
RESEARCH ARTICLE

Blood pressure and expression of microRNAs

in whole blood

Zhou Zhang1,2, Brian Thomas Joyce2,3, Jacob K. Kresovich2,3, Yinan Zheng2,4, Jia Zhong5,

Ruchi Patel2, Wei Zhang2,6, Lei Liu2, Chang Dou7, John P. McCracken6, Anaité Dı́az8,
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Abstract

Background

Blood pressure (BP) is a complex, multifactorial clinical outcome driven by genetic suscepti-

bility, behavioral choices, and environmental factors. Many molecular mechanisms have

been proposed for the pathophysiology of high BP even as its prevalence continues to grow

worldwide, increasing morbidity and marking it as a major public health concern. To address

this, we evaluated miRNA profiling in blood leukocytes as potential biomarkers of BP and

BP-related risk factors.

Methods

The Beijing Truck Driver Air Pollution Study included 60 truck drivers and 60 office workers

examined in 2008. On two days separated by 1–2 weeks, we examined three BP measures:

systolic, diastolic, and mean arterial pressure measured at both pre- and post-work exams

for blood NanoString nCounter miRNA profiles. We used covariate-adjusted linear mixed-

effect models to examine associations between BP and increased miRNA expression in

both pooled and risk factor-stratified analyses.

Results

Overall 43 miRNAs were associated with pre-work BP (FDR<0.05). In stratified analyses dif-

ferent but overlapping groups of miRNAs were associated with pre-work BP in truck drivers,
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high-BMI participants, and usual alcohol drinkers (FDR<0.05). Only four miRNAs were

associated with post-work BP (FDR<0.05), in ever smokers.

Conclusion

Our results suggest that many miRNAs were significantly associated with BP in subgroups

exposed to known hypertension risk factors. These findings shed light on the underlying

molecular mechanisms of BP, and may assist with the development of a miRNA panel for

early detection of hypertension.

Introduction

Hypertension (HTN), defined as systolic blood pressure (SBP) above 140 mmHg or diastolic

blood pressure (DBP) above 90 mmHg, is a major public health concern worldwide [1, 2]. Despite

our understanding of the disease and availability of treatments, 80 million adults in the US [3] as

well as 266 million adults in China [4] suffer from HTN, indicating a substantial unrelieved public

health burden. With primary prevention efforts (e.g., the DASH diet) [5, 6] largely unsuccessful

in populations in recent decades, secondary prevention through earlier disease detection may aid

reducing HTN-related health disparities and economic burdens. In particular analyses of whole

blood have found shifts in environment-induced gene expression that presage systemic pro-

inflammatory processes [7–9] and can predict future cardiovascular disease risk [10]. Greater

insight into molecular mechanisms related to elevated blood pressure (EBP), a physiological event

related to clinical HTN, can assist in addressing its current unmet public health burden.

Since EBP results from a set of complex genetic, pathophysiological, and environmental fac-

tors [11] post-translational modifications are a natural candidate for biomarker studies of

hypertension risk factors and early detection [11–13]. Post-translational modifications to gene

expression include DNA methylation, histone modification, and microRNAs (miRNAs), and

can all functionally alter gene expression without changing the underlying DNA sequence [13,

14]. miRNAs are small (20–24 base) nucleotides that induce messenger RNA (mRNA) cleav-

age or reduce translation to regulate gene expression [15–18], thus having a potentially pro-

found impact on diseases including HTN. Studies have connected handfuls of miRNAs such

as the miRNA130/301 family [19] to HTN via pathways such as promoting vasoconstriction

and thus increasing pulmonary BP [20]. Due to these associations and the stability of miRNAs,

researchers have previously suggested their potential use as biomarkers for HTN [19–22].

However, many of the specific biological mechanisms underlying the relationship between

miRNAs and EBP or EBP-related risk factors have yet to be elucidated.

Our group previously reported that traffic-related exposure to ambient PM10 (particulate matter

�10 μm) affects blood pressure (BP) [23], and that this exposure was associated with the expres-

sion of human miRNAs [24]. As an additional component to this research we investigated miRNA

profiles in blood leukocytes and their relation to BP in 120 workers in urban Beijing [25]. Because

evidence suggests that BP varies throughout the day [26, 27], our objective was to explore the sepa-

rate relationships between BP measured pre- and post-work and miRNA expression levels.

Materials and methods

Study participants

The Beijing Truck Driver Air Pollution Study was conducted between June 15 and July 27,

2008 in two groups highly exposed to air pollution: 60 truck drivers and 60 office workers [23].
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Both of these occupation groups were matched by sex, smoking status, education, and age (+5

years). Each participant was examined twice each on two days one to two weeks apart, for a

total of two examination days and four examinations per participant to allow for short-term

variations in BP. Blood samples were collected at the end of each examination day only, allow-

ing for two miRNA measures per participant (240 total). We used a self-administered ques-

tionnaire to collect detailed information on demographics and lifestyle as well as time-varying

factors (e.g., smoking) which were self-reported both for past patterns and day of examination

data (i.e., smoking status and number of cigarettes smoked on the exam day respectively).

Daily temperature and dew point data for Beijing were obtained from the National Oceanic

and Atmospheric Administration [28]. Individual written informed consent was obtained

from all participants prior to enrollment in the study. Institutional Review Board or equivalent

approval at the participating institution (i.e., Harvard School of Public Health, Northwestern

University, and Peking University Health Science Center) was obtained prior to study partici-

pant recruitment.

miRNA measurement

A total of 240 peripheral blood samples from 120 participants were collected in PAXgene

Blood RNA Tubes (Qiagen, Valencia, California) at each post-work exam. Detailed data pro-

cessing procedures can be found in the Supplemental Materials. Briefly, total RNA was

extracted using the PAXgene Blood-RNA Kit Qiagen-763134 (Qiagen, Valencia, California).

All samples had optical density ratios of 280/260�1.9 and 260/230�1.8. RIN (RNA Integrity

Number) scores, thus showing excellent RNA quality (mean: 8.3±0.9). We profiled miRNAs

using NanoStringnCounter-miRNA expression analysis (NanoString Technologies, Seattle,

Washington). The nCounter miRNA data were also confirmed through cross-platform valida-

tion in 20 randomly-selected study samples using the TaqManOpenArray Real-Time PCR

Plates (Life Technologies, Carlsbad, California) on the QuantStudio 12K Flex Real-Time PCR

System. The average Pearson correlation coefficient was 0.73 (0.63–0.79) between the two plat-

forms, thus confirming the robustness of nCounter. The raw and processed miRNA data have

been deposited into the NCBI Gene Expression Omnibus (accession number GSE63087).

miRNA expression data were processed and obtained as described previously [24]. After dis-

carding miRNAs that were not detectable in over 90% of samples, 166 miRNAs (including

seven viral miRNAs) were retained for analysis.

Blood pressure measurements

The seated BP of each individual was measured by a trained research assistant at each exam-

ination after a full five minutes of rest. Per the American Heart Association’s standardized

measurement protocol[29], BP was measured via mercury sphygmomanometer on the right

arm using an appropriate cuff size and three readings separated by at least one minute

taken. BP was calculated from the average of the second and third readings and rounded up

to the nearest whole number. Mean arterial pressure (MAP) was estimated by adding 1/3 of

the difference between systolic blood pressure (SBP) and diastolic blood pressure (DBP) to

the DBP value.

Statistical analysis

For our descriptive analysis we used mixed-effects linear regression models to assess each

of the three BP measures (pre- and post-work) across categories of independent variables

(continuous variables were categorized according to the distribution of the data) while

incorporating repeated measures data. We also conducted t-tests to compare pre- and
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post-work BP measures, and generated MA plots of describing differential miRNA expres-

sion by pre-work BP level. Next we used mixed-effects linear regression models to evaluate

the associations of miRNAs with BP in the entire sample (pooled analysis) accounting for

repeated measures. We also conducted sensitivity analyses to explore the effect of using the

change from pre- to post-work in each BP measurements as an additional outcome, and

separate analyses of each visit.

Next, for our stratified analyses we identified gender, BMI, smoking status, and alcohol

consumption as EBP risk factors based on our descriptive analysis (variables associated with

BP at p<0.05). We performed stratified analyses on these risk factors as well as occupation

(based on our prior work finding differential pollutant exposure by occupation [30]) to explore

potential differential miRNAs expression. For the BMI-stratified analysis we selected a cut-

point of 23kg/m2 based on WHO recommendations for BMI measurement and intervention

in Asian populations [31]. For the pooled analysis, the regression model was adjusted for

covariates including age, occupation, gender, BMI, smoking status, number of cigarettes

smoked on examination day, examination date, alcohol consumption, work hours per week,

and outdoor temperature and dew point on the examination day. In the stratified analyses, we

adjusted for all variables listed above except the stratification variable (occupation, sex, BMI,

smoking status, and usual alcohol drinking). Because our previous findings suggested that air

pollutant exposures impact BP [23], we also adjusted for personal particulate matter�10 μm

(PM10). Since miRNA data was log-2 transformed we presented the results as unit change in

mmHg of BP per each two-fold increase in miRNA. All statistical tests were two-sided, and BP

changes with a Benjamini-Hochberg false discovery rate (FDR) <5% [32] were considered sta-

tistically significant. All analyses were performed using SAS 9.4 (Cary, NC).

Results

Characteristics of study participants and blood pressure measurements

Blood pressure measures before and after work by participant characteristics are summarized

in Table 1 and Table 2, respectively. Briefly SBP, DBP, and MAP all significantly differed across

gender, BMI, smoking status, and alcohol consumption at both times of day. In addition, all

three post-work BP measures varied across temperature, and SBP by dew point, on exam days.

No BP measures significantly varied across age, occupation, or calendar day of exam. SBP was

significantly higher at the post-work exam compared to pre-work (p<0.01), but DBP and

MAP were not (p = 0.69 and 0.45, respectively) (S1 Fig).

Pooled analyses

Pre-work BP measured was significantly associated with post-work miRNA expression

(Table 3). We identified 43 miRNAs whose levels were associated with one or more BP mea-

sures: 32 with SBP and 42 with MAP (Table 3, S1 and S2 Tables). No associations were identi-

fied for DBP. Fig 1A and 1B show miRNA associations with pre-work SBP and MAP,

respectively, arranged by magnitude of unit difference in mmHg per each two-fold increase in

miRNA. We did not find any significant associations of miRNA expression levels with post-

work BP, nor with BP change from pre- to post-work measures. Analyzing each examination

day separately attenuated the statistical significance of all findings (due to loss of sample size),

but in general results were similar in direction and magnitude to those of our pooled, mixed-

model analysis (data available upon request). Our MA plots of pre-work BP can also be found

in our supplementary materials (S2 Fig).

BP and miRNAs in blood
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Stratified analyses

For the stratified analyses we found significant associations between miRNAs and pre-work

BP in truck drivers, high-BMI participants, and usual alcohol drinkers (Table 3, S1 and S2

Tables). In truck drivers 39 miRNAs were associated with SBP, of which seven were unique to

the truck driver stratum. In high-BMI participants 60 miRNAs were associated with SBP

Table 1. Pre-work blood pressure by participant characteristics.

Variables N(%) Systolic Blood Pressure Diastolic Blood Pressure Mean Arterial Pressure

Meana SEa p-valueb Meana SEa p-valueb Meana SEa p-valueb

Group, n (%)

Office workers 120 (50%) 111.5 1.5 0.14 77.7 1.1 0.26 89.0 1.2 0.19

Truck drivers 120 (50%) 114.6 1.5 79.5 1.1 91.2 1.2

Sex

Female 80 (33.33%) 104.9 1.6 <0.01 73.6 1.3 <0.01 84.1 1.3 <0.01

Male 160 (66.67%) 116.8 1.1 81.0 0.9 92.9 0.9

Age (Quartile)

Q1 [18–27 years] 60 (25%) 112.1 2.1 0.39 77.7 1.6 0.12 89.2 1.7 0.15

Q2 [28–32 years] 62 (25.83%) 111.6 2.0 76.5 1.6 88.2 1.7

Q3 [33–37 years] 58 (24.17%) 112.6 2.1 78.7 1.6 90.0 1.7

Q4 [38–46 years] 60 (25%) 116.2 2.1 81.8 1.6 93.4 1.7

BMI

�23 kg/m2 120 (50%) 108.2 1.3 <0.01 74.7 1.0 <0.01 85.9 1.1 <0.01

>23 kg/m2 120 (50%) 118.6 1.3 82.6 1.0 94.6 1.1

Smoking habits

Never smoked 138 (57.5%) 109.7 1.3 <0.01 76.8 1.1 0.01 87.8 1.1 <0.01

Ever smoked 102 (42.5%) 117.4 1.5 80.9 1.2 93.1 1.3

Usual alcohol drinking

Yes 90 (37.5%) 110.0 1.2 <0.01 76.7 1.0 <0.01 87.9 1.0 <0.01

No 150 (62.5%) 117.8 1.6 81.6 1.3 93.7 1.3

Temperature c

Low [20–25 ˚C] 110 (35.83%) 112.9 1.2 0.87 78.7 1.0 0.78 90.1 1.0 0.94

High [26–29 ˚C] 130 (54.17%) 113.1 1.1 78.5 0.9 90.1 0.9

Dew point c

Low [16–20 ˚C] 107 (44.58%) 114.1 1.2 0.07 78.6 1.0 0.99 90.4 1.0 0.50

High [21–24 ˚C] 133 (55.42%) 112.2 1.1 78.6 0.9 89.9 0.9

Day of the week

Monday 35 (14.58%) 112.1 1.6 0.10 79.0 1.4 0.46 90.1 1.3 0.28

Tuesday 31 (12.92%) 111.6 1.8 76.6 1.5 88.2 1.5

Wednesday 29 (12.08%) 114.9 1.9 78.7 1.6 90.7 1.6

Thursday 35 (14.58%) 110.9 1.8 76.7 1.5 88.2 1.5

Friday 36 (15%) 112.0 1.9 79.3 1.6 90.2 1.5

Saturday 34 (14.17%) 113.1 2.0 79.0 1.7 90.6 1.7

Sunday 40 (16.67%) 117.0 1.7 80.3 1.4 92.5 1.4

a Means and standard error of blood pressure and heart rate measured on two examination days were estimated by marginal means and corresponding

standard error from mixed-effects regression models.
b p-values were calculated using mixed-effects regression models.
c Temperature and dew point were measured on the study examination day.

doi:10.1371/journal.pone.0173550.t001
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including 18 miRNAs that were unique to participants in the high-BMI stratum. In usual alco-

hol drinkers 10 miRNAs were associated with MAP, including one miRNA unique to the

usual alcohol drinkers stratum. For the post-work BP measures we identified four miRNAs

associated with MAP in ever smokers (S3 Table), all of which were unique to the stratum of

ever smokers.

Table 2. Post-work blood pressure by participant characteristics.

Variables N(%) Systolic Blood Pressure Diastolic Blood Pressure Mean Arterial Pressure

Meana SEa p-valueb Meana SEa p-valueb Meana SEa p-valueb

Group, n (%)

Office workers 120 (50%) 115.3 1.5 0.66 77.8 1.1 0.10 90.3 1.2 0.23

Truck drivers 120 (50%) 116.3 1.5 80.3 1.1 92.3 1.2

Sex

Female 80 (33.33%) 107.8 1.7 <0.01 74.2 1.2 <0.01 85.4 1.3 <0.01

Male 160 (66.67%) 119.9 1.2 81.6 0.9 94.2 0.9

Age (Quartile)

Q1 [18–27 years] 60 (25%) 116.9 2.2 0.83 78.0 1.5 0.40 90.9 1.7 0.71

Q2 [28–32 years] 62 (25.83%) 114.8 2.2 77.6 1.5 90.0 1.6

Q3 [33–37 years] 58 (24.17%) 114.8 2.2 80.2 1.5 91.7 1.7

Q4 [38–46 years] 60 (25%) 116.8 2.2 80.5 1.5 92.6 1.7

BMI

�23 kg/m2 120 (50%) 111.6 1.4 <0.01 75.5 1.0 <0.01 87.5 1.1 <0.01

>23 kg/m2 120 (50%) 120.0 1.4 82.6 1.0 95.0 1.1

Smoking habits

Never smoked 138 (57.5%) 112.6 1.4 <0.01 77.6 1.0 0.02 89.2 1.1 <0.01

Ever smoked 102 (42.5%) 120.1 1.6 81.1 1.1 94.0 1.2

Usual alcohol drinking

Yes 90 (37.5%) 113.0 1.3 <0.01 77.1 0.9 <0.01 89.0 1.0 <0.01

No 150 (62.5%) 120.6 1.7 82.4 1.2 95.1 1.3

Temperature c

Low [20–25 ˚C] 110 (35.83%) 117.3 1.2 0.01 80.3 0.9 0.01 92.5 0.9 <0.01

High [26–29 ˚C] 130 (54.17%) 114.6 1.2 78.1 0.8 90.2 0.9

Dew point c

Low [16–20 ˚C] 107 (44.58%) 117.1 1.2 0.02 79.2 0.9 0.86 91.8 1.0 0.30

High [21–24 ˚C] 133 (55.42%) 114.8 1.2 79.0 0.8 90.9 0.9

Day of the week

Monday 35 (14.58%) 115.7 1.7 0.73 78.0 1.3 0.54 90.6 1.3 0.59

Tuesday 31 (12.92%) 115.6 1.8 77.4 1.4 90.0 1.4

Wednesday 29 (12.08%) 116.9 1.9 79.1 1.5 91.5 1.5

Thursday 35 (14.58%) 116.9 1.8 80.8 1.4 93.0 1.4

Friday 36 (15%) 113.2 1.9 78.7 1.5 90.2 1.5

Saturday 34 (14.17%) 116.1 2.0 79.0 1.6 91.4 1.6

Sunday 40 (16.67%) 116.4 1.7 80.1 1.4 92.0 1.4

a Means and standard error of blood pressure and heart rate measured on two examination days were estimated by marginal means and corresponding

standard error from mixed-effects regression models.
b p-values were calculated using mixed-effects regression models.
c Temperature and dew point were measured on the study examination day.

doi:10.1371/journal.pone.0173550.t002
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Discussion

To our knowledge this study is the first to evaluate miRNA profiling from blood leukocytes in

relation to BP among a cohort of Chinese workers. We observed that both pre- and post-work

SBP, DBP, and MAP were all higher in participants that were male, had higher BMI, or were

smokers; all traditional risk factors of HTN [33]. Our pooled analysis also revealed 43 miRNAs

associated with one or more BP measures but only at the pre-work exams. The stratified analy-

ses showed varied significant associations between miRNAs and pre-work BP measures by

strata of subject characteristics including occupation, BMI, and usual alcohol drinking, as well

as only ever-smokers had a panel of miRNAs significantly associated with post-work BP.

Previous studies have related some miRNAs to molecular changes involved with HTN or

cardiovascular diseases. For instance, we identified miR-151-5p as one of the most significant

positive miRNA-BP associations in our pooled analysis as well as the strata of truck drivers,

high-BMI participants, and usual alcohol drinkers (Supplemental Tables 1–2). A previous

study linked down-regulation of miR-151-5p to ischemic arrhythmia [34], while a second

linked increased miR-151-5p expression to aneurysm prevalence [35]. As both of these out-

comes are potentially linked to HTN, miR-151-5p could be an early sign of HTN and thus a

potentially useful early detection biomarker for HTN and/or a range of cardiovascular dis-

eases. For another primary result of our pooled analysis (and the stratum of truck drivers),

miR-22, systemic administration of miR-22 antagomirs reduced BP in spontaneously hyper-

tensive rats [36], suggesting its potential therapeutic value for hypertensive patients. Our find-

ings add to the evidence of a role for these miRNAs in the pathophysiology of HTN.

miRNA expression levels can be affected by a large number of factors and regulatory pro-

cesses [37]. The distinct groups of miRNAs associated with EBP within strata of various subject

characteristics therefore suggest potential molecular pathways for BP-related risk factors. For

instance, miR-425 was found to be positively associated with BP in our high-BMI group (and

Table 3. Number of miRNAs associated with BP measured pre- and post-work, in all participants and by strata of occupation and characteristics

at FDR <0.05.

Pre-Work Post-Work

Any BP

Measure

All BP

Measures

Stratum-Specific

miRNAs

Any BP

Measure

All BP

Measures

Stratum-Specific

miRNAs

All Participants 43 0 N/A 0 0 N/A

Occupation

Office workers 0 0 0 0 0 0

Truck drivers 39 0 7 0 0 0

Sex

Female 0 0 0 0 0 0

Male 0 0 0 0 0 0

BMI

�23kg/m2 (Low) 0 0 0 0 0 0

>23kg/m2 (High) 60 0 17 0 0 0

Smoking Status

Never smoked 0 0 0 0 0 0

Ever smoked 0 0 0 4 0 4

Usual alcohol

drinking

No 0 0 0 0 0 0

Yes 10 0 1 0 0 0

doi:10.1371/journal.pone.0173550.t003

BP and miRNAs in blood
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Fig 1. miRNAs associated with pre-work blood pressure changes in pooled analysis. Significant

miRNAs associated with (A) SBP, and (B) MAP at FDR<5% in the pooled analysis.

doi:10.1371/journal.pone.0173550.g001
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neither our pooled analysis nor our other strata), and has been linked to blood pressure regula-

tion through salt homeostasis (preventing its binding with appropriate gene) [38]. This finding

may therefore be a biomarker of higher salt consumption in the high-BMI stratum. Another

example in our high-BMI stratum, miR-208b, regulates the expression of slow myosin and

thus plays an important role in both exercising and stress-response, and both of which are

involved in the progression of EBP to HTN [39, 40]. These and other miRNAs identified in

our high-BMI stratum should be examined in future research for associations with salt intake

or other lifestyle factors (particularly diet) known to be associated with both BMI and HTN.

These results could indicate miRNA involvement in the well-characterized relationship

between high BMI and HTN.

Furthermore several miRNAs identified as significant in both our pooled and stratified

analyses have been associated with pulmonary hypertension and/or traditional cardiovascular

risk factors in prior epidemiological studies. miR-96 has been previously associated with pul-

monary hypertension via 5-HT1BR expression; [41] while we lacked the data necessary to

explore this pathway in our analysis, we also found miR-96 was significantly associated with

BP measures. Bye et al. [42] also found that circulating miR-21 in men was negatively associ-

ated with aerobic fitness (itself associated with BP) while Wei et al. [22] found that miR-21 was

associated with pulmonary hypertension along with two of our other significant results (miRs

191and 208b). While our results are based on miRNA expression in blood leukocytes, and are

therefore not necessarily directly related to the circulating miRNAs reported in the literature,

the overlap in these results (particularly given the racial differences between our cohort and

those reported previously) are suggestive of common pathways in the interplay between the

traditional risk factors of occupation, BMI, and smoking status and EBP development that

should be explored in the future.

The fact that the majority of our findings are present only in the pre-work rather than the

post-work BP measurements is curious, but perhaps unsurprising. BP is known to vary during

the day [26, 27], and a morning surge in BP is a risk factor for cardiovascular disease and other

adverse health outcomes [43]. A morning BP surge has also been associated with BP-related

risk factors, including several identified as associated with specific pools of miRNAs in our

study (e.g., alcohol use and smoking) [43]. Conversely, some attempts to replicate these links

with a morning blood pressure surge have been unsuccessful with poor reproducibility and

various subject-specific factors (e.g., sleep quality) cited as potentially confounding factors

[44]. Given that cardiovascular events also tend to occur more frequently and BP in general

tends to be higher after awakening [45], measurements of BP after this time (e.g., to account

for between-subject sleep quality) may be a more reproducible health predictor. The fact that

most of our stratified analyses were significant only at the pre-work measurement also raises

the possibility that other unmeasured confounders occurring during the work day (e.g., diet,

stress, physical activity) affect BP measurements, and that later studies of post-translational

gene expression modification in HTN would be best served by measuring BP-related outcomes

early in the day.

Our study is subject to a number of limitations. Our small sample size limited our ability to

make statistical inferences, and cannot establish temporality. The high air pollution exposure

in our population could attenuate associations that operate on competing molecular pathways.

We attempted to address this limitation by controlling for air pollution exposure in our study,

but nonetheless our results may have false negatives. In addition data on white blood cell

counts and abundancies were not collected in this cohort, which limits our ability to draw bio-

logical or mechanistic insight from these findings. We attempted to minimize potential con-

founding due to short-term changes in blood cell abundancies[46] by employing a repeated-

measures, matched study design with mixed effect models. As intra-individual miRNA and
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gene expression profiles are relatively stable over short (<1 year) time scales [47], any short-

term inter- or intra-individual changes in blood composition are likely to be very small and

unlikely to change our results substantively. Exploring miRNAs as potential blood-based bio-

markers will still facilitate subsequent research in cohorts without contemporaneous blood

composition data, and prior biomarker studies that did not include it [30, 48–53]. Finally, all

of our significant associations were in the same direction, a potentially unusual finding. This

could be due to residual confounding, or ‘morning surge’ in BP discussed above. However

given the many miRNAs we simultaneously analyzed, there is also the possibility that this is a

new finding. If miRNAs are largely up-regulated in response to increasing BP, global miRNA

levels could be a useful biomarker. Further research in diverse populations using a similar,

repeated measures design should be conducted to further explore these possibilities.

Despite these limitations, our study has notable strengths. The homogeneity of our popula-

tion allows a limited control of certain unmeasured confounding factors: a small, racially-

homogenous group living in the same area would be expected to have similar dietary and envi-

ronmental exposures, serving as a crude form of matching that could reduce the effects of a

variety of unmeasured confounders. In addition, our use of multiple measurements for both

BP and miRNAs allowed us to account for short-term variations in both factors, making our

results more likely to reflect trends that are of greater public health relevance.

Our results reveal miRNAs significantly associated with BP, many of them exclusive to

strata known to be high-risk for HTN. Future research in diverse cohorts is needed to validate

these findings, but if confirm these results may shed light on the development of a miRNA

panel for early detection of HTN (and potentially other cardiovascular outcomes) in the future

and highlighting the potential for miRNA-mediated risk factors for HTN and other cardiovas-

cular diseases. Future research should follow these results using larger, more representative

populations to identify specific pathways in humans linking the functions of these miRNAs to

their role in elevating BP.
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