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Abstract

Background & aims

While enteric bacteria have been shown to play a critical role in other forms of intestinal

damage, their role in mediating the response to the chemotherapeutic drug Doxorubicin

(Doxo) is unclear. In this study, we used a mouse model of intestinal bacterial depletion to

evaluate the role enteric bacteria play in mediating Doxo-induced small intestinal damage

and, more specifically, in mediating chemokine expression and leukocyte infiltration follow-

ing Doxo treatment. An understanding of this pathway may allow for development of inter-

vention strategies to reduce chemotherapy-induced small intestinal damage.

Methods

Mice were treated with (Abx) or without (NoAbx) oral antibiotics in drinking water for four

weeks and then with Doxo. Jejunal tissues were collected at various time points following

Doxo treatment and stained and analyzed for apoptosis, crypt damage and restitution, and

macrophage and neutrophil number. In addition, RNA expression of inflammatory markers

(TNFα, IL1-β, IL-10) and cytokines (CCL2, CC7, KC) was assessed by qRT-PCR.

Results

In NoAbx mice Doxo-induced damage was associated with rapid induction of apoptosis in

jejunal crypt epithelium and an increase weight loss and crypt loss. In addition, we observed

an increase in immune-modulating chemokines CCL2, CCL7 and KC and infiltration of mac-

rophages and neutrophils. In contrast, while still positive for induction of apoptosis following

Doxo treatment, Abx mice showed neither the overall weight loss nor crypt loss seen in

NoAbx mice nor the increased chemokine expression and leukocyte infiltration.

Conclusion

Enteric bacteria play a critical role in Doxo-induced small intestinal damage and are associ-

ated with an increase in immune-modulating chemokines and cells. Manipulation of enteric
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bacteria or the damage pathway may allow for prevention or treatment of chemotherapy-

induced small intestinal damage.

Introduction

Doxorubicin (Doxo) is a highly morbid chemotherapeutic drug utilized as first-line treatment

for several types of cancer, including subtypes of breast cancer, soft tissue sarcomas, and lym-

phomas.[1–3] Its major mechanism of action is DNA intercalation, which prevents DNA repli-

cation, ultimately causing DNA damage and cell cycle arrest. One of the major side effects of

the drug is mucositis, deep ulceration of the mucosal lining of the digestive tract. This side

effect can be dose-limiting and can sometimes render patients unable to complete their che-

motherapeutic regimens. Medications like ondansetron, an anti-emetic, can somewhat assuage

the symptoms of mucositis, but there are no effective treatments for mucositis barring discon-

tinuation of chemotherapy. For this reason, research into successful approaches for reduction

of the development of mucositis is needed.

We and others have previously demonstrated in mice that Doxo induces a significant, rapid

increase of apoptosis in small intestinal crypt epithelium.[4–6] This increase in apoptosis is

accompanied by an increase in permeability of the intestinal epithelia barrier[7] followed by

significant mucosal damage, characterized by crypt loss and villus blunting, and a subsequent

repair phase during which crypts lengthen and hypertrophy. About one week after treatment,

normal morphology within the jejunum is restored. Our recent work has further demonstrated

the importance of enteric bacteria in this process as germ free (GF) mice do not appear to

demonstrate the characteristic sequelae of damage following Doxo, suggesting that mucositis

is mitigated in the absence of bacteria.[8]

Increasing evidence demonstrates that the microbiota contribute to other causes of small

intestinal damage, like inflammatory bowel diseases,[9–12] NSAID-associated intestinal dam-

age,[13–15] and ischemia reperfusion injury.[16–18] Interestingly, some studies suggest that

the presence of enteric bacteria protects from the development damage, while others suggest

that the presence of enteric bacteria is detrimental and contributes to inflammation and dam-

age. Others have explored the murine response to Doxo in models of limited bacterial signal-

ing. Nigro et al. treated mice with muramyl-dipeptide, a Nod2 agonist and peptidoglycan

common to all bacteria, and concluded that epithelial restitution following Doxo is Nod2

dependent.[19] In contrast, Kaczmarek et al. observed less small intestinal damage in TLR2

and TLR9 knockout mice following Doxo, concluding that bacterial signaling via these recep-

tors was necessary for damage.[20] Furthermore, their study demonstrated that TLR2 or TLR9

deficiency abrogated the accumulation of CD45+ cells following Doxo treatment suggesting a

correlation between enteric bacteria, Doxo treatment, and infiltration of leukocytes.

In this study, we tested the hypothesis that depletion of enteric bacteria in mice would result

in decreased infiltration of leukocytes into the intestinal lamina propria following Doxo treat-

ment. To do this we utilized a mouse model of intestinal bacterial depletion which involved a

regimen of high-dose oral antibiotics to more closely mirror a clinically plausible human

model and to evaluate the relationship between enteric bacteria and lamina propria leukocytes

within the context of Doxo-induced damage. The aims of the study were to corroborate our

previously published work that bacteria are required for induction of Doxo-induced small

intestinal damage as assessed by weight loss, crypt loss, and crypt hyperplasia[8], to demon-

strate that induction of an immune-modulating cascade involving increased expression of the

chemokines CCL2 and CCL7 correlates with increased infiltration of macrophages and
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neutrophils, and to determine whether this response is enteric bacteria dependent. The results

of this study may provide important progress towards understanding the mechanism(s) by

which enteric bacteria mediate Doxo-induced mucositis, and suggest multiple means by which

enteric bacterial signaling can be manipulated in order to reduce chemotherapy-induced

mucositis.

Material and methods

Animals

Adult male and female C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor,

ME) and used between 8–12 weeks of age. An age-matched cohort of female C57BL/6 mice were

raised under germ free (GF) conditions in the National Gnotobiotic Research Center at the Uni-

versity of North Carolina at Chapel Hill, and used between 8–12 weeks of age. A cohort of male

C57BL/6 mice (Abx) were treated with oral antibiotics as described by Rakhoff-Nahoum et al.:

ampicillin (APP Pharmaceuticals, Lake Zurich, IL) at 1 mg/mL, neomycin (Medisca, Irving, TX)

at 1 mg/mL, metronidazole (Fluka, St Louis, MS) at 1 mg/mL, and vancomycin (Hospira, Lake

Forest, IL) at 500 μg/mL dissolved in iodinated water supplemented with 15% strawberry syrup

for four weeks.[9] An age-matched cohort of male C57BL/6 mice (NoAbx) received iodinated

water with 10% syrup alone. The differences in percentage of syrup between Abx and NoAbx

were due to an adjustment based on the amount of water consumed by each group. To evaluate

ingestion of water, bottle volumes were weighed twice weekly, and to evaluate weight changes in

Abx and NoAbx mice, each mouse was weighed twice weekly. Mice from both NoAbx and Abx

cohorts ingested equivalent water and gained equivalent weight. To ensure depletion of enteric

bacteria in Abx mice as compared to NoAbx mice, feces were collected from each mouse in each

cage at weeks 3 and 4, and cultured on LB media in aerobic and anaerobic conditions (S1 Fig).

Cages with detectable colonies were eliminated from all experiments. Experimental procedures

were approved by the Institutional Animal Care and Use Committees of The University of

North Carolina at Chapel Hill and NC State University.

Doxo treatment and tissue processing

Mice were given a single intraperitoneal (IP) injection of Doxo (Pharmacia & Upjohn Co., Kal-

amazoo, MI) at a dose of 20 mg/kg body weight, which we have previously reported induces

reproducible sequela of jejunal damage in mice.[21] Animals were sacrificed 0, 6 hours, 24

hours, 3 days or 5 days after Doxo treatment and weighed at the time of sacrifice. The jejunum

was isolated and flushed with 5 mL ice-cold Hank’s balanced salt solution (Gibco, Waltham,

MA). Portions of jejunum were fixed in 10% buffered formalin and embedded in paraffin for

histologic analyses. Additional portions of jejunum were snap frozen in liquid nitrogen for

RNA and protein extraction.

Histology

Formalin-fixed paraffin embedded specimens were oriented to provide sections perpendicular

to the long axis of the bowel, and three 5μm sections were used for evaluating general mor-

phology. Crypts were selected for scoring crypt loss and crypt depth on the basis that a single,

continuous layer of epithelium followed from crypt base to villus base. Crypt loss was scored

by counting the total number of crypts present in the complete cross-section of tissue, as well

as the total number of crypts present in a representative 1000 um length. Crypt depth was cal-

culated by measuring the depth of 10–20 crypts per cross-section, with a total of three cross-

sections per animal, using Axio Imager software on images captured using an Axio Imager A1
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microscope and an AxioCam MRC 5 high resolution camera (Carl Zeiss Microimaging, Inc.

Thornwood, NY) at 64X. Apoptosis was scored by H&E staining based on the presence of

pyknotic bodies within 10–20 crypts per cross-section, with a total of three cross-sections per

animal, and confirmed by immunoflourescence staining for active caspase 3.[22]

Immunostaining

For immunohistochemistry, slides were deparaffinized, rehydrated, and incubated in 3%

hydrogen peroxide for 15 min at room temperature (RT) to quench endogenous peroxidase

activity. Sections were treated to heat-induce epitope retrieval (Antigen Unmasking Solution

cat. # H-3300, Vector Laboratories, Burlingame, CA) and allowed to cool to RT. To stain

actively proliferating cells, primary antibody (rabbit anti-phospho histone H3 cat. 9701 Cell

Signaling Technology, Danvers, MA, USA) was applied to each section at a 1:300 dilution and

incubated overnight at 4˚C. Sections were then washed and incubated with biotinylated goat

anti-rabbit secondary antibody for 30 min at RT. For macrophage staining, primary antibody

(rat anti-F4/80 cat. 6640 Abcam, Cambridge, MA) was applied to each section at a 1:200 dilu-

tion and incubated for 90 min at 60˚C. Sections were then washed and incubated with biotiny-

lated goat anti-rat secondary antibody for 60 min at RT. For neutrophil staining, primary

antibody (rat anti-neutrophil cat. 2557 Abcam, Cambridge, MA) was applied to each section at

a 1:200 dilution and incubated for 90 min at 60˚C. Sections were then washed and incubated

with biotinylated goat anti-rat secondary antibody for 60 min at RT. After secondary antibody

was removed, all slides were washed and incubated in Vectastain ABC Elite reagent (Vector

Laboratories, Burlingame, CA) for 30 min and then developed in a DAB substrate solution.

Data are expressed as number of positive cells per crypt. For immunofluorescence, slides were

deparaffinized, rehydrated, treated to antigen retrieval in 10% NGS/TRIS for 30 min, and

allowed to come to RT. Sections were washed and incubated with rabbit anti-cleaved caspase 3

(cat. no. 9661, Cell Signaling Technology, Danvers, MA) at a 1:800 dilution overnight at 4˚C.

Sections were then washed and incubated with goat anti-rabbit Cy3 secondary antibody for 2

hours at RT. Finally, sections were mounted using Vectashield Mounting Medium with DAPI

(H-1200 Vector Laboratories, Burlingame, CA) and evaluated using an Axio Imager A1 micro-

scope and an AxioCam MRC 5 high resolution camera.

RNA isolation and quantitative RT-PCR

Total RNA was isolated using Trizol (Invitrogen, Carlsbad, CA) following manufacturer

instructions. cDNA was generated utilizing Applied Biosystems High Capacity Reverse Tran-

scription cDNA kit (Applied Biosystems, Waltham, MA), and quantitative real-time PCR was

performed in duplicate using Applied Biosystems StepOne Plus real time PCR system and

TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA). Primer and probe

sets for TNFα (Mm00443258_m1), IL1β (Mm00434228_m1), and IL10 (Mm01288386_m1),

CCL2 (Mm00441242_m1), CCL7 (Mm00443113_m1), KC (Mm04207460_m1) and β-actin

(Mm00607939_m1) were purchased from Applied Biosystems. Data were analyzed using the

ΔΔCt method with normalization to β-actin mRNA as the constitutive mRNA. Mean β-actin

mRNA did not differ significantly between mice. Averaged mRNA from four untreated adult

C57BL/6J mice was used as the reference standard.

Statistics

All quantitative results are presented as means ± SE. All data were subjected to two-way

ANOVA with correction for multiple comparisons using the Fisher’s procedure. For all histo-

logic scoring, 30–60 crypts were counted per mouse and averaged to yield a single mean, and
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means for each mouse in the group were averaged to yield a single mean per group. For all

comparisons, a P value of< 0.05 was considered significant. All authors had access to the

study data and reviewed and approved the final manuscript.

Results

Depletion of enteric bacteria does not alter doxorubicin-induced

apoptosis, but ameliorates downstream intestinal damage

To determine the effect of doxorubicin on animals depleted of enteric bacteria, mice treated

with high-dose oral antibiotics (ampicillin, neomycin, vancomycin, metronidazole) or vehicle

were given a single IP dose of Doxo and sacrificed at multiple time points following treatment.

The first parameter we evaluated was weight loss, as we have previously shown weight loss to

be a reliable marker of Doxo-induced pathology.[23] Consistent with our previous findings,

NoAbx mice demonstrated significant, time-dependent weight loss following Doxo. Con-

versely, Abx mice did not experience significant weight loss at any time point following Doxo

(Fig 1).

We next assessed apoptosis 6 h following administration of Doxo, as our previous work

demonstrated that the peak of apoptosis occurs at this time point.[21] Interestingly, we found

an equivalent number of apoptotic cells within the jejunal crypts of both NoAbx and Abx
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Fig 1. Doxorubicin (Doxo) induces weight loss in non-antibiotic treated (NoAbx) mice, but does not

induce weight loss in antibiotic-treated (Abx) mice. NoAbx and Abx were treated with a single dose of

intraperitoneal Doxo at 20 mg/kg. Percent body weight loss at 6 hours, 24 hours, 3 days and 5 days was

calculated from weight at injection. n = 3–5 per time point per group. * = values significantly different from

respective control; P<0.05

doi:10.1371/journal.pone.0173429.g001
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mice. This was demonstrated by quantification of the number of apoptotic bodies per crypt on

H&E staining (Fig 2A) as well as active caspase-3 immunofluorescence (Fig 2B). These find-

ings suggest that Doxo was able to exert its immediate, anti-neoplastic function of cell death

regardless of the presence of enteric bacteria.
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Fig 2. Doxorubicin (Doxo) induces equivalent apoptosis in antibiotic-treated (Abx) and non-antibiotic

treated (NoAbx) mice. A. Quantification of the number of apoptotic cells per crypt in Abx and NoAbx jejunal

tissue from control mice and 6 hours after Doxo treatment. n = 3–4 per time point per group. * = values

significantly different from respective control; P<0.05. B. Immunofluorescence staining at 64X demonstrating

active caspase 3-positive cells (pink) in Ab and NoAbx jejunal tissue from control mice and 6 hours after Doxo

treatment.

doi:10.1371/journal.pone.0173429.g002
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Characterization of the injury and restitution response within jejunal crypts following

Doxo revealed a significant disparity between NoAbx and Abx mice. Five days following treat-

ment with Doxo, NoAbx mice demonstrated significant loss of crypts, while Abx mice did not.

This was determined by quantifying the number of total crypts per jejunal cross-section, as

well as the number of crypts in a fixed length of cross-section (1000 μm), in order to account

for potential differences in the circumference of the jejunum between mice (Fig 3A). An

increase in crypt depth, which serves as a marker of crypt restitution following Doxo, was evi-

dent in NoAbx mice, but Abx mice did not demonstrate this increase (Fig 3B). Representative

H&E micrographs of crypt number and depth are shown in Fig 3C. Likewise, proliferation,

another marker of crypt restitution, was observed in NoAbx, but not Abx, mice by quantifica-

tion of phosphohistone H3 positive cells per crypt (Fig 3D). Representative IHC-stained

micrographs are depicted in Fig 3E.

Doxo does not induce a robust inflammatory response in NoAbx mice,

but does induce an increase in immune-modulating cytokines that is

blunted in Abx mice

Because inflammation has been shown to play a significant role in other models of intestinal

damage like NSAID abuse [13, 14], ischemia/reperfusion [16–18] and irradiation [9, 24], we

next evaluated whether inflammation plays a role in Doxo-induced injury. As demonstrated in

Fig 4A, mRNA expression of key pro- and anti-inflammatory markers TNFα, IL1β, and IL10

did not change in the jejunal tissue of NoAbx mice at several time points after the administra-

tion of Doxo. Conversely, there was a significant fold-increase in the mRNA expression of

immune-modulating chemokines CCL2, CCL7, and KC (mouse homolog of CXCL1) follow-

ing Doxo in NoAbx mice (Fig 4B). This increase was significantly blunted in Abx mice (Fig

4B).

Doxo induces an increase in immune-modulating cells in NoAbx, but not

Abx, mice

Since CCL2, CCL7 and KC have been shown to recruit neutrophils and macrophages to sites

of tissue damage [13], we next assessed whether this increase in immune-modulating chemo-

kines was accompanied by an increase in immune cells. Indeed, we found that both macro-

phages and neutrophils were increased in the submucosa surrounding jejunal crypts of

NoAbx, but not Abx, mice following Doxo. This was determined by quantification of macro-

phage anti-F4/80 positivity (Fig 5A) and neutrophil anti-neutrophil positivity (Fig 5C) within

the crypt units of jejunal tissue. Representative micrographs are depicted in Fig 5B and 5D.

To address the potential contribution of the antibiotic treatment (verses the depletion of

enteric bacteria) on these results, this experiment was repeated in conventionally-raised

(CONV) and germ free (GF) mice, and findings were equivalent (Fig 6). Thus, our results sug-

gest that the protective effect on antibiotic treatment observed is due to depletion of bacteria.

Discussion

The role of enteric bacteria in mediating small intestinal damage due to a number of conven-

tional clinical sources, like irradiation, NSAIDs and chemotherapy, has yet to be fully defined.

In this study we depleted enteric bacteria to further delineate the role enteric bacteria play in

damage response associated with Doxo treatment. We report that, similar to what we have pre-

viously reported in germ free mice,[8] enteric bacteria are required for doxorubicin-induced
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doi:10.1371/journal.pone.0173429.g003
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Fig 4. Doxorubicin (Doxo) does not induce an increase in inflammatory cytokines but does induce an increase in

immune-modulating chemokines in non-antibiotic treated (NoAbx) mice; this increase is dampened in antibiotic-

treated (Abx) mice. A. Fold change in mRNA of TNFα, IL1β, and IL10 in NoAbx jejunal tissue from control mice, 6 hours

and 5 days after Doxo treatment. n = 5–8 mice per time point. B. Fold change in mRNA of CCL2, CCL7, and KC in Abx

and NoAbx jejunal tissue from control mice, 6 hours and 5 days after Doxo treatment. n = 3–5 mice per time point per

group. * = values significantly different from respective control; P<0.05. # = values significantly different between groups

(NoAbx & Abx) within a specific time point; P<0.05.

doi:10.1371/journal.pone.0173429.g004
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small intestinal damage, and that the elaboration of immune-modulating chemokines and

cells associated with this damage also relies upon the presence of enteric bacteria.

To perform these studies, we employed a previously described method to deplete the enteric

bacteria of mice with high dose oral antibiotics.[9] Critics of the germ-free model argue that

germ-free animals do not isolate the effect of eliminating microbiota because bacteria are
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required for the development of a normal immune response.[25, 26] Since germ free animals

are born in a germ free environment, their immune responses are altered at baseline, and

therefore the effects of a lack of bacteria cannot be separated from the effects of an atypical

immune response. Critics of the antibiotic model argue that the effects of the antibiotics them-

selves cannot be separated from the effects of depleting enteric bacteria, though this criticism

has been well-refuted.[27] Additionally, in the present study, our findings in germ free mice

parallel our findings in antibiotic-treated mice, suggesting our data indeed represent the effect

of depletion of enteric bacteria.

Though our data suggest that enteric bacteria are required for the development of Doxo-

induced mucositis, enteric bacteria do not appear to be required to see the immediate, apopto-

tic effects of Doxo. Both NoAbx and Abx mice show equivalent apoptosis 6 hrs after Doxo

administration, a time point at which we have previously shown peak apoptosis following

Doxo.[4, 28] Apoptosis has been utilized as a standard marker of cytotoxicity for multiple che-

motherapeutic drugs, including doxorubicin, as well as for irradiation.[5, 29, 30] Persistent

apoptosis in Abx mice thus suggests that Doxo is able to exert its immediate, anti-tumor prop-

erties despite the absence of bacteria, a fact that may be critical when considering means of

manipulating the enteric bacteria in order to decrease chemotherapy-induced mucositis.

Because multiple models of murine small intestinal damage suggest a crucial role for the

inflammatory response, we evaluated the role of inflammation in Doxo-induced damage.

Intestinal damage secondary to murine DSS-induced colitis[9, 10, 31], ischemia/reperfusion

injury[16, 17] total body irradiation[24] and infectious colitis[32] are all associated with a

robust inflammatory response, and specifically, with robust expression of the inflammatory

cytokines, IL1β, IL10, and TNFα. Surprisingly, there was no increase in these cytokines at any

time-point after Doxo treatment in our study. This was in contrast to the other intestinal dam-

age models noted above and to the increase in TNFα and IL1β seen in mouse mononuclear
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Fig 6. Doxorubicin (Doxo) induces an influx of macrophages and neutrophils in conventionally-raised (CONV) mice, but

not in germ free (GF) mice. A. Quantification of the number of macrophages (F4/80+) per crypt unit in CONV and GF jejunal tissue

from control mice, 6 hours, 3 days and 5 days after Doxo treatment. B. Quantification of the number of neutrophils (anti-neut+) per

crypt unit in CONV and GF jejunal tissue from control mice, 6 hours, 3 days and 5 days after Doxo treatment. n = 3 per time point per

group. * = values significantly different from respective control; P<0.05. # = values significantly different between groups (CONV &

GF) within a specific time point; P<0.05.

doi:10.1371/journal.pone.0173429.g006
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cells[33] and serum[34] with the well-studied chemotherapeutic irinotecan. Nonetheless, in

the present study, the absence of these factors in the small intestine following Doxo suggests

that inflammation may not significantly contribute to Doxo-induced mucositis.

In contrast to our findings on inflammatory markers, our study suggests that local produc-

tion of immune-modulating chemokines CCL2, CCL7 and KC, coupled with the increase in

macrophages and neutrophils within the lamina propria, plays a key role in Doxo-induced

mucositis. CCL2, CCL7 and KC are secreted by monocytes, macrophages and dendritic cells

and recruit monocytes, T-cells, macrophages and neutrophils to sites of injury. Macrophages

have been shown to be critical in the pathogenesis of murine intestinal graft vs host disease[35]

and DSS colitis[36], while neutrophils appear to be critical for the development of ischemia/

reperfusion injury in mice[37] as well as humans.[38] Conversely, a distinct population of

macrophages have been shown to play a protective role in small intestinal damage due to

murine DSS colitis[31] and infectious schistosomiasis.[39] These discrepancies may be

explained by the existence of two distinct populations of macrophages: classically activated M1

macrophages that are stimulated by IFNγ and act via Th1 cells to generate an inflammatory

response, and alternatively activated M2 macrophages that are stimulated by IL17 and act via

Th2 cells and play a role in tissue repair and remodeling.[31, 40] The precise role of macro-

phages in Doxo-induced mucositis remains unclear, as the macrophages present in our model

may be contributing to the damage response, or they may be responding to damage and partici-

pating in the repair response. In either case, our data indicate that macrophage recruitment to

sites of injury is a key component of the response to Doxo-induced damage, and that enteric

bacteria constitute the trigger for this response.

Based on our current findings, we believe the likely mechanism for Doxo-induced small

intestinal damage involves penetration of the epithelial barrier by bacteria or bacterial products

with subsequent generation of chemokines via bacterial product interaction with non-epithe-

lial cells of the lamina propria. This mechanism requires disruption of the small intestinal epi-

thelial barrier, leading to increased permeability, following Doxo. Studies have demonstrated

an association between epithelial apoptosis and increased permeability of the intestinal barrier

in rats following Doxo[7] and irinotecan[41], and in epithelial HT-29 monolayers following

treatment with the chemotherapeutic Camptothecin.[42] Increased epithelial permeability has

been implicated in other forms of small intestinal injury, like ischemia/reperfusion[17] and

inflammatory bowel disease[11] in mice, and NSAID-associated damage in humans.[15, 43]

As discussed above, the present study confirms that Doxo induces apoptosis regardless of the

presence of bacteria. We thus hypothesize that Doxo induces an apoptosis-associated increase

in permeability of the epithelial barrier, followed by translocation of bacterial products to the

subepithelial tissue, where resident cells initiate a cascade of CCL2, CCL7 and KC production

that ultimately leads to infiltration of macrophages and neutrophils. Accordingly, without

luminal bacteria, the apoptosis-associated increase in permeability does not launch this

response; there are no bacterial products present to penetrate the epithelia.

One alternative to eliminating enteric bacteria to ameliorate chemotherapy-induced muco-

sitis is to augment the bacterial census with probiotics. For example, Wang et al. investigated

the efficacy of Streptococcus thermophiles TH-4 against Doxo-induced mucostis in rats and

found that while pretreatment with the probiotic reduced weight loss seven days following

Doxo treatment compared with rats treated with Doxo alone it had not impact on overall

severity score.[44] In contrast, Whitford et al. demonstrated that TH-4 significantly decreased

the severity score of 5-FU induced intestinal damage in rats suggesting that probiotic efficacy

may be associated with the chemotherapeutic agent.[45] Similarly, an investigation by Yeung

et al. demonstrated effectiveness of probiotics such as Lactobacillus casei variety rhamnosus or

Lactobacillus acidophilus and Bifidobacterium bifidum at reducing 5-FU-induced mucositis in
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mice.[46] Studies such as these and others point to the intestinal microbiota as not only an

important component of the pathogenesis of chemotherapy-induced mucositis but also as a

potential means to ameliorate it.[47] Furthermore, they highlight that much more study is

needed of both chemotherapy-induced pathogenesis and the roles enteric bacteria play in

small intestinal damage.

There are no known preventative strategies or treatments for chemotherapy-induced

mucositis. The data reported in this study suggest that enteric bacteria/bacterial metabolites in

conjunction with infiltrating macrophages and neutrophils play critical roles in the mecha-

nism of Doxo-induced intestinal damage. Elucidating the pathway(s) of microbial dependence

for small intestinal damage following Doxo could provide opportunities for clinical manipula-

tion of the enteric microbiota or constituents of the pathway which would lead to reduced

damage. Reduction of Doxo-associated damage could, in turn, impact cancer treatment strate-

gies by allowing increased dosing potentially increasing the efficacy of clinical treatment.

Supporting information

S1 Fig. Treatment with high dose oral antibiotics depletes enteric bacteria. A. C57BL6 mice

from 8–12 weeks of age were treated with oral ampicillin, vancomycin, neomycin and metro-

nidazole, or sham, for 30 days. Equivalence between sham and treatment groups was validated

by weighing bottles twice per week (suggesting equal ingestion) and weighing of mice twice

per week (suggesting lack of systemic effects of antibiotics). Feces were cultured twice weekly

in aerobic and anaerobic conditions to evaluate bacterial growth. B. Feces from cages of mice

that received antibiotics (AB) and mice that received sham water (NOAB) were pooled and

plated in aerobic and anaerobic conditions. AB cages demonstrated less growth than NOAB

cages in aerobic (shown) and anaerobic (not shown) conditions at week 3 (shown) and week 4

(not shown) of treatment.
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