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Abstract

Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzhei-

mer’s disease (AD) in structural and functional magnetic resonance imaging (MRI), respec-

tively. We jointly explored regional volume atrophy and functional connectivity to better

characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were

obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We com-

pared regional volume atrophy and functional connectivity in 10 subcortical regions using

structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal con-

trols (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of

regional volumes and functional connectivity measures between groups were assessed

using permutation tests in 10 regions. The regional volume atrophy and functional connec-

tivity of identified regions were used as features for the random forest classifier to distinguish

among three groups. The features of the identified regions were also regarded as connec-

tional fingerprints that could distinctively separate a given group from the others. We identi-

fied a few regions with distinctive regional atrophy and functional connectivity patterns for

NC, MCI, and AD groups. A three label classifier using the information of regional volume

atrophy and functional connectivity of identified regions achieved classification accuracy of

53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy

and functional connectivity patterns that could be regarded as a connectional fingerprint.

Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by a decline in

cognitive function that results in problems with daily activities [1–3]. Mild cognitive impair-

ment (MCI) is an intermediate stage between cognitively normal status and AD [4]. MCI

involves problems with memory, language, thinking, and judgement that are greater than typi-

cal age-related changes, but the changes are not severe enough to interfere with daily life or

independent function [4]. There is no generally agreed cure for far-progressed AD; thus,

detecting MCI and AD early is important [3].
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Subcortical regions, such as the thalamus, putamen, hippocampus, caudate, and amygdala,

play a key role in MCI and AD [5]. These regions affect sensory, learning, motor, emotion, lan-

guage, and memory. Regional volume atrophy is known to precede functional degeneration of

those brain regions [6,7]. Our study also focused on these subcortical regions as well. Regional

volume atrophy of cortical and subcortical structures was reported as an important imaging

hallmark in AD [7–11].

Many imaging modalities, including magnetic resonance imaging (MRI), single photon

emission tomography (SPECT), and positron emission tomography (PET), have been success-

fully adopted to evaluate the progression of MCI and AD [12–16]. MRI is especially advanta-

geous as it can obtain both structural and functional information [17]. Resting-state functional

MRI (rs-fMRI) reflects local brain activity using the blood oxygen level-dependent (BOLD)

signal, which has been shown to be useful at distinguishing normal subjects, MCI, and AD

patients [18,19]. Connectivity analysis treats the whole brain as a complex interconnected net-

work, focusing on how activities in one region correlate with activities in another region [20–

22]. Researcher can apply well-established theories and tools of network graphs with nodes and

edges to quantify the connectivity of any given brain [21–24]. Centrality measure is used to

assess the importance of a region (i.e., node) within a network [25]. Eigenvector centrality is one

of several centrality measures that characterizes the prominence of a node in the network [26].

Eigenvector centrality can reflect both local and global characteristics of a given network [27].

Many studies have either employed a single modality (structural MRI or rs-fMRI) or mea-

sured global (i.e., not regional) connectivity properties in brains of AD or MCI patients [28–

30]. A multi-modal neuroimaging study could take advantage of complementary information

from different modalities and thus is better suited for analyzing AD and MCI brains. AD and

MCI alter brain structure and function in a localized manner [31,32]. Thus, a study focusing

on local properties of the brain is beneficial. Here, we employed multi-modal imaging to

explore local properties of AD and MCI brains. A region might have a unique connectivity pat-

tern that could be used to distinguish it from other regions [33]. A connectional fingerprint
refers to the unique connectivity information of brain regions. Unique connectivity informa-

tion can be derived from both functional MRI (via functional correlation) and structural MRI

(via morphology) [33–35]. Recently, a connectional fingerprint has been used to distinguish

between disease stages [34–36]. The changes in disease stage were reflected in an altered pat-

tern of connectional fingerprint information.

In this study, we sought connectional fingerprint information using eigenvector centrality

to identify a unique functional connectivity profile, and we used regional volume atrophy to

identify unique morphological profile in AD and MCI patients. The rationale behind our study

was to jointly explore regional atrophy and functional connectivity in subcortical regions for

MCI and AD. Many existing studies only considered rs-fMRI to report functional connectivity

change or structural MRI to report regional volume atrophy in subcortical regions to distinguish

among NC, MCI, and AD [28–30]. We aimed to (1) identify regions with significant regional

volume atrophy and eigenvector centrality that differ among NC, MCI, and AD groups; (2)

apply a machine learning framework, random forest (RF) classifier, to distinguish between three

patient groups using the identified regional information; and (3) present unique connectional

fingerprints of NC, MCI, and AD based on volume atrophy and eigenvector centrality.

Materials and methods

Subjects and imaging data

This study was a retrospective analysis of anonymized data, and institutional review board

(IRB) approval was obtained at Sungkyunkwan University. All data were obtained with
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informed written consent in accordance with established human subject research procedures

expressed in Declaration of Helsinki. Our study was performed in full accordance with the

local IRB guidelines. In this study, we obtained structural MRI and rs-fMRI images from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) research database [37]. The sample con-

sisted of 105 participants who were classified as normal control (NC) (n = 35), MCI (n = 40),

and AD (n = 30) with matched age and sex ratios. The groups were classified according to

the criteria set by the ADNI consortium [38]. In the NC group, patients had global clinical

dementia rating (CDR) scores of 0 and mini-mental state examination (MMSE) scores be-

tween 24 and 30. In the MCI group, patients had global CDR scores of 0.5 and MMSE scores

between 24 and 30. In the AD group, patients in the AD group had global CDR scores of 0.5 or

1.0 and MMSE scores between 20 and 26 [39,40]. Details regarding the patient groups, includ-

ing age and sex ratios, are reported in Table 1. There were no significant differences (p-value>

0.05) between the comparison groups in age or sex ratio. All MRI images were obtained using a

Philips medical system 3.0 T scanner. Structural MRI was performed with a T1-weighted mag-

netization-prepared rapid gradient-echo (MPRAGE) sequence with the following parameters:

TR = 6.77 ms, TE = 3.13 ms, slices = 32, voxel size = 1 mm isotropic, and image size = 256×
256×170 mm3. Rs-fMRI data were acquired with an EPI sequence with the following parame-

ters: TR = 3,000 ms, TE = 30 ms, slices = 32, voxel size = 3.3125 mm isotropic, image size =

256×256×170 mm3, and number of time series = 140.

Image pre-processing: Structural MRI

The pre-processing steps of structural MRI data were performed using the Athena pipeline

that combines AFNI and FSL neuroimaging pipelines [41,42]. The raw T1 images underwent

skull-stripping to remove non-brain tissue and background. The images were segmented into

white matter (WM), cerebrospinal fluid (CSF), and grey matter (GM). An initial linear regis-

tration was performed between the skull-stripped image and standard Montreal Neurological

Institute (MNI) structural template. The registration was subsequently refined by a non-linear

registration procedure. The skull-stripped registered images were smoothed by a 6-mm full

width at half maximum (FWHM) Gaussian filter.

Image pre-processing: rs-fMRI

The rs-fMRI data were pre-processed using the Athena pipeline. The first four volumes were

discarded to allow for magnetization to reach equilibrium. Slice timing was corrected to the

middle slice, and each volume was re-aligned to the first volume to correct for motion. All vol-

umes were linearly registered onto the corresponding T1 image [41,42]. The rs-fMRI onto T1

transform was then combined with the T1 to MNI non-linear registration to map the rs-fMRI

images onto the MNI space of 4×4×4 mm3. Mean WM and CSF time courses were extracted

Table 1. Demographic data of the NC, MCI, and AD groups. Values are reported as mean (standard

deviation).

NC (n = 35) MCI (n = 40) AD (n = 30)

Sex (M:F) 12:23 19:21 12:18

Age 76.06 (7.38) 74.30 (7.67) 74.00 (7.46)

CDR score 0.04 (0.14) 0.54 (0.21) 1.02 (0.38)

MMSE score 29.43 (1.14) 27.55 (2.15) 19.40 (3.62)

NC, Normal controls; MCI, Mild cognitive impairment patients; AD, Alzheimer’s disease patients; M, Male; F,

Female; CDR, Clinical dementia rating; MMSE, Mini-mental state examination

https://doi.org/10.1371/journal.pone.0173426.t001
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using WM and CSF masks. The nuisance signal was regressed out to remove variation due to

physiological noise and head motion using a third-order polynomial for the time series data.

The de-noised time series data were band-pass filtered (0.009 < f<0.08 Hz) to exclude fre-

quencies not implicated in resting state functional connectivity and then spatially smoothed

using a 6-mm FWHM Gaussian filter.

Calculating volumes of subcortical structures

We selected 10 subcortical regions (thalamus L/R, putamen L/R, hippocampus L/R, caudate

L/R, and amygdala L/R) known to show regional volume atrophy in AD patients compared to

normal subjects [9]. A linear registration between T1 image and MNI space was performed to

map the patient’s T1 image onto the standard space for fair comparison of regional volume.

Segmentations of subcortical regions were automatically performed by the FMRIB’s Integrated

Registration and Segmentation Tool (FIRST) in FSL using the registered T1 image [43]. Each

regional volume of subcortical region was calculated through voxel counting within segmented

regions using in-house MATLAB code (Mathworks Inc., Natick, MA, USA).

Functional network construction

We constructed individual functional networks based on correlation matrices using AFNI

[41]. Network construction requires regions of interest (ROIs) to investigate correlations

among brain regions These ROIs might be specified by transferring macroscopic brain struc-

ture information from a pre-defined brain atlas. We chose the Automated Anatomical Label-

ing (AAL) atlas to specify ROIs of the whole brain (Fig 1) [44]. Given a set of ROIs, we defined

the network using nodes and edges [21–24]. Nodes were pre-defined ROIs, and edges were

defined as correlation values between nodes. The edge values were entered as individual ele-

ments of a square matrix, which was referred to as the correlation matrix. We adopted un-

directed and un-weighted edges for simple network construction. Fisher’s r-to-z transforma-

tion was then performed on all correlation matrices. The correlation matrix was binarized by

applying a fixed-sparsity threshold. The thresholding was explored with a wide range of spar-

sity (1~50%). A threshold of 19%, the minimum value at which all nodes were connected in

the matrices of all subjects, was adopted.

Fig 1. Region of interest (ROI) specifications. A total of 10 ROIs were defined as the thalamus (L/R),

putamen (L/R), hippocampus (L/R), caudate (L/R), and amygdala (L/R).

https://doi.org/10.1371/journal.pone.0173426.g001
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Connectivity analysis

We quantified characteristics of functional networks using eigenvector centrality as a connec-

tivity measure [45]. A node’s eigenvector centrality is proportional to the sum of the eigenvec-

tor centralities of all nodes directly connected to it. Nodes have high eigenvector centrality if

they connect to other nodes that also have high eigenvector centrality. The centrality measure

is better suited for connectivity analysis as it considers complex interplay among many brain

regions with respect to a given region than using a single correlation value of a correlation

matrix, which considers only the correlation of a target region with respect to a given region.

The eigenvector centrality was computed at the minimum sparsity at which all ROIs were con-

nected. Brain regions showing significant differences in eigenvector centrality among NC and

MCI, NC and AD, and MCI and AD comparisons were identified within the 10 subcortical

regions. In brief, we sought to find alterations in functional connectivity of NC, MCI, and AD

groups through eigenvector centrality.

Statistical tests

Group-wise differences between NC and MCI, NC and AD, and MCI and AD were explored

in the 10 regions (thalamus L/R, putamen L/R, hippocampus L/R, caudate L/R, and amygdala

L/R) using non-parametric permutation tests with eigenvector centrality and subcortical vol-

umes [46]. Permutation test is an effective approach to correct p-values and address multiple

comparison issue using random assignment of comparison groups [47]. Permutation tests

were performed by randomly assigning subjects to three groups 5,000 times. Differences in

regional volume and eigenvector centrality value were considered significant if they did not

belong to the 95% of the null distribution derived from the permutation tests (p< 0.05, cor-

rected). All statistical analyses were performed using MATLAB.

Classification

A random forest (RF) classifier was used to distinguish among NC, MCI, and AD groups

using identified regional volume and eigenvector centrality values from the permutation tests

[48]. The RF classifier is an ensemble of decision-tree classifiers [49]. Each decision tree is gen-

erated by bootstrapping from the training data. To overcome the limited number of available

subjects, we applied the leave-one-out-cross validation (LOOCV) for separating training and

test data. For example, given 35 NC, 40 MCI, and 30 AD cases, we assigned one case as the test

set and used the remaining 104 cases as the training set for the random forest classifier. The

process was repeated 105 times, choosing a different test set each time. Classifier accuracy was

calculated by comparing the classifier outcome with known ground truth using MATLAB.

Results

Regional volume differences

The regional volumes of 10 subcortical regions were investigated using non-parametric per-

mutation tests with corrected p-values in order to identify significant atrophy differences

between NC and MCI, MCI and AD, and NC and AD patients. Brain regions with significant

(corrected p< 0.05) group-wise differences in volumes were identified. The significant regions

were as follows: two regions comparing NC and MCI patients (putamen L and hippocampus

R), three regions comparing MCI and AD (hippocampus L/R and amygdala R), and seven

regions comparing NC and AD patients (thalamus L/R, putamen L/R, hippocampus L/R, and

amygdala L). The number of regions with volumetric differences increased from 3 (between

NC and MCI) to 7 (between NC and AD) as the disease progressed from NC to AD. Most

Connectional fingerprints in mild cognitive impairment and Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0173426 March 23, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0173426


regions (i.e., 9 of 10) showed a trend of decreasing volume as the disease progressed from NC

to AD (Fig 2). However, the volume of amygdala R in MCI patients was larger than that of NC.

Further details regarding volume differences are reported in Table 2.

Functional connectivity differences

The eigenvector centrality of the subcortical regions was investigated using non-parametric

permutation tests with corrected p-values to find significant functional connectivity differ-

ences between NC and MCI, NC and AD, and MCI and AD patients. Eigenvector centrality

values were calculated at a sparsity of 19%, the minimum value at which all nodes were con-

nected [50]. Brain regions with significant (corrected p< 0.05) group-wise differences in

eigenvalue centrality were identified. The identified regions were as follows: one region com-

paring NC and MCI patients (hippocampus L), one region comparing MCI and AD (putamen

Fig 2. Connectional fingerprints to distinguish between comparison groups. Connectional fingerprints

between (A) NC and MCI, (B) NC and AD, and (C) MCI and AD using eigenvector centrality. Regions with

significant group-wise differences are marked with red text (p < 0.05). (D) Regional volumes are presented

using a horizontal box plot. Regions with significant group-wise differences are marked with asterisks (*: NC

and MCI, **: NC and AD, and ***: MCI and AD).

https://doi.org/10.1371/journal.pone.0173426.g002

Table 2. Regional volume values [cc] of subcortical regions (columns two, three, and four). Mean and standard deviation values are reported.

Regional volume differences between comparison groups (NC/MCI, NC/AD, and MCI/AD) are reported with corrected p-values (columns five, six, and seven)

for subcortical regions.

Regional volume Group-wise differences (Corrected p-value)

NC MCI AD NC & MCI NC & AD MCI & AD

Thalamus L 9.54 (0.81) 9.43 (0.81) 9.09 (1.04) 0.241 0.028 0.064

Thalamus R 9.31 (0.77) 9.14 (0.76) 8.93 (0.96) 0.131 0.035 0.143

Putamen L 5.83 (0.66) 5.45 (1.06) 5.16 (0.92) 0.020 0.001 0.130

Putamen R 5.95 (0.70) 5.66 (0.98) 5.49 (0.97) 0.054 0.015 0.254

Hippocampus L 4.66 (0.68) 4.41 (0.77) 3.66 (0.76) 0.071 <0.001 <0.001

Hippocampus R 4.96 (0.64) 4.67 (0.80) 4.06 (0.83) 0.039 <0.001 0.001

Caudate L 4.27 (0.60) 4.24 (0.54) 4.08 (0.60) 0.368 0.165 0.200

Caudate R 4.63 (0.67) 4.59 (0.50) 4.49 (0.67) 0.386 0.247 0.306

Amygdala L 1.73 (0.46) 1.58 (0.32) 1.47 (0.28) 0.055 0.002 0.066

Amygdala R 1.58 (0.36) 1.61 (0.30) 1.47 (0.29) 0.669 0.078 0.024

https://doi.org/10.1371/journal.pone.0173426.t002
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L), and four regions comparing NC and AD patients (thalamus L, putamen L, hippocampus L,

and caudate L). The left hippocampus showed lower centrality in MCI and AD group com-

pared to the NC group. This could be interpreted as functional degeneration occurring in MCI

and AD compared to NC. The left putamen also showed functional degeneration in NC and

MCI compared with AD. However, the other regions did not show significant differences

between any of the comparisons (NC and MCI, NC and AD, and MCI and AD). Further

details regarding functional connectivity differences are reported in Table 3.

Classifier performance

The identified regional volume and eigenvector centrality values were used as features of the

RF classifier in order to distinguish among NC, MCI, and AD cases. Features were selected if

p-values comparing NC/MCI, NC/AD, and MCI/AD groups were less than 0.05 for at least

two comparisons (Tables 2 and 3). Classifier accuracy was computed by comparing the classi-

fier outcome with the ground truth of NC, MCI, and AD assignments according to criteria set

by the ADNI consortium. The classifier accuracy value was achieved 53.33% for distinguishing

among NC, MCI, and AD cases. The classifier chose among three possible outcomes instead of

two outcomes unlike existing studies of choosing between two outcome [51].

Connectional fingerprint

The distinctive connectional information based on morphology and functional connectivity

for NC, MCI, and AD groups was established in the previous section. The connectional

Table 3. Eigenvector centrality values of subcortical regions (columns two, three, and four). Mean and standard deviation values are reported. Eigen-

vector centrality differences between comparison groups (NC/MCI, NC/AD, and MCI/AD) are reported with corrected p-values (columns five, six, and seven)

for subcortical regions.

Eigenvector centrality Group-wise differences (Corrected p-value)

NC MCI AD NC & MCI NC & AD MCI & AD

Thalamus L 0.041 (0.046) 0.030 (0.040) 0.023 (0.042) 0.139 0.032 0.226

Thalamus R 0.051 (0.059) 0.037 (0.049) 0.041 (0.059) 0.125 0.233 0.613

Putamen L 0.043 (0.047) 0.049 (0.061) 0.023 (0.037) 0.637 0.021 0.013

Putamen R 0.033 (0.042) 0.047 (0.057) 0.035 (0.058) 0.878 0.534 0.166

Hippocampus L 0.062 (0.060) 0.037 (0.037) 0.034 (0.053) 0.015 0.017 0.324

Hippocampus R 0.058 (0.059) 0.043 (0.055) 0.054 (0.072) 0.115 0.545 0.849

Caudate L 0.032 (0.035) 0.031 (0.048) 0.016 (0.032) 0.420 0.022 0.061

Caudate R 0.048 (0.054) 0.046 (0.058) 0.043 (0.060) 0.373 0.361 0.421

Amygdala L 0.081 (0.064) 0.062 (0.062) 0.068 (0.075) 0.100 0.234 0.671

Amygdala R 0.051 (0.057) 0.058 (0.065) 0.043 (0.061) 0.716 0.240 0.124

https://doi.org/10.1371/journal.pone.0173426.t003

Fig 3. Connectional fingerprints of three groups. Connectional fingerprints of (A) NC, (B) MCI, and (C) AD

using eigenvector centrality. The red line represents the mean value of the each group. The yellow line

represents the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0173426.g003
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fingerprint information is illustrated in a radar plot form in Figs 2, 3 and 4. Fig 2 shows con-

nectional fingerprints based on regional atrophy in order to distinguish comparison groups

using eigenvector centrality. Fig 3 shows connectional fingerprints of the three groups in

terms of eigenvector centrality. Functional degeneration occurring in AD and MCI compared

to NC was confirmed through eigenvector centrality radar plots (Fig 3). Functional degenera-

tion increased as the disease progressed from NC to AD, as shown by decreasing centrality val-

ues in thalamus L, hippocampus L, caudate L, and caudate R (Fig 4). Furthermore, the area

enclosed by the colored lines (green: NC, yellow: MCI, and red: AD) decreased as the disease

progressed from NC to AD. This is another way of visualizing the impact of AD progression.

Discussion

We confirmed volume atrophy and functional degeneration in subcortical regions using struc-

tural and functional MRI for AD and MCI patients. The functional degeneration was investi-

gated using eigenvector centrality. Group-wise differences of regional volume and eigenvector

centrality were quantified between NC and MCI, NC and AD, and MCI and AD using permu-

tation tests. We also performed classification using the regional volume and eigenvector cen-

trality values, which showed significant differences between comparisons. Finally, we showed

connectional fingerprints of NC, AD, MCI patients using functional connectivity and regional

volume atrophy of 10 subcortical regions.

Regional volume atrophy occurred in several subcortical regions. Two regions (putamen L

and hippocampus R) showed significant differences in volume between NC and MCI. Seven

regions (hippocampus L/R, thalamus L/R, putamen L/R, and amygdala L) showed significant

differences in volume between NC and AD. Three regions (hippocampus L/R and amygdala

Fig 4. Connectional fingerprints in radar plot form. Connectional fingerprints of NC (green), MCI (yellow),

and AD (red) based on eigenvector centrality. Plot of mean centrality values is given for the three groups.

https://doi.org/10.1371/journal.pone.0173426.g004
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R) showed significant differences between MCI and AD. These regions are known to be related

to MCI and AD [52,53]. Thus, our results confirmed existing research. Some regions that

showed significant volume differences between groups did not lead to functional degeneration

in terms of eigenvector centrality. A morphological change does not necessarily imply func-

tional connectivity change for regions, including thalamus R, putamen R, hippocampus R,

amygdala L, and amygdala R. Other studies have reported similar results of no change or

increase in centrality of AD/MCI compared with NC in those regions [54–56].

The eigenvector centrality showed significant differences in several regions. One region

(hippocampus L) showed significant differences between NC and MCI. Four regions (thala-

mus L, putamen L, hippocampus L, and caudate L) showed significant differences between NC

and AD. One region (putamen L) showed significant differences between MCI and AD. The

left hippocampus showed a significant difference in NC vs. MCI and NC vs. AD. The left puta-

men showed a significant difference in NC vs. AD and MCI vs. AD. Compared to NC, AD

patients showed decreased functional connectivity between the thalamus and other regions

[57]. AD patients also showed greater caudate and thalamic connectivity compared with NC

[58]. NC demonstrated increased connectivity of the hippocampus compared with AD [59].

Regions with decreased functional connectivity were found between the amygdala and default

mode network for AD patients [52]. Thus, our functional connectivity results are largely con-

sistent with existing research.

Connectional fingerprint information was visualized in a radar plot from, which allows

intuitive integration of local and global change information. Local information was easily

assessed by radial sampling of the radar plot. Global information could be easily assessed by

the area enclosed by each graph line (i.e., one group). For example, the area enclosed by the

lines of NC was larger than that of AD, which showed functional degeneration occurring over

10 regions as the disease progressed (Fig 4).

The RF classifier attained 53.33% accuracy in distinguishing among NC, MCI, and AD

using volume and eigenvector centrality of identified regions. As the classifier had to choose

from three outcomes the performance of baseline classifier is 33% unlike the binary classifier

with baseline performance of 50%. Our results of three label classifier were comparable with

existing studies of three label classification [60,61]. The best algorithm, developed by Sørensen

et al., achieved an accuracy of 63% in the 2014 Dementia challenge [61]. Their approach con-

sidered both cortical and subcortical regions and thus had more information to work with.

Our results fared worse because we focused on subcortical regions as our aim was to compute

connectional fingerprint information of subcortical regions. The connectional fingerprint

is succinct information to characterize the MCI and AD patients, which could serve as base-

line information for future artificial intelligence (AI) related approaches. Many AI methods

could benefit if there is an established feature space where comparison groups are distinctly

separated.

We performed additional analyses adding posterior cingulate cortex (PCC) and precuneus

regions. The results were reported in the Table C in S2 File and Table D in S2 File.

We performed the same set of functional connectivity analyses using a different atlas.

Brainnetome atlas is a structural atlas with 246 sub-regions similar to AAL atlas [62]. The

Brainnetome atlas has more regions than the AAL atlas and thus we had to merge a few regions

into one region for some subcortical regions. For example, eight thalamus sub-regions were

merged into one thalamus region in each hemisphere. Using the Brainnetome atlas, the

regions with significant eigenvector centrality differences were as follows. Putamen L was

found comparing NC and MCI, putamen R and hippocampus L were found comparing NC

and AD, amygdala R was found comparing NC and AD, and amygdala R was found compar-

ing MCI and AD. Eigenvector centrality values of subcortical regions using the Brainnetome
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atlas are reported in the Table A in S2 File. Previously using the AAL atlas, we found hippo-

campus L for comparing NC and MCI, putamen L for comparing MCI and AD, thalamus,

putamen L, hippocampus L, and caudate L for comparing NC and AD. Results were partially

consistent between using AAL and Brainnetome atlases. Two regions, hippocampus L and

putamen L, were consistently found in using two atlases out of four regions (i.e., hippocampus,

putamen, thalamus, and caudate). One possible reason for this result is that we adopted eigen-

vector centrality for assessing nodal connectivity. The eigenvector centrality of a given node is

affected by the functional connectivity of all the nodes (i.e., regions) connected to the given

node. Atlases might have differences how structural regions are defined. On average, a cen-

troid of a specific region would be similar among atlases, but the periphery of a specific region

might differ. These differences in specifying regions would lead to differences in nodal specifi-

cation and might eventually affect eigenvector centrality. Wang et al. reported that centrality

measures were unstable if different atlases were adopted [63]. They reported that 70–80% of

the elements in the connectivity matrix led to low intra-class correlation coefficient (ICC) and

only 20–30% of the elements in the connectivity matrix led to fair or high ICCs for comparing

test and re-test reliability of different atlases.

Our study has a few limitations. First, we chose eigenvector centrality as a connectivity mea-

sure to differentiate regions in the brain network. There are other connectivity measures

including degree centrality, similarity, and clustering could be jointly investigated to provide a

better quantification of brain networks. Second, our study considered structural MRI and rs-

fMRI. If we add another modality such as diffusion-weighted imaging, PET, or SPECT, it

might provide complementary information to better quantify the functional brain network.

Finally, a longitudinal study is necessary to assess the stability of our findings.

Our study reported significant brain regions that showed regional volume atrophy and

functional degeneration using regional volume and eigenvector centrality for MCI and AD. A

connectional fingerprint in terms of radar plot was given for NC, MCI, and AD groups to

effectively visualize fingerprint information.
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