogen, PT/

INR, and PTT) using univariate and multivariate linear regression models. Measures of coagu-

lation were natural log-transformed prior to statistical analysis. δ15N was treated as an inde-

pendent variable and measures of coagulation were treated as dependent variables. Study

participant age and sex were included as covariates in regression analyses. A two-sample t-test

was used to compare δ15N values between groups and a community’s geographical status

(coastal or inland). Differences in measures of coagulation were also compared between geo-

graphical status groups using the two-sample t-test.

Subject samples were coded 0, 1, or 2 for alleles of interest. To evaluate the association

between plasma vitamin K levels and CYP4F2, VKORC1, and GGCX genotypes, a multivariate

gene-dosing regression model was used for statistical analysis that included age, sex, and geo-

graphical status (from which the plasma samples were obtained) as covariates. Plasma vitamin

K levels were natural-log transformed to improve normality prior to statistical analysis. Geno-

type categories were classified for all genes as having zero, one, or two copies of the variant

allele.

A logistic regression model was used determine the association between long-term vitamin

K status and CYP4F2, VKORC1 and GGCX genotypes. The outcome was dichotomous and cat-

egorized as either PIVKA-II�2.0 ng/mL (low vitamin K status) or PIVKA-II <2.0 ng/mL

(normal vitamin K status). The predictor variables of interest were genotype (0, 1, or 2 copies

of variant allele), age (continuous), sex (binary) and whether the study community was located

in a coastal or inland region (binary). The OR and confidence interval (CI) of 95% were

reported. The overall fit of the model to the data was evaluated using the Likelihood Ratio Test

(χ2) and Goodness-of-Fit Test (Pearson χ2). A two-tailed p-value�0.05 was considered signifi-

cant for all statistical tests. Only study participants with complete information on PIVKA-II

(or plasma vitamin K) and genotype data (CYP4F2, VKORC1 and GGCX) were included for

statistical analysis.

Results

Study participant demographics

The demographic characteristics of Yup’ik study participants and descriptive statistics for

δ15N value are shown in Table 1. The mean age of all study participants was 37 years and 47%

were female. The mean δ15N value across all participants was 8.7 ± 1.3‰, and the range was

6.1 to 14.5‰.

Participant age correlated positively with δ15N values (Fig 2), females had higher mean

δ15N values than males (Table 1, Fig A in S1 File) and coastal communities exhibited higher

mean δ15N values compared to inland communities (Table 1, Fig B in S1 File). These data are

in accordance with previous findings on dietary trends and traditional food intake in the same

Yup’ik study population [19].
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Table 1. Demographic characteristics of the Yup’ik study participants and descriptive statistics for the δ15N value.

All Males Females

Sample size 733 388 345

Age (mean ± S.D.) 36.8 ± 18.1 34.6 ± 17.4 39.3 ± 18.6

Range of ages 14–93 14–85 14–93

δ15N values (mean ± S.D) 8.7 ± 1.3 8.4 ± 1.1 9.1 ± 1.4

Range of δ15N values 6.10–14.5 6.10–13.2 6.59–14.51

Coastal Communities Inland Communities

Number of males 204 184

Number of females 182 163

All δ15N values (mean ± S.D) 9.1 ± 1.5 8.4 ± 0.9

Male δ15N values (mean ± S.D) 8.6 ± 1.3 8.1 ± 0.8

Female δ15N values (mean ± S.D) 9.5 ± 1.5 8.7 ± 1.0

δ15N is a surrogate for ω3 PUFA intake.

Bolding denotes a significant difference (P<0.05) in δ15N values between males and females and between coastal and inland communities.

https://doi.org/10.1371/journal.pone.0173616.t001

Fig 2. Plot of δ15N values in the study sample and association with age. (N = 733, P<0.001, R2 = 0.330). Higher δ15N values indicate

increased intake ofω3 PUFAs.

https://doi.org/10.1371/journal.pone.0173616.g002
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Association of δ15N values with coagulation parameters

Results of the regression analysis with coagulation variables before and after adjustment for

age, sex and geographical status are shown in Table 2, with detailed information on these vari-

ables before and after natural log transformation provided in Table A, S1 File.

No significant associations were observed between δ15N values and factor II, factor V,

fibrinogen, PT, INR or PTT. However, sP-selectin levels varied inversely with δ15N values,

before and after adjustment (Table 2, Fig 3), demonstrating that higher ω3 PUFA consumption

was associated with lower platelet activity

Table 2. Association of δ15N values with coagulation variables using multivariate regression analysis.

Unadjusted Adjusted

Variable N β Coefficient

(95% CI)

P-value R2 β Coefficient

(95% CI)

P-value R2

sP-selectin 716 -0.051

(-0.070, -0.033)

<0.001 0.039 -0.069

(-0.093, -0.044)

<0.001 0.107

Clotting factor II 708 0.007

(-0.004, 0.018)

0.196 0.002 0.002

(-0.012, 0.017)

0.776 0.019

Clotting factor V 705 0.035

(1.02E-4, 0.069)

0.049 0.006 0.007

(-0.040, 0.054)

0.759 0.013

Fibrinogen 358 0.038

(0.013, 0.063)

0.003 0.025 -1.01E-4

(-0.035, 0.034)

0.995 0.067

PT 722 -0.005

(-0.012, 0.001)

0.122 0.003 0.002

(-0.007, 0.012)

0.603 0.014

INR 721 -0.005

(-0.014, 0.004)

0.273 0.002 0.005

(-0.007, 0.017)

0.455 0.015

PTT 449 0.006

(-0.008, 0.021)

0.390 0.002 0.007

(-0.012, 0.025)

0.481 0.088

The significance level was set at P<0.05, denoted in bold.

Statistical estimates are presented before and after adjustment for age, sex and geographical status.

https://doi.org/10.1371/journal.pone.0173616.t002

Fig 3. Relationship between δ15N and sP-selectin, before and after natural log transformation. A statistically significant, negative

association of the log-transformed data was obtained before (P<0.001, R2 = 0.039) and after adjustment for age, sex and geographical

status (P<0.001, R2 = 0.107).

https://doi.org/10.1371/journal.pone.0173616.g003
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Vitamin K levels in plasma and relationship to genotypes

Plasma VK1 concentrations ranged from <0.20–2.80 ng/ml (Fig 4). The mean ± standard

deviation (S.D.) of VK1 in plasma of all Yup’ik samples analyzed (N = 185) was 0.45 ± 0.39 ng/

mL (Table 3). A statistically significant association was observed between plasma VK1 concen-

tration and CYP4F2�3, but not with either GGCX R325Q or VKORC1 1173 A>G (Table 4).

When VK1 concentrations were stratified by CYP4F2�3 genotype, the mean and median

plasma concentration were highest for CYP4F2 �3/�3 compared to the �1/�3 or �1/�1 genotypes

(Table 3). Furthermore, these differences relative to the �1/�1 genotype group were significant

for �3/�3 (P = 0.005), but not for �1/�3 (P = 0.685) (Fig C, S1 File).

PIVKA-II status and relationship to genotypes

Among study participants in which PIVKA-II and genotype data were complete, 247 (36.2%)

had values� 2.00 ng/mL; two samples exhibited levels >1000 ng/ml and were excluded from

analysis (Fig 5). Similar to the data obtained for plasma VK1, PIVKA-II concentrations varied

only with CYP4F2�3 genotype (Table 5). Table B, S1 File provides demographic information

for this group. There was no significant difference in age between study participants who had

low or normal PIVKA-II levels (two-sided t-test, p = 0.256). No significant difference in PIV-

KA-II status was observed between coastal and inland communities (Pearson-Chi2, p = 0.181).

Fig 4. Frequency distribution of plasma VK1 concentration (N = 185). 20.5% of samples had VK1 concentrations of <0.20 ng/ml.

https://doi.org/10.1371/journal.pone.0173616.g004
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However, a significantly higher proportion of males had an elevated PIVKA-II level compared

to females (Pearson-Chi2, p = 0.008).

The association analysis of CYP4F2, GGCX, and VKORC1 genotypes from the multivariate

logistic regression is presented in Table 6. The P-value was <0.05 from the Likelihood Ratio

Test for all genotypes and indicated that the model is statistically significant. The P-value was

>0.05 from the Goodness-of-Fit Test for all genotypes, which indicated that the models fit rea-

sonably well to the data. The CYP4F2�3 allele was found to associate with lower odds

(OR = 0.74) of low vitamin K status. When homozygous variants and heterozygotes were indi-

vidually compared to the homozygous reference allele group, the association was stronger for
�3/�3 (OR = 0.60) than for the �1/�3 allele group (OR = 0.74). GGCX R325Q and VKORC1 1173
A>G genotypes were not significantly associated with PIVKA-II. Interestingly, sex was consis-

tently associated with PIVKA-II after controlling for GGCX R325Q and VKORC1 1173 A>G
genotypes and the other covariates, similar to what was observed in the univariate analysis.

Discussion

In the first part of this study, we evaluated whether high dietary ω3 PUFA intake in Yup’ik

people, as indicated by larger δ15N values, might contribute to bleeding diathesis. We observed

Table 3. Relationship between plasma VK1 and CYP4F2, GGCX, and VKORC1 genotypes.

Group N VK1 (ng/mL)

Mean ± S.D. Median (IQR)

All 185 0.45 ± 0.39 0.33 (0.32)

CYP4F2*3

*1/*1 49 0.39 ± 0.34 0.30 (0.34)

*1/*3 87 0.38 ± 0.25 0.30 (0.27)

*3/*3 49 0.61 ± 0.57 0.42 (0.43)

GGCX R325Q

CC 42 0.42 ± 0.30 0.31 (0.30)

CT 98 0.50 ± 0.47 0.34 (0.39)

TT 45 0.35 ± 0.23 0.27 (0.28)

VKORC1 1173 A>G

AA 128 0.44 ± 0.34 0.35 (0.35)

AG 48 0.40 ± 0.35 0.30 (0.28)

GG 9 0.75 ± 0.88 0.32 (0.54)

https://doi.org/10.1371/journal.pone.0173616.t003

Table 4. Association of plasma vitamin K with CYP4F2, GGCX and VKORC1 genotypes.

Unadjusted Adjusted

Genotype N β Coefficient

(95% CI)

P-value R2 β Coefficient

(95% CI)

P-value R2

CYP4F2*3 185 0.205

(0.073, 0.336)

0.002 0.049 0.191

(0.058, 0.324)

0.005 0.067

GGCX R325Q -0.083

(-0.225, 0.060)

0.253 0.007 -0.079

(-0.221, 0.063)

0.276 0.032

VKORC1 1173 A>G -0.004

(-0.176, 0.167)

0.960 <0.001 -0.017

(-0.189, 0.154)

0.841 0.026

The significance level was set at P<0.05, denoted in bold.

Statistical estimates are presented before (upper) and after (lower) adjustment for age, sex and geographical status.

https://doi.org/10.1371/journal.pone.0173616.t004
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Fig 5. Frequency distribution of plasma PIVKA-II (N = 682). 36.2% of samples had PIVKA-II concentrations equal to or above 2.0 ng/mL.

Two values not included were outliers with plasma levels of 1618 and 1708 ng/mL.

https://doi.org/10.1371/journal.pone.0173616.g005

Table 5. Effect of CYP4F2, GGCX and VKORC1 genotype on plasma PIVKA-II.

Group Sample Size % with PIVKA-II�2.0 ng/mL

All 682 36.2

CYP4F2*3

*1/*1 185 42.7

*1/*3 329 35.3

*3/*3 168 31.0

GGCX R325Q

CC 164 37.2

CT 354 36.5

TT 164 33.1

VKORC1 1173 A>G

AA 433 37.2

AG 199 35.7

GG 50 30.0

Data are from samples that had complete information on genotype status (excluding no calls) and PIVKA-II

analysis that passed quality control standards.

https://doi.org/10.1371/journal.pone.0173616.t005
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that δ15N was inversely associated with the platelet biomarker, sP-selectin. The inverse associa-

tion between sP-selectin and the δ15N value supports the contention that a platelet inhibition

effect is promoted by higher consumption of ω3 PUFAs. Some studies have reported that sP-

selectin decreases only after high doses of ω3 PUFA supplements are consumed [24, 25]. Our

data suggest that increasing ω3 PUFA intake from a natural diet is inversely associated with

platelet activity, although a direct analysis of platelet aggregation and function in a more con-

trolled setting is warranted. In contrast, we observed no significant association between factor

II, factor V or fibrinogen and δ15N. Furthermore, we did not find evidence that higher δ15N

values prolonged PT, INR, or PTT. Therefore, the most likely mechanism for a bleeding diath-

esis in our study population is through the selective inhibitory effects of ω3 PUFAs on platelet

activity. It would be of interest to determine if this association is any different for patients on

anticoagulant or antithrombotic therapy.

A second focus of our study was to evaluate vitamin K status in this population and deter-

mine whether this was associated with common vitamin K cycle polymorphisms; CYP4F2�3,

GGCX R325Q, and VKORC1 1173 G>A genotypes. Notably, a little over one-third of our study

population exhibited high PIVKA-II levels—indicative of low vitamin K status—however,

only CYP4F2�3 genotype was a statistically significant factor affecting both PIVKA-II levels

and plasma vitamin K. CYP4F2 is a ω-hydroxylase for VK1 and menaquinone-4 and variation

in the CYP4F2 gene, specifically CYP4F2�3, is associated, in most populations studied, with a

higher warfarin dose requirement of approximately 1 mg/day [26, 27]. The finding that

Table 6. Multivariate association analysis of PIVKA-II status and CYP4F2*3, GGCX R325Q, and

VKORC1-1173 A>G genotypes.

Genotype

(Covariate)

Odds Ratio P-value 95% CI

CYP4F2*3 0.741 0.009 0.591–0.929

(Age) 0.996 0.446 0.988–1.01

(Sex) 0.650 0.008 0.472–0.895

(Geographic Status) 0.735 0.061 0.532–1.01

Genotype

(Covariate)

Odds Ratio P-value 95% CI

GGCX R325Q 0.916 0.449 0.729–1.15

(Age) 0.996 0.346 0.987–1.00

(Sex) 0.654 0.009 0.475–0.900

(Geographic Status) 0.798 0.161 0.582–1.09

Genotype

(Covariate)

Odds Ratio P-value 95% CI

VKORC1 1173 A>G 0.862 0.258 0.667–1.13

(Age) 0.996 0.350 0.987–1.00

(Sex) 0.659 0.010 0.479–0.906

(Geographic Status) 0.777 0.120 0.565–1.07

Odd ratios and 95% confidence intervals (CI) for plasma PIVKA-II�2.0 ng/ml (PIVKA-II status)) compared

to participants with PIVKA-II levels <2.0 ng/ml are shown for multivariate logistic regression analysis of

CYP4F2*3, GGCX R325Q, and VKORC1 1173 A>G genotypes with age, sex, and geographic location as

covariates.

Odds ratios that are significantly different from 1 at the 0.05 significance level have P-values shown in bold.

The reference group for sex and geographical status was male and inland, respectively.

The reference group for the three genotypes were CYP4F2*1, GGCX R325 and VKORC1 1173A. Age was

a continuous variable.

https://doi.org/10.1371/journal.pone.0173616.t006
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CYP4F2�3 genotype positively associates with plasma VK1 concentrations and that these levels

are increased in study participants carrying the �3/�3 genotype relative to �1/�3 and �1/�1 are

consistent with the idea that CYP4F2�3 may help conserve vitamin K in the liver by slowing its

hepatic metabolism [27]. The CYP4F2�3 allele results in a lower hepatic concentration of the

variant enzyme, relative to wild-type, which is the basis for its reduced catalytic function [27].

Two other recent genetic studies help substantiate a role for CYP4F2 in vitamin K disposition

in vivo [28, 29]. CYP4F2�3 genotype also influences α-tocopherol (vitamin E) levels in plasma

[30]. Therefore, in the aggregate, these data are suggestive of a broad role for CYP4F2�3 geno-

type in the disposition of some fat-soluble vitamins.

The potential of the CYP4F2�3 allele to maintain higher levels of VK1 in plasma may have

an impact on chronic hepatic vitamin K status. Both plasma vitamin K and PIKVA-II are

influenced by dietary vitamin K intake, but PIVKA-II is a more commonly measured bio-

marker of vitamin K status due to its longer half-life relative to serum VK1 [31–34]. Data from

our logistic regression model suggest that the CYP4F2�3 allele reduces the likelihood of having

low vitamin K status, and this effect was most evident in the �3/�3 homozygotes. Similar to our

results for plasma VK1, PIVKA-II levels were not influenced by GGCX R325Q or VKORC1
1173 G>A polymorphisms. However, these latter findings for VKORC1 may reflect the low

sample numbers in the variant genotype groups, where we calculated power to be only 17% to

detect a significant odds ratio. Future studies investigating the relationship between VKORC1
1173 G>A and vitamin K status will require a much larger number of Yup’ik individuals with

the minor GG genotype to have adequate power to detect an association.

Another limitation of this study is that platelet activation and blood coagulation assays

could not be performed at the time of sample collection due to the unavailability of clinical

laboratories in the rural Alaska communities where study participants were recruited. How-

ever, this is an unavoidable aspect of research ‘in the field’ and because all samples were pro-

cessed in an identical manner prior to analysis, inter-sample variability should have been

minimized. It should also be noted that sP-selectin and the δ15N value are biomarkers for

platelet activity and EPA/DHA levels, respectively, and that any associations obtained using

these parameters are indirectly inferred. Nonetheless, both biomarkers have been validated

by other researchers, so we have confidence in the robustness of the associations observed in

this study. Finally, because our study design was cross-sectional, we were not able to estab-

lish causality.

In summary, we found that δ15N values are highly correlated with the platelet biomarker

sP-selectin in Yup’ik people living in the Yukon-Kuskokwim delta. EPA/DHA derived from a

traditional marine diet may blunt platelet activation and reduce the risk of cardiovascular and/

or inflammatory disease states, which has been reported for other studies [35–37]. Our data

also indicate that the CYP4F2�3 polymorphism is associated with both acute and long-term

variation in vitamin K status. Specifically, high frequency of the CYP4F2�3 allele observed in

Yup’ik people is consistent with the hypothesis that preservation of this low activity, vitamin K

hydroxylase allele could be a mechanism to safeguard against low vitamin K status. This could

reduce the risk of a hypocoagulative state in an environment with less dietary availability of

vitamin K (i.e. limited commercial availability of green vegetables). While this may play a less

significant role today, given a dietary shift to include more commercial market foods, our find-

ings are likely still to be important pharmacogenetic considerations when prescribing antico-

agulant medications and treating chronic disease in this population of Alaska Native peoples.
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