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Abstract

Ventilation of preterm neonates causes pulmonary inflammation that can contribute to lung

injury, propagate systemically and result in long-term disease. Modulation of this initial

response may reduce lung injury and its sequelae. We aimed to determine the effect of

human amnion epithelial cells (hAECs) on immune activation and lung injury in preterm neo-

natal lambs. Preterm lambs received intratracheal hAECs (90x106) or vehicle, prior to 2 h of

mechanical ventilation. Within 5 min of ventilation onset, lambs also received intravenous

hAECs (90x106) or vehicle. Lung histology, bronchoalveolar lavage (BAL) cell phenotypes,

and cytokine profiles were examined after 2 h of ventilation, and in unventilated controls.

Histological indices of lung injury were higher than control, in vehicle-treated ventilated

lambs but not in hAEC-treated ventilated lambs. Ventilation-induced pulmonary leukocyte

recruitment was greater in hAEC-treated lambs than in vehicle-treated lambs. Lung IL-1β
and IL-6 mRNA expression was higher in vehicle- and hAEC-treated ventilated lambs than

in controls but IL-8 mRNA levels were greater than control only in vehicle-treated ventilated

lambs. Numbers of CD44+ and CD21+ lymphocytes and macrophages from the lungs were

altered in vehicle- and hAEC-treated ventilated lambs. Numbers of CD8+ macrophages

were lower in hAEC-treated ventilated lambs than in vehicle-treated ventilated lambs. Indi-

ces of systemic inflammation were not different between vehicle- and hAEC-treated lambs.

Human amnion epithelial cells modulate the pulmonary inflammatory response to ventilation

in preterm lambs, and reduce acute lung injury. Immunomodulatory effects of hAECs reduce

lung injury in preterm neonates and may protect against longer-term respiratory disease.

Introduction

Assisted or mechanical ventilation at birth is required by about 1 in 10 neonates [1], and is

often provided in the form of intermittent positive pressure ventilation [2]. Such ventilation,

while needed, causes inadvertent lung injury and long-term respiratory disease in some babies

[3]. Such injury may contribute to development of bronchopulmonary dysplasia (BPD) [4].
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Mechanical ventilation can result in airway inflammation and elevated pulmonary mRNA

expression of inflammatory mediators, including serum amyloid A3 (SAA-3), interleukin

(IL)-1β and IL-6, within 1 h of ventilation [5, 6]. Activation of circulating CD4+ and CD8+ T

cells occurs in preterm infants with BPD [7], however, the absolute lymphocyte number is

decreased, owing to a decrease in circulating CD4+ cells [8]. This initial inflammatory response

to ventilation may influence development of lung injury [9, 10]. Prevention or attenuation of

early detrimental responses to mechanical ventilation, through immunomodulation, may

therefore reduce the risk of development of BPD [11].

One potential immunomodulatory therapy for BPD is administration of stem cell–like

human amnion epithelial cells (hAECs). Epithelial cells of the amnion can differentiate into

ectodermal, mesodermal and endodermal lineages [12–14], and into lung epithelial–like cells

in vitro [15, 16] and in vivo [17]. Administration of hAECs reduces inflammatory gene expres-

sion in lung tissue and prevent inflammation-induced changes in fetal lung development

induced by either intra-amniotic injection of lipopolysaccharide [18] or a 12-h period of

mechanical ventilation in utero [17] in sheep. Human AECs can also moderate abnormal lung

development in hyperoxic neonatal mice [19], but their ability to influence ventilation-induced

lung inflammation and injury in neonates has not been examined.

We hypothesised that administration of hAECs to ventilated preterm lambs would reduce

lung injury, and pulmonary and systemic inflammatory responses.

Materials and methods

Human amnion epithelial cell isolation and preparation

Human procedures (including the consent process) were approved by the Monash Health

Human Research and Ethics Committee (ref #: MUHREC-CF13/2144-2013001109). Placentae

were obtained from women with uncomplicated pregnancies who provided written consent

before elective caesarean section at term (37–40 weeks). Amnion epithelial cells were isolated

as previously described [20]. Cell counts and viability were assessed by trypan blue exclusion

prior to and after cryopreservation. For treatment of preterm lambs, hAECs from three donors

were thawed and combined, washed, counted and assessed for viability, then resuspended at

30x106 cells/ml in sterile phosphate-buffered saline (PBS) for administration.

Animal experiments

Animal experimentation was approved by the relevant Monash University Animal Ethics

Committee (ref #: MMCA/2012/10).

Experimental animals were obtained from a timed mating program managed by the Mon-

ash Animal Research Platform, Monash University. They were transported from an open filed

environment to indoor housing (12 h light/dark cycle) in individual pens at least 1 week before

any experimental intervention. Ewes remained in constant visual contact of other sheep, had

continual access to water and were fed a pelleted diet, supplemented with chaff and/or lucerne

hay, twice daily.

For the laparotomy procedure, ewes bearing twins at 126 ± 1 (mean ± SD) days of gestation

(term ~147 days) were anaesthetised (2% isoflurane in O2, delivered by positive-pressure ven-

tilation, after induction by IV injection of 20mg/kg sodium thiopentone). A surgical monitor

(Surgivet Advisor, Smiths Medical, MA, USA) was used for continual monitoring of ewes’

ECG, heart rate, O2 saturation (by pulse oximetry) and end-tidal CO2. A protocol was in place

for an escalating series of interventions should there be deterioration in any of these physiolog-

ical indices of wellbeing (culminating in immediate euthanasia for severe respiratory or car-

diovascular crisis); however all ewes remained well throughout the procedure.
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A laparotomy was performed, the fetus was exposed and the trachea orally intubated (using

a cuffed 4.0-mm endotracheal tube), excess lung liquid was drained. A pulse oximeter probe

(Masimo, Irvine, CA, USA) was placed on the right forelimb. The fetus then received an intra-

tracheal infusion of 90x106 hAECs (in 3 ml PBS) or vehicle (3ml PBS) and the endotracheal

tube was clamped until ventilation onset.

The umbilical cord was clamped and cut. The ewe was immediately killed (by IV injection of

5g pentobarbitone) while anaesthetised. The lamb was weighed, dried and placed in a supine

position on an infant warmer (Fisher and Paykel Healthcare, Auckland, New Zealand). Each

lamb was connected to a mechanical ventilator (Babylog 8000+ ventilator; Dräger, Lübeck, Ger-

many) for ventilation with warmed (37˚C) humidified gas with an initial FiO2 of 0.21, a rate of

60 breaths/min and an inspiratory time of 0.3 sec. Peak inflation pressure (PIP) was adjusted to

target a tidal volume (VT) of 15 ml/kg for 15 min without positive end-expiratory pressure

(PEEP), but was limited to 45 cmH2O. This ventilation regimen was chosen to induce injury

[21], so surfactant was not administered in order not to confound the experimental approach.

The umbilical vein was catheterised for intravenous administration of 90x106 hAECs (in 3

ml PBS) or vehicle (3 ml PBS) within 5 min of delivery, and subsequent infusion of alfaxan

(rate of 5–15 mg/kg/h; CenVet, Lynbrook, VIC, Australia) for sedation. We showed previously

that combined intratracheal and intravenous administration of 90x106 hAECs (via each route)

was most effective for modulation of the fetal pulmonary response to intrauterine inflamma-

tion [18]. The umbilical artery was catheterised to continually record arterial pressure and

heart rate (DTX Plus Transducer; Becton Dickinson, Singapore: Powerlab; ADInstruments,

Castle Hill, NSW, Australia), and for intermittent blood sampling. A pulse oximeter (Masimo,

Irvine, CA, USA) was attached to the right forelimb (after removal of hair using small animal

clippers) for continual measurement of transcutaneous O2 saturation (SpO2).

Following the initial 15-min ventilation period lambs were ventilated, targeting a VT of 7

ml/kg, for a further 1 h and 45 min, with 4 cmH2O PEEP. Arterial blood gases were measured

at 5-min intervals for the first 15 min, followed by 15-min intervals until completion of the

experiment at 2 h (ABL30, Radiometer, Copenhagen, Denmark). The inspired O2 content was

titrated to maintain arterial O2 saturation (SaO2) between 88–95%. A protocol was in place for

immediate euthanasia should lambs’ respiratory or cardiovascular status deteriorate suffi-

ciently but physiological variables for all lambs remained within acceptable ranges: no lamb

died or required euthanasia before the end of the 2-h ventilation period.

At the completion of the 2-h ventilation period a final blood sample was then collected for

analysis of blood leukocyte phenotype, plasma cytokines, and for T cell proliferation assays.

Lambs were killed, with IV pentobarbitone (100 mg/kg; Lethabarb, Virbac Pty Ltd, Australia),

for tissue collection. In addition, tissues were collected from unventilated ‘control’ lambs

immediately after delivery. These control lambs did not breathe before they were humanely

killed as described above.

Ventilatory and blood pressure analysis

Physiological variables were recorded and analysed using LabChart (ADInstruments). Heart

rate (HR), peripheral oxygen saturation (SpO2), mean arterial blood pressure (MAP), VT (ml/kg

body weight), PIP and PEEP were averaged over 10-s epochs at 5, 10, 15, 30, 45, 60, 75, 105 and

120 min. Lung compliance was calculated: Compliance (ml/cmH2O/kg) = (VT)/(PIP-PEEP).

Tissue analysis

Bronchoalveolar lavage (BAL) fluid collected at post mortem [22], was centrifuged to collect

cells for phenotypic analysis by flow cytometry (FACS). The right cranial lung lobe was fixed
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at 20 cmH2O with 4% paraformaldehyde (PFA) and processed for light microscopic analyses.

Lung tissue was sectioned at 5 μm and stained with haematoxylin and eosin. A total of 15 ran-

dom high-power fields were scored using an established scale [23] for assessment of airway

wall thickness, haemorrhage and epithelial sloughing by an investigator blinded to experimen-

tal group. Tissue sections were immunostained to count CD45+ cells (MCA2220PE, AbD Sero-

tec, UK), as previously described [24].

Separate lung sections were used to identify cells producing IL-8. These underwent antigen

retrieval by heating in 0.01M sodium citrate (pH = 6) in a microwave oven (900W) until

simmering, then power output was gradually reduced over 7 min. Sections were cooled,

endogenous peroxidase was blocked (0.6% H2O2 in distilled H2O for 20 min) and non-specific

binding blocked by incubation in 10% normal goat serum/2% bovine serum albumin (BSA)

for 30 min. Slides were incubated with an antibody to ovine IL-8 (mouse anti-ovine IL-8, AbD

Serotec MCA1660, clone 8M6, diluted 1:4000 in Dako S0809 antibody diluent) overnight at

4˚C, washed (0.1% Tween20 in TBS, 3 x 5-min) and incubated with goat anti-mouse IgG

(1:500 in Dako S0809 antibody diluent) for 60 min. Sections were washed before incubation in

ABC complex (Vectastain ABC kit; Vector Laboratories) for 45 min. Sections were washed

and immunostaining was visualized by incubation with 3,3-diaminobenzidine. Sections were

counterstained with hematoxylin. Images from 20 non-overlapping fields (400 x 400 μm)

from each section were captured at 20x magnification with Aperio software. Quantification of

IL-8 immunohistochemistry was performed using Image-Pro Plus (Media Cybernetics). For

each field of view, the number of IL-8+ cells was counted, and a mean for each animal was

calculated.

The right middle lobe was placed into ice-cold RPMI-10 media (RPMI supplemented with

10% FBS and 1% penicillin/ streptomycin; Life Technologies) for quantification of immune

cells by FACS as detailed previously [25]. Samples of spleen and posterior mediastinal lymph

node (PMLN) were also collected in RPMI-10 for cell quantification by FACS, and for T cell

isolation for proliferation assays. Sections of the right caudal lung lobe were frozen in liquid

N2 and stored at -80˚C until required for quantitative real-time polymerase chain reaction

(qRT-PCR) analysis.

Blood sampling and leukocyte isolation

Blood was collected into heparinised tubes. Plasma and cells were separated by centrifugation.

Plasma was frozen at -80˚C, and buffy coat cells (leukocytes) collected for T cell proliferation

assays [26]. For spleen, PMLN and lung, single-cell leukocyte suspensions were obtained by

dissociating whole tissue through a 70-μm cell strainer (BD Biosciences, CA, USA) in complete

RPMI-1640; red blood cells were lysed (lysis buffer; 155mM NH4Cl, 10mM KHCO3, 0.1mM

EDTA) and cell number and viability assessed by trypan blue exclusion.

Proliferation assays

Cells from PMLN, spleen and blood were seeded in triplicate in 96-well plates (2.5x105/well)

in complete RPMI-1640 medium alone or in the presence of PMA (Phorbol 12-myristate

13-acetate, 20 pg/ml; Sigma-Aldrich, USA) and ionomycin (I; 800 ng/ml; Sigma-Aldrich).

Cells were incubated at 37˚C for 96 h, followed by addition of 1 μCi/well of [3H]-thymidine

(Perkin Elmer, Waltham, MA, USA) for a further 18 h. Cells were harvested onto glass-fibre

filter mats (Perkin Elmer) and incorporated radioactive nucleic acids counts performed using

a Top Count Harvester (Packard Biosciences, CT, USA), and stimulation index (SI; 3[H]-thy-

midine uptake in stimulated cells relative to media alone) calculated.

Amnion epithelial cell therapy in ventilated preterm lambs
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Flow cytometry

BAL cells were stained using single-colour immunofluorescence and analysed on a FACS-

Canto II flow cytometer (BD Biosciences). Macrophage and lymphocyte populations were

gated on forward and side scatter followed by analysis of the fluorescent staining profile [25].

Briefly, cells were incubated with mouse anti-ovine monoclonal antibodies against sheep cell

surface molecules CD4, CD8, CD21, CD25, CD44, MHC II and 86D (γδ-T cell), using anti-

bodies detailed elsewhere [25], for 20 min at 4˚C and washed with PBS containing 1% BSA,

followed by incubation with a fluorescein-conjugated secondary antibody (goat anti-mouse

IgG; AlexaFluor 647, Invitrogen) for 20 min at 4˚C. Cells were washed again, fixed with 4%

PFA prior to acquisition, and analysed using FlowJo software (TreeStar Inc, Ashland, OR,

USA).

Plasma cytokine ELISA

Plasma cytokines were measured by enzyme-linked immunosorbent assay (ELISA), as detailed

elsewhere [27, 28]. Briefly, 96-well flat-bottom plates (Nunc) were coated with antibody spe-

cific for IL-6 (mouse anti-ovine IL-6; 4B6, Epitope Technologies), IL-10 (mouse anti-bovine

IL-10; CC318, Serotec) and TNF (mouse anti-ovine TNF; in-house) and incubated with

plasma (diluted 1:1 in PBS/1% BSA/0.05% Tween 20) for 1 h at room temperature. After wash-

ing, detecting antibodies for IL-6 (polyclonal rabbit anti-ovine IL-6; in-house), IL-10 (biotiny-

lated mouse anti-bovine IL-10; CC320, Serotec) or TNF (polyclonal rabbit anti-ovine TNF; in-

house) were added for 1 h at room temperature prior to incubation with horseradish peroxi-

dase (HRP)-conjugated swine anti-rabbit immunoglobulin (Ig, Dako) for IL-6 and TNF, or

streptavidin-HRP conjugated Ig (Dako) for IL-10, for 1 h at room temperature. After further

washing, plates were incubated with tetramethylbenzidine substrate solution (TMB, Invitro-

gen) for 15–20 min in the dark at room temperature. Reactions were stopped with the addition

of 2M H2SO4 and optical density (OD450) read (Benchmark PlusTM Microplate reader; BioRad,

CA, USA). Recombinant ovine IL-6 (in-house), bovine IL-10 (G. Entrican, Moredun, Scot-

land) and ovine TNF (in-house) were used for standard curves [27].

Quantitative real-time PCR (qRT-PCR)

Messenger RNA for ovine IL-1β, IL-6, IL-8, connective tissue growth factor (CTGF), early

growth response protein 1 (EGR1) and cysteine-rich angiogenic inducer 61 (CYR61) were

measured in lung tissue. Messenger RNA (mRNA) for serum amyloid A-3 (SAA-3), C-reactive

protein (CRP) and hepcidin were measured in liver tissue. RNA was isolated using an extrac-

tion kit (RNeasy maxi (lung) or midi (liver) kit; Qiagen, VIC, Australia) as per manufacturer’s

instructions. Complementary DNA was transcribed using the Superscript III reverse transcrip-

tion kit (Life Technologies) as per manufacturer’s instructions. Relative gene expression was

quantified by qRT-PCR using the housekeeping gene 18S and ΔCt method of analysis. Data

are expressed as relative change from the mean level in the unventilated control group.

Statistical analyses

Data were analysed using one-way ANOVA and Bonferroni post hoc analysis, or Kruskal-Wal-

lis ANOVA on ranks and Dunn’s post hoc test, to compare unventilated control, and vehicle-

or hAEC-treated ventilated groups. When comparing serial data between vehicle- and hAEC-

treated groups, a two-way repeated measures ANOVA with Holm-Sidak post hoc analysis was

used. Where raw data were not normally distributed, they were transformed to achieve nor-

mality for analysis. Data were analysed using SPSS v20 statistical analysis software (IBM,

Amnion epithelial cell therapy in ventilated preterm lambs
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Armonk, NY, USA) or GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA). Data

are expressed as mean ± standard error of the mean (SEM).

Results

Measurements at birth and responses to ventilation

Numbers of lambs in each group, fetal arterial blood gas status, birth weight and ratio of males

to females were similar between groups (Table 1).

Over the 2 h ventilation period there were no differences in blood gas parameters (pH,

PaCO2, PaO2 and SaO2) between vehicle- and hAEC-treated groups (Fig 1A–1D). Heart rate

(Fig 2A) was lower at 120 min than at other times after the onset of ventilation (p< 0.001) in

all lambs. SpO2, tidal volume, PIP and MAP were not different between vehicle- and hAEC-

treated ventilated lambs (Fig 2B–2E). Lung compliance in hAEC-treated lambs tended lower

than in vehicle-treated lambs (p = 0.08; Fig 2F).

Table 1. Birth characteristics and arterial blood gas values.

Control Vehicle-treated hAEC-treated

Male:Female (n) 4:6 3:7 3:5

Birth weight (kg) 3.46 ± 0.39 3.45 ± 0.52 3.33 ± 0.36

pHa 7.35 ± 0.03 7.34 ± 0.06 7.30 ± 0.06

PaCO2 (mmHg). 48.0 ± 6.2 46.1 ± 10.4 56.1 ± 7.0

PaO2 (mmHg). 31.3 ± 13.5 32.5 ± 8.4 31.5 ± 3.0

SaO2 (%) 75.6 ± 23.4 82.9 ± 11.4 72.9 ± 6.5

Data are mean ± SEM. pHa: arterial pH. PaCO2: pressure of arterial carbon dioxide. PaO2: pressure of arterial oxygen. SO2: arterial oxygen saturation.

https://doi.org/10.1371/journal.pone.0173572.t001

Fig 1. Blood gas measurements. Arterial pH (pHa; A), Partial pressure of carbon dioxide (PaCO2; B) and

oxygen (PaO2; C), and arterial oxygen saturation (SaO2; D) of vehicle- (open circles; n = 10) and hAEC-

treated (closed circles; n = 7) lambs over 2 h of ventilation. Dotted line represents end of injurious ventilation.

Data are mean ± SEM.

https://doi.org/10.1371/journal.pone.0173572.g001
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Umbilical arterial plasma concentrations of TNF, IL-6 and IL-10 were comparable between

control, vehicle- and hAEC-treated groups before ventilation (TNF and IL-6 data shown in S1

Table). Plasma IL-10 levels at the end of the 2-h ventilation period were higher than before

ventilation in the vehicle- and hAEC-treated groups (p<0.001; Fig 3); values tended higher in

hAEC-treated lambs than in the vehicle-treated group. Plasma TNF and IL-6 concentrations

Fig 2. Physiological parameters during ventilation. Heart rate (A), mean arterial pressure (B), peripheral

oxygen saturation (C), tidal volume (D), peak inspiratory pressure (PIP; E) and dynamic respiratory system

compliance (F) of vehicle- (open circles; n = 10) and hAEC-treated lambs (closed circles; n = 7). Dotted line

represents end of injurious ventilation. Data are mean ± SEM.

https://doi.org/10.1371/journal.pone.0173572.g002

Fig 3. Plasma IL-10 concentrations of unventilated control lambs (grey bars; n = 6), and vehicle-

(n = 5) and hAEC-treated (n = 6) ventilated lambs (before and after ventilation). P value refers to

comparison with groups indicated by lines. Data are mean ± SEM biological units (BU)/ml (where one BU of

ovine IL-10 shows 50% inhibition of IFNγ production in blood cell cultures [29]).

https://doi.org/10.1371/journal.pone.0173572.g003
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were not altered by ventilation, and were not different between vehicle- and hAEC-treated

groups.

Characterization of immune cells in BAL

Immune cell proportions from BAL samples are shown in Fig 4. The proportion of CD8+ mac-

rophages from BAL was higher in vehicle-treated lambs than in hAEC-treated lambs (Fig 4B).

Proportions of CD21+ lymphocytes and macrophages in BAL were higher in vehicle-treated

lambs than in unventilated controls; the proportion of CD21+ lymphocytes (B cells), but not

macrophages, was higher than control in hAEC-treated lambs (Fig 4C). The percentage of

total CD44+ cells in BAL, as well as CD44+ lymphocytes and macrophages, was greater than

control in vehicle- and hAEC-treated lambs, with values tending higher in the hAECs group

(Fig 4G). Proportions of CD4+ (Fig 4A), gamma delta+ (γδ+ T cell subpopulation; Fig 4D),

CD25+ (T cells expressing the IL-2 receptor, a marker of T cell activation; Fig 4E) or MHC II+

(Fig 4F) cells in BAL were not different between groups.

Lung inflammatory gene expression

Levels of mRNA for IL-1β (Fig 5A) and IL-6 (Fig 5B) were higher than control in lung tissue from

vehicle- (p = 0.049 and p = 0.020 respectively) and from hAEC-treated lambs (p< 0.008 and

p = 0.029 respectively), but were not different between these 2 ventilated groups. IL-8 mRNA lev-

els (Fig 6A) were higher than control in vehicle-treated lambs (p = 0.006), but not in hAEC-

treated lambs. Levels of mRNA for early lung injury response genes CYR61 (Fig 5C) and EGR1

(Fig 5D) were higher than control in vehicle-treated (p = 0.010 and p = 0.013 respectively) and in

hAEC-treated lambs (p = 0.028, and p = 0.023 respectively); there was no difference in these

parameters between ventilated groups. Levels of mRNA for CTGF were not significantly different

between groups (control, 1.0 ± 0.13; vehicle-treated, 6.7 ± 2.8; hAEC-treated, 8.3 ± 7.9).

Lung histology and immunohistochemistry

Alveolar wall thickness (p = 0.013; Fig 7A), haemorrhage (p = 0.017; Fig 7B), and epithelial

sloughing (p = 0.003; Fig 7C) scores were higher in vehicle-treated lambs than in unventilated

Fig 4. Cell phenotypes in bronchoalveolar lavage fluid samples. CD4+ (A), CD8+ (B), CD21+ (C),

γδ+ (D), CD25+ (E), CLII+ (F) and CD44+ expression of total BAL cells (white bars), lymphocytes (light grey),

macrophages (dark grey) and granulocytes (black bars; panel F only) of control (n = 6), vehicle- (n = 5) and

hAEC-treated ventilated lambs (n = 6). #p < 0.05 vs. same cell type in vehicle-treated ventilated group,
##p < 0.01 vs. same cell type in vehicle-treated ventilated group, ** p < 0.01 vs. same cell type in control

group. Data are mean ± SEM.

https://doi.org/10.1371/journal.pone.0173572.g004
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control lambs: scores in hAEC-treated lambs were intermediate between control and vehicle-

treated groups.

The numbers of CD45+ cells in the parenchyma of the right upper lung lobe examined were

higher in hAEC-treated lambs than in vehicle-treated lambs (p = 0.008; Fig 7D). Numbers of

CD45+ cells in lung tissue from vehicle-treated lambs were intermediate.

Numbers of IL-8+ cells were higher in vehicle- and hAEC-treated lambs than in unventi-

lated controls (p = 0.03 and p = 0.004, respectively) but were not different between ventilated

groups (Fig 6B).

Systemic indices of inflammation and immune activation

Hepatic levels of mRNA for SAA-3 were approximately 7-fold higher in vehicle-treated lambs

than in unventilated controls and 12-fold higher than in controls in hAEC-treated lambs

(p = 0.06 and p = 0.033 respectively; data not shown), but there was no difference between

Fig 5. Lung tissue mRNA levels of IL-1β (A), IL-6 (B), CYR61 (C) and EGR1 (D) in lung tissue from

unventilated control lambs (grey bars; n = 5), and vehicle- (white bars; n = 6) and hAEC-treated (black bars;

n = 4) lambs. Data were analysed by one-way ANOVA with bonferroni post hoc analysis: P values relate to

comparisons with the control group. Data are mean ± SEM.

https://doi.org/10.1371/journal.pone.0173572.g005

Fig 6. Interleukin (IL)-8 gene and protein expression. Messenger RNA (mRNA) levels (relative to control;

A) and numbers of IL-8 immunostained cells in lung tissue from unventilated controls (grey bars; n = 8), and

vehicle- (white bars; n = 7) and hAEC-treated (black bars; n = 6) lambs. P values relate to comparisons with

the control group. Data are mean ± SEM.

https://doi.org/10.1371/journal.pone.0173572.g006
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ventilated groups. Hepatic hepcidin and CRP mRNA levels were not different between the 3

groups of lambs (data not shown).

There was no difference in T cell proliferative responses in cells isolated from PMLN, spleen

or blood between the 3 groups of lambs (data shown in S2 Table).

Discussion

Administration of human amnion epithelial cells modulated the acute lung injury and inflam-

matory response to mechanical ventilation in preterm newborn lambs. This is the first such

study in newborn lambs. Our findings extend our previous reports showing that hAECs can

moderate in utero lung inflammation and tissue remodelling caused by in utero ventilation

(21) or intra-amniotic LPS injection [18] in fetal sheep, and demonstrate immunomodulation

by hAECs newborn preterm lambs in vivo.

Although total immune (CD45+) cell counts were elevated by hAEC administration, histolog-

ical indices of lung injury were not different between hAEC-treated lambs and unventilated con-

trols, suggesting that recruited CD45+ cells did not cause significant damage to the lungs (at least

over the period of our study). The greater infiltration of CD45+ cells into the lungs of hAEC-

treated lambs is consistent with our observations of the lungs of fetal sheep exposed to LPS in
utero [18]. These observations suggest that hAECs augment inflammatory cell recruitment in

response to lung inflammation and injury. We consider these cells are unlikely to be neutrophils

because IL-8 was not elevated, as would be a typical response to neutrophilic infiltration [30, 31].

The reduction in IL-8 mRNA in lung tissue in lambs treated with hAECs likely reflects the in-

creased recruitment of CD45+ cells, with the number of IL-8 producing cells remaining constant.

The greater number of CD45+ cells in the lungs of hAEC-treated lambs may reflect an

increased recruitment of regulatory T cells (Tregs), consistent with observations in hAEC-

treated mice following bleomycin-induced lung injury [32]. Indeed, Tregs are critical for

Fig 7. Histological assessments of lung injury. Alveolar wall thickness (A), haemorrhage (B), epithelial

sloughing (C), and CD45+ cell counts (D) in lung tissue from unventilated controls (grey bars; n = 5), and

vehicle- (white bars; n = 8) and hAEC-treated (black bars; n = 6) lambs. P values relate to comparisons with

the control group. Data are mean ± SEM.

https://doi.org/10.1371/journal.pone.0173572.g007
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hAEC-induced polarisation of macrophages from an M1 to a reparative M2 type phenotype in

adult mice with bleomycin-induced lung injury, and a resultant mitigation of lung fibrosis

[32]. The anti-inflammatory cytokine IL-10 (we found that endogenous levels tended to be

elevated in plasma of hAEC-treated lambs) also plays a role in alternative activation of M2

macrophages [33]. The limited availability of sheep-specific reagents precluded more detailed

immune analyses of the neutrophil, M1/M2 macrophage and Treg populations in the lungs of

hAEC-treated lambs. Nonetheless, we consider modulation of the local inflammatory response

is the most likely mechanism through which hAECs are protective against acute and longer-

term lung injury, rather than through reparation dependent on hAEC engraftment, as has

been shown in previous studies [17, 18, 34].

We observed hAEC-induced immunomodulation in the lungs of ventilated lambs. CD44 is

an adhesion molecule involved in cell-matrix interactions and immune cell trafficking that

plays an important role in repair; as demonstrated in a mouse lung inflammation model [35,

36]. In our study, the increase in CD44 expression on BAL cells collected from all ventilated

lambs indicates rapid activation of mechanisms for resolution of tissue damage caused during

ventilation. Ventilation also resulted in a significant increase in the percentage of CD21+ B

lymphocytes (CD21 is also known as complement receptor type 2, and is expressed on a sub-

population of B cells in sheep), and both CD8+ and CD21+ macrophages, which was not

observed in BAL collections from the hAEC-treated lambs. CD8 expression by alveolar macro-

phages [37] and macrophages involved in traumatic tissue responses [38] has been reported

previously, and is linked to a pro-inflammatory pathway of macrophage activation involving

TNF and IL-1 cytokine secretion [39]. CD21 is commonly expressed by interdigitating den-

dritic cells within lymph nodes [40], although expression has also been found on airway den-

dritic cells in sheep [41]. The decrease in BAL cell CD8 and CD21 expression by hAECs

demonstrates modulation of airway inflammation in ventilated lambs. Our observations are in

agreement with a recent study showing mesenchymal stem cell (MSC)-mediated immune

modulation in the airways involving monocytes/macrophages [42].

Administration of hAECs to mice modulates the immune response to decrease long-term

fibrosis and BPD-like lung injury [16, 43, 44] and can repair established lung injury [45]. Our

study provides evidence for a role of hAECs in reducing lung tissue injury through acute mod-

ulation of local inflammatory responses. Additionally, the local pulmonary inflammatory

response to mechanical ventilation may induce inflammation and injury in other organs such

as the brain [21]. We showed that hAECs modulate ventilation-induced brain inflammation in

the lambs from this study [46]. It is possible that the beneficial effects on the brain are due to

initial immunomodulation in the lung, which was the primary site of injury in these experi-

ments. Although we observed no sign of systemic immunomodulation within the relatively

brief (2 h) period of this experiment, we consider it possible that longer-term immunomodula-

tion may occur as a result of attenuation of inflammation within the lungs.

Our study showed no overt adverse effects of hAEC administration. However, lung compli-

ance tended lower in hAEC-treated lambs than in vehicle-treated lambs. It is possible that tra-

cheal administration of hAECs results in an acute increase in airway resistance, perhaps by

clumping of cells in the airways. We recently showed that hAEC function is not impaired in
vitro by surfactant administration [47]: co-administration might thus provide better dispersal

of the cells within the lungs, thus avoiding this effect.

Conclusions

The amniotic membrane and hAECs are effective and safe for therapeutic use in adults, in

whom they have been used mainly for burn treatment and ocular repair for some time [48,
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49]. Administration of hAECs, in our current study and in previous experiments undertaken

by us, reduces lung injury and fibrotic BPD-like injury through immune modulation. Thus,

hAECs may be a viable clinical therapy for neonatal pulmonary injury and prevention of

bronchopulmonary dysplasia in preterm human neonates.
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