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Abstract

In social networks, individuals have relationships with their neighbor nodes (acquaintance

contacts) and also randomly contact other nodes without direct links (stranger contacts).

However, these two types of contact patterns are rarely considered together. In this pa-

per, we propose a modified SIS (Susceptible-Infected-Susceptible) model in which a

node not only contacts neighbor nodes but also randomly contacts other nodes in the net-

work. We implement the model on a scale-free network and study the influence of differ-

ent types of contact patterns on epidemic dynamics as well as three possible strategies

people adopt when disease outbreaks. The results show that a greater preference for

acquaintance contacts makes a disease outbreak less likely. Moreover, the best protec-

tive strategy to control the disease is to adjust both the contact number and the contact

pattern. In addition, the epidemic is more likely to be controlled when individuals take

more information into consideration.

Introduction

Large-scale outbreaks of infectious diseases result in high mortality and morbidity and also

create huge economic burdens for society. Therefore, research on the mechanism of contagion

and measures to prevent spread are always of interest. Many infectious diseases spread through

physical contact, which follows different patterns for different people. The contact patterns of

the population determine who is most at risk for infection and greatly affect how the epidemic

spreads [1]. Therefore, to understand the disease spreading process and propose effective con-

trol strategies, it is necessary to incorporate contact patterns into infectious disease transmis-

sion models.

Previous studies analyzing disease spreading mostly considers two main mixing patterns of

the population. The first is homogeneous mixing, and the second is based on network struc-

ture; corresponding to the two mixing patterns, mathematical models and complex network

theory are the two most popular tools for infectious diseases modeling [2, 3]. Mathematical

models have long been applied to study the spread of infectious diseases and are still widely

used [4, 5]. A traditional mathematical model is expressed in the form of differential equations

and is based on mean-field theory. With the emergence and development of complex network
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theory, scholars used complex networks to describe the contact networks of the population

and to study the disease transmission process and control strategies on the network structure

[6–8]. In the contact network, nodes represent individuals, and links (or edges) correspond to

the relationships among people. Viruses can spread from one node to the other node through

the links (edges) between them.

However, most existing studies are based on some assumptions that differ from the real

world. The traditional mathematical disease models assume that the population is fully mixed

such that each individual has an equal chance of contacting any other member of the popula-

tion [9, 10]. Due to the complexity of the contact patterns of people, this simple assumption

cannot completely capture the real spatial structure and interactions of a population. The com-

plex network-based models make an assumption that an individual can contact their social or

spatial neighbors based on the network structure [7, 11, 12]. Small-world, random, scale-free

and regular networks are the most commonly used network structure models. Although these

network models help to analyze and imitate the complex spreading process of infectious dis-

eases, it is not all-inclusive. People in the real world always communicate with others in differ-

ent ways. At the same time, they not only contact their friends but also may inevitably contact

strangers, which is referred to here as temporary contact. Temporary contact is transient and

random with respect to time and place, which may affect the spread of disease. In other words,

the contact network is not an absolute static network or fully mixed, but rather a network that

adds dynamic contacts to a basic static network.

In response to a disease outbreak, people may take protective measures to reduce their

infection risk, including receiving vaccination, reducing contact frequency, avoiding contact

with the infected, and taking everyday precautions (such as washing hands, wearing masks,

etc.) [8, 13–21]. Reducing contact intensity is an effective and cost-saving measure that people

often adopt voluntarily. V.S. Del et al. applied a mathematical model to study the effects of

reducing daily contact activity rate in a smallpox attack and found that even gradual and mild

behavior changes can have a dramatic impact on slowing the spread of the epidemic [22].

However, previous studies ignore contacts with strangers and always model the effect of con-

tact adjustment using a change in parameters (infection rate or susceptibility rate). Focusing

on the contact adjustment, we divide infection rate into the transmission probability per con-

tact and the contact number per time. The transmission probability per contact is constant,

while the contact number changes with time. In addition, most studies assume that behavioral

responses are based on disease-related information. In this study, we assume that people adjust

their contact number according to the three following types of information: contact informa-

tion, local information and global information. We propose three strategies that people may

adopt in response to a disease outbreak and investigate their effect on disease spread while

considering contact with strangers.

The rest of this paper is arranged as follows. In Section 2, the proposed model is briefly

described, and the definitions of two contact patterns and three disease response strategies are

presented. We investigate the influence of different contact patterns on disease spread and pro-

vide the simulation results in Section 3. Section 4 gives the conclusions.

Model

The susceptible-infected-susceptible (SIS), susceptible-infected-recovered (SIR), and suscepti-

ble-infected (SI) models are the classical models for studying the spread of disease [11, 12, 23,

24]. In this study, we adopt the susceptible-infected-susceptible (SIS) model to study the effect

of different contact patterns on transmission dynamics of disease. In the SIS model, a suscepti-

ble (S) node will be infected at a rate of β after contact with an infected neighbor. At the same
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time, an infected (I) node will return to the susceptible state at a rate of γ, yielding an effective

transmission ratio λ = β/γ. Without losing generality, we can set γ = 1 [9].

Considering that people accumulate many friends over time, and the number of friends

varies among individuals, scale-free networks were adopted to describe the scale-free charac-

teristic of the social contact network in the real world [24]. The classical disease transmission

on scale-free networks assumes that each node can contact all their surrounding neighbors at

each time point. Pastor-Satorras and Vespignani studied the SIS model on scale-free networks

using this assumption, and simulation and analytic results found that the SIS model with a

scale-free network does not show threshold behavior; in other words, even diseases with very

low infectivity have the potential to cause epidemics [12]. Rui Yang studied the SIR model

using scale-free networks with identical infectivity and assumed that each node could only

generate identical and constant contacts with neighbors; simulation and analytic results

showed a threshold behavior in this model that was independent of network structure and

inversely proportional to the number of contacts [24].

In this study, we consider new contact patterns that differ from previous studies and pro-

pose three further strategies. We provide a detailed introduction in the following three parts.

Contact patterns

Contact patterns determine individuals’ interactions with others. They further determine dis-

ease evolution from a global perspective as well as infection risk from an individual perspec-

tive. Most previous models of epidemic spreading based on complex networks that assume

viruses can only spread through links (representing social relationships) are not perfect. In this

study, we classify contact patterns as acquaintance contacts and stranger contacts according to

whether the contact occurs among the nodes with social relationships. We define contacts

through the existing social relationship (network edges) as acquaintance contacts, while tem-

porary and random contacts among strangers are defined as stranger contacts. Obviously,

these two types of contact patterns have essential differences. Acquaintance contacts occur in a

relatively local, small and fixed set of nodes (referred to as circle of friends). However, stranger

contacts may occur between any two nodes in the entire contact network. From a long-term

perspective, acquaintance contacts are repeated and have a high contact frequency with the

same individual. By contrast, stranger contacts always represents new contacts with different

people, and the inevitable physical contacts between strangers vary greatly with time (there is a

low probability of meeting the same stranger twice in a relatively large population). Social rela-

tionships are different from social contacts. In our study, the social network is static during the

spread of the disease (a relatively short time), which rules out the possibility of new social ties

forming, and we add stranger contacts to the static social network to obtain a dynamic contact

network.

We assume that each node makes A0 contacts with other nodes at each time point (without

considering self-protective measures), where A0 is the same for every node [11, 24]. A node is

allowed to contact with the same node multiple times. Individuals can simultaneously contact

friends and strangers. We define the proportion of acquaintance contacts as μ and the propor-

tion of stranger contacts as 1-μ. We define the acquaintance contacts number as AA = A0μ and

the stranger contacts number as AS = A0 (1-μ). We study the effect of μ on two main properties

of epidemic dynamics, including the threshold and the final size of the spread of epidemic.

Adjustment of contact number according to disease information

When a disease outbreak occurs, people adjust their contact behavior to protect themselves

from infection. In the era of information, people adjust their contact behavior based on various
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information obtained from different channels, including social networks, newspapers, and

public health authorities. Information about disease can inspire protective awareness of peo-

ple. In a prior publication [25], the author classified information into prevalence-based infor-

mation or belief-based information according to the type of information and classified the

information into global information or local information according to the source of informa-

tion. Different articles use different sources and types of information to study the effect of

information-driven behavior changing on the epidemic dynamics.

In this study, we consider the following three forms of information: contact information,

local information and global information [26, 27], which together can better capture the diver-

sity and complexity of real information. Local information comes from social or spatial neigh-

bors, and it refers to the infection proportions of the surrounding neighbors within three

degrees of separation, which differs from previous studies. Most previous studies assume that

local information refers to the infection proportion of direct neighbors. However, based on the

Three Degrees of Influence Rule proposed by N.A. Christakis et al. [28], people’s behaviors are

influenced not only by their direct friends but also by their friends’ friends and their friends’

friends’ friends. In addition, due to the dissemination of information in social networks, indi-

viduals can acquire infection information about neighbors’ neighbors or neighbors’ neighbors’

neighbors and then adopt protective behavior before an infection occurs in a direct friend.

Thus, for local information, the influence of infection proportions within three degrees of sep-

aration is considered. Global information is publicly available to everyone and refers to the

infection proportion of the whole population. Local information and global information are

prevalence-based information. Contact information is belief-based information and refers to

the node degree, which implies that the greater degree a node possesses, the higher risk a node

perceives.

We introduce 1/ki to characterize contact information, where ki represents the degree of

node i. The bigger the degree of the node i has, the higher risk of infection the node i perceives.

Local information refers to infection proportions of the individual’s neighbors within three

degrees of separation. I1
i ðtÞ=k1

i , I2
i ðtÞ=k2

i , and I3
i ðtÞ=k3

i represent the infection proportion of

node i’s direct neighbors, infection proportion of node i’s neighbors’ neighbors, and infection

proportion of node i’s neighbors’ neighbors’ neighbors at time t, whereas k1
i ; k

2
i and k3

i repre-

sent the number of node i’s direct neighbors (equal to the degree of node i), the number of

node i’s neighbors’ neighbors, and the number of node i’s neighbors’ neighbors’ neighbors,

and I1
i ðtÞ; I

2
i ðtÞ and I3

i ðtÞ represent the infection number of node i’s direct neighbors, the

infection number of node i’s neighbors’ neighbors, and the infection number of node i’s neigh-

bors’ neighbors’ neighbors at time t. Given that social influence decays with social distance

among individuals (the father the social distance, the less the social influence), our model

introduces δ as the attenuation coefficient and defines Li ¼
I1
i ðtÞ=k1

i þð1� dÞI2
i ðtÞ=k2

i þð1� dÞ2I3
i ðtÞ=k3

i
1þð1� dÞþð1� dÞ2

as the

sum local information with three degrees of separation. As shown in the above equation, with

increasing attenuation coefficient δ, the social influence of neighbors at farther distance will be

smaller. Particularly, δ = 1 means that only direct neighbors can exert influence on the contact

behavior of an individual; δ = 0 means that all neighbors have the same influence on contact

behavior of an individual, regardless of social distance. We introduce Gi = Ig(t)/N to character-

ize global information received by node i at time t, Ig(t) refers to the number of infected indi-

viduals in the entire network and N is the network size.

The initial contact number is A0, and individuals will take the three types of information

described above into account to adjust the contact number. Different information exerts dif-

ferent influences on the contact behavior of people. Referring to [26, 27], the equation for the

Contact pattern and disease transmission dynamics
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contact number of node i at time t is given as follows:

AiðtÞ ¼ A
0
ð1 � bLiÞð1 � cGiÞ=ka

i ð1Þ

Where a, b, and c are the influencing factors of contact information, local information and

global information, respectively, and a� 0, 0� b� 1, 0� c� 1. Considering that the node

will have acquaintance contacts and stranger contacts, we have AiðtÞ ¼ AA
i ðtÞ þ AS

i ðtÞ.

Protective strategies

The contact behavior of an individual consists of two important properties: contact number

and contact patterns. From the above section, we can determine the contact number of each

node at each time according to three types of information. However, when faced with the

risk of disease, individuals may show different responses. Some people do not react to the

spread of disease and take no protective measures. Some think that reducing contact num-

ber is important (exposure to acquaintances and contact with strangers has the same risk of

infection). Others are more sensitive to outside risk and think it is safer to have contact with

familiar people than with strangers, so they reduce travel and avoid crowded places. Thus,

people may use one of the following three strategies: doing nothing (strategy 1), changing

only contact number (strategy 2), or adjusting both contact number and contact patterns

(strategy 3).

Strategy 1 indicates that people maintain normal contact behavior as if no disease was pres-

ent. Namely, at any given time, people maintain the same contact number and have an

unchanged ratio of acquaintance contacts to stranger contacts. Thus, we have:

AiðtÞ ¼ A0; AA
i ðtÞ ¼ A0m; AS

i ðtÞ ¼ A0ð1 � mÞ:

Strategy 2 means that people adjust their contact number according to the disease informa-

tion, but the proportion of acquaintance contacts and stranger contacts remains unchanged.

In this situation, the contact number of node i at time t can be given as Eq (1), while

AiðtÞ ¼ A
0
ð1 � bLiÞð1 � cGiÞ=ka

i AA
i ðtÞ ¼ AiðtÞm and AS

i ðtÞ ¼ AiðtÞð1 � mÞ:

In strategy 3, individuals not only reduce their contact number according to the disease

information (described in Eq (1)) but also change the ratio of acquaintance contacts to

stranger contacts (reduce their stranger contacts first and then change their acquaintance con-

tacts). Therefore, the acquaintance contacts number is defined as follows:

AA
i ðtÞ ¼

A0m when AiðtÞ � A0m

AiðtÞ when AiðtÞ � A0m
ð2Þ

(

Then, according to AiðtÞ ¼ A
0
ð1 � bLiÞð1 � cGiÞ=ka

i ; AiðtÞ ¼ AA
i ðtÞ þ AS

i ðtÞ, the stranger

contacts number is:

AS
i ðtÞ ¼

AiðtÞ � A0m when AiðtÞ � A0m

0 when AiðtÞ � A0m
ð3Þ

(

Namely, when individuals perceive some but not very serious risk of infection, they will

reduce some stranger contacts (reduce travel, going out and avoid public or crowed places)

but keep normal contact with their circle of friends; when they perceive a high risk of infection,

they will stay home (only contact their family members and eliminate stranger contacts), avoid

public places and stay home from school or work (avoid strangers and some friends).

Contact pattern and disease transmission dynamics
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Simulations and results

Because it is difficult to mathematically describe the disease transmission dynamics of popula-

tions with complex structure, we used simulation to study the effect of different types of con-

tact patterns and protective strategies on epidemic dynamics. First, the disease spreading

process is triggered by a randomly selected 1% of infectious individuals. After the disease

breaks out, each susceptible individual i obtain infection with probability 1 � ð1 � bÞ
AinfðtÞ ,

where Ainf(t) is the contact number of i with infected individuals (effective contact number) at

time t. Once an individual is infected, he will recover from the infection and become suscepti-

ble at a rate of γ at each time point. All simulations are processed on a scale-free network of

2000 nodes with degree distribution p(k) * k−2.35 (for most real social networks, the exponent

is between 2 and 3). The dynamic simulation process is terminated when there is no infected

node in the network or when the simulation time is over 1000 steps. The following results of

Fig 1 and Fig 2 are the average of 50 independent realizations, results of Figs 3–7 are the aver-

age of 30 independent realizations.

The effect of contact patterns on the epidemic dynamics

In this part, we investigate the effect of the contact patterns on the epidemic dynamics without

considering the influence of information on the contact behavior of individuals. We denote

the number of final infected nodes in the network as I1. A larger I1means heavier spreading.

Fig 1 illustrates how the initial contact number A0 affects the epidemic prevalence and epi-

demic transmission threshold by increasing the effective transmission rate λ under different

ratios of acquaintance contacts. Fig 1 shows that the contact number A0 has a similar effect on

the final epidemic size and epidemic transmission threshold under different ratios of acquain-

tance contacts. The epidemic transmission threshold decreases with A0; namely, the epidemic

can spread through the population more easily as A0 increases. When the effective transmis-

sion rate λ is not very big, the final epidemic prevalence increases with A0. However, when λ is

large enough, for example λ = 1, the epidemic can spread easily through the entire population.

Fig 1. The effect of contact frequency A0 on the prevalence and threshold of epidemic. In each of the 6

panels, I1(the final epidemic prevalence) as a function of the effective spreading rate λ on a scale-free

network of 2000 nodes with degree distribution p(k) * k−2.35. In each subpanel, there are three color lines, the

black, red and blue curves represent contact number A0 = 4,5,6, respectively.

https://doi.org/10.1371/journal.pone.0173411.g001
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In this situation, the effect of A0 is not so evident, and the final epidemic size is nearly the

same. The effect of contact number A0 on disease spreading dynamics is consistent with the

conclusion of [11].

Fig 2 illustrates how the ratio of acquaintance contacts influences the disease transmission

dynamics under different contact numbers A0. From Fig 2, the proportion of acquaintance

Fig 2. The effect of acquaintance contacts ratio μ on the prevalence and threshold of epidemic. In

each of the 3 panels, I1(the final epidemic prevalence) as a function of the effective spreading rate λ on a

scale-free network of 2000 nodes with degree distribution p(k) * k−2.35. In each subpanel, there are 6 color

lines, that represent different acquaintance contacts ratios μ = 0, 0.2, 0.4, 0.6, 0.8, and 1.

https://doi.org/10.1371/journal.pone.0173411.g002

Fig 3. The effect of three strategies on the epidemic dynamics. In each of the 3 panels, I1(the final

epidemic prevalence) as a function of the effective spreading rate λ on a scale-free network of 2000 nodes

with degree distribution p(k) * k−2.35. In each subpanel, there are three color lines: the black, red and blue

line, represent strategy 1 without any contact behavior adjustment, strategy 2 (adjustment of contact number)

and strategy 3 (adjustment of both contact number and contact patterns), respectively. The other parameters

are set to: A0 = 5,μ = 0.6,a = 0.2,b = 0.2,c = 0.2,δ = 0.5 in the panel 3–1, A0 = 5,μ = 0.6,a = 0.5,b = 0.2,c = 0.2,

δ = 0.5 in the panel 3–2, A0 = 5,μ = 0.6,a = 1,b = 0.2,c = 0.2,δ = 0.5 in the panel 3–3.

https://doi.org/10.1371/journal.pone.0173411.g003
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contacts μ also has an effect on the final epidemic prevalence and epidemic threshold. When

the contact number is fixed, the epidemic transmission threshold will increase as μ goes

beyond a certain value under different contact numbers. In most cases, greater μ leads to a

smaller epidemic prevalence. At the same time, from Figs 1 and 2, we can see that reducing

contact number can increase epidemic transmission threshold more effectively than increasing

the proportion of acquaintance contacts. Therefore, when the epidemic outbreaks in the popu-

lation, we should first reduce exposure to the disease as much as possible, and it is wise to con-

fine our activities to social or spatial neighbors.

Protective strategies

In this part, we study the effects of three strategies on the spread dynamics of disease. We

mainly compare the effective of strategy 2 and strategy 3 and take strategy 1 as a baseline. We

compare strategy 2 and strategy 3 under three situations: a = 0.2, a = 0.5 and a = 1. To focus

on the effect of three strategies, we fix other parameters as A0 = 5, μ = 0.6, b = 0.2, c = 0.2, and

δ = 0.5. Under these three parameter combinations, we study how the epidemic threshold and

final prevalence varies with the effective transmission rate λ under different strategies. The

results show that strategy 2 and strategy3 are significantly superior to strategy 1 and strategy 1

has the smallest epidemic transmission threshold. In most cases, strategy 3 yields a smaller

final prevalence than strategy 2 when strategy 2 and strategy 3 have the same epidemic trans-

mission threshold (Fig 3-1 and 3-3). Even in the case of a = 0.5, the epidemic threshold of strat-

egy 3 is bigger than strategy 2 (Fig 3-2). The results imply that the difference between strategy

2 and 3 depends the impact of information. When the impact of information is very small

(a = 0.2), the adjustment of contact behavior is unobvious, then the difference between strategy

2 and strategy 3 is not large. When the impact of information is very larger (a = 1), strategy 2

and strategy 3 can both enhance the epidemic transmission threshold, we can only observe the

difference between strategy 2 and strategy 3 from the final epidemic prevalence. When the

impact of information is medium (a = 0.5), the difference between strategy 2 and strategy 3 is

Fig 4. The effect of the contact information influencing factor a on the epidemic transmission

dynamics. In this figure, I1 (the final epidemic prevalence) as a function of the contact information influencing

factor a on a scale-free network of 2000 nodes with degree distribution p(k) * k−2.35. The other parameters

are set to A0 = 5,β = 0.3,γ = 1,μ = 0.6,b = 0.2,c = 0.2,δ = 0.5.

https://doi.org/10.1371/journal.pone.0173411.g004
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obvious, strategy 3 can enhance the epidemic transmission threshold, strategy 2 can reduce the

final propagation range but cannot change the epidemic transmission threshold. The above

result implies that adjusting contact number is an effective strategy to control the spread of dis-

ease, as shown in previous studies [11]. However, adjusting the contact pattern can improve

the effectiveness of adjusting the contact number. Therefore, in addition to taking some com-

pulsory measures (closing schools, canceling some flights, etc.), governments can also use edu-

cation to influence contact behavior of people and help people take effective self-protective

Fig 5. The effect of the local information influencing factor b on the epidemic spreading dynamics

under strategy 2. In this figure, I1(final prevalence) as a function of the local information influencing factor b

under strategy 2 on a scale-free network of 2000 nodes with degree distribution p(k) * k−2.35. The other

parameters are set to A0 = 5,β = 0.3,γ = 1, μ = 0.6,a = 0.2,c = 0.2,δ = 0.5.

https://doi.org/10.1371/journal.pone.0173411.g005

Fig 6. The effect of the local information influencing factor of on the epidemic spreading dynamics

under strategy 3. In this figure, I1 (final prevalence) as a function of the local information influencing factor b

under strategy 3 on a scale-free network of 2000 nodes with degree distribution p(k) * k−2.35. The other

parameters are set to A0 = 5,β = 0.3,γ = 1, μ = 0.6,a = 0.2,c = 0.2,δ = 0.5.

https://doi.org/10.1371/journal.pone.0173411.g006
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measures. For example, when disease occurs, governments can release disease-related informa-

tion through the mass media, thus enhancing the protective awareness of people and educating

them to adopt effective and feasible measures; this may include canceling some public activities

(community activities), reducing the use of public transport (for example, by biking or walking

if traveling to a nearby location) and avoiding crowds. These self-protective behaviors could

eventually achieve the goal of eliminating the disease.

The effect of the information influences on the epidemic dynamic

In this part, we study the effect of three information influences on the epidemic dynamics. The

influencing factors of contact information, local information and global information are a, b,

and c, respectively. With more influencing factor of information, the impact of this informa-

tion on individual contact behavior is also greater. From Fig 4, we can see that as a increases,

the final epidemic size decreases sharply, and the epidemic size becomes 0 beyond a certain

value. In addition, we can obviously see that strategy 3 can better prevent the spread of disease

than strategy 2. The impact of local information on the epidemic dynamics is also related to

the attenuation coefficient δ. Thus, we explored the impact of local information and attenua-

tion coefficient δ together on the epidemic dynamics. From Figs 5 and 6 (corresponding the

effect of local information on disease transmission dynamics in the cases of strategy 2 and

strategy 3, respectively), we find that the final epidemic size decreases with b (local informa-

tion). In addition, when the influencing factor of local information b is not very large, the

decreasing tendency for different attenuation coefficient δ is nearly the same. But as the

influencing factor of local information b increases to a large value, we can observe that the

largest attenuation coefficient δ means the largest final prevalence. In other words, when

individuals’ contact behavior is affected only by direct neighbors, the final range is largest.

Namely, the epidemic is more likely to be controlled when individuals take more informa-

tion into consideration.

Fig 7. The effect of the global information influencing factor c on the epidemic spreading dynamics.

In this figure, I1 (the final epidemic prevalence) as a function of the global information influencing factor c on

a scale-free network of 2000 nodes with degree distribution p(k) * k−2.35. The other parameters are set to

A0 = 5,β = 0.3,γ = 1, μ = 0.6,a = 0.2,b = 0.2,δ = 0.5.

https://doi.org/10.1371/journal.pone.0173411.g007
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Fig 7 shows the relationship between c (global information) and the final epidemic size. We

conclude that the final epidemic size decreases as c increases. In summary, contact information

has the greatest impact. Local information and global information have a modest influence,

and the influence of local information on the prevalence of disease is affected by the attenua-

tion coefficient δ.

Conclusions

Contact patterns are important factors that affect the dynamic of disease transmission. A good

understanding of the effect of contact patterns on the epidemic dynamics could be exploited to

control the spread of disease by imposing some effective influence on the contact patterns of

people. Due to the complexity of the contact behavior of people, the simple assumptions of a

fully mixing population and fixed contact network structure cannot capture the real contact

behavior of the population. Therefore, taking both contacts among acquaintances (network

structure) and contacts among strangers (fully mixed) into consideration is more reasonable.

Based on previous studies, we classified contact into acquaintance contacts and stranger con-

tacts and explored the effect of different contact patterns on the disease dynamics. We further

investigate the effects of contact behavior adjustment based on three types of disease related

information. Different from previous studies, we used the infection proportion of surrounding

neighbors within three degrees of separation as local information. In addition, we proposed

three strategies when adding stranger contacts into the contact behavior of people and com-

pared the effectiveness of the three strategies.

The simulation results show that the threshold of infectious disease is not only affected by

the contact frequency but also influenced by the ratio of acquaintance contacts to stranger con-

tacts. The greater the ratio, the more difficulty the disease has in spreading through the popula-

tion. However, adjusting the ratio of acquaintance contacts and stranger contacts is not as

effective as adjusting the contact frequency. Moreover, first reducing stranger contacts may

better inhibit disease spreading. A possible explanation is that reducing stranger contacts

could confine disease to a local region and contribute to the reduction of disease. In addition,

epidemics can be better controlled when the attenuation coefficient of influence decreases; this

means that epidemics can be best controlled when neighbors with three degrees of separation

have identical influence on contact behavior.

In this study, we assumed that each node has identical initial contact frequency and the

same ratio of acquaintance contacts to stranger contacts. However, heterogeneity exists in con-

tact behavior, which means that different nodes have different contact frequencies and differ-

ent contact patterns. In the future, we can study the effect of heterogeneity of contact patterns

on epidemic dynamics. In addition, there are some hub nodes in scale-free networks, and

these hub nodes play an important role in disease transmission. We can further study the role

of hub nodes in epidemic spread with different contact patterns.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Award #:

71272057, 71572013), the Beijing Natural Science Foundation (Award #: 9152015) and Joint

Development Program of Beijing Municipal Commission of Education.

Author Contributions

Conceptualization: QY TS.

Data curation: TS CD.

Contact pattern and disease transmission dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0173411 March 14, 2017 11 / 13

https://doi.org/10.1371/journal.pone.0173411


Formal analysis: TS.

Funding acquisition: ZY.

Investigation: TS.

Methodology: TS.

Project administration: ZY.

Resources: ZY.

Software: TS CD.

Supervision: QY TS.

Validation: QY TS.

Visualization: TS ZY.

Writing – original draft: TS.

Writing – review & editing: TS ZY.

References
1. Wallinga J, Edmunds WJ, Kretzschmar M. Perspective: human contact patterns and the spread of air-

borne infectious diseases. Trends in Microbiology. 1999; 7(7):372–377.

2. May RM, Lloyd AL. Infection dynamics on scale-free networks. Phys Rev E. 2001; 64(6):116–126.

3. Kermack WO, Mckendrick AG. A Contribution to the Mathematical Theory of Epidemics. Royal Society

of London Proceedings. 1927; 115(772):700–721.

4. Zhang J, Jin Z, Sun GQ, Zhou T, Ruan S. Analysis of Rabies in China: Transmission Dynamics and

Control. Plos One. 2011; 6(7): e20891. https://doi.org/10.1371/journal.pone.0020891 PMID: 21789166

5. Zou L, Zhang W. Age-Structured Model for the Transmission Dynamics of Hepatitis B. SIAM Journal on

Applied Mathematics. 2010; 70(8):3121–3139.

6. Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks. Phys

Rev E. 2001; 63(6).

7. Vazquez A. Spreading dynamics on small-world networks with connectivity fluctuations and correla-

tions. Phys Rev E. 2006; 74.

8. Gross T, CJ D, Blasius B. Epidemic dynamics on an adaptive network. Physical Review Letters. 2006;

96(20):208701–208701. https://doi.org/10.1103/PhysRevLett.96.208701 PMID: 16803215

9. Anderson RM, May RM, Anderson B. Infectious diseases of humans: dynamics and control: Wiley

Online Library; 1992.

10. Hethcote HW. The mathematics of infectious diseases. SIAM review. 2000; 42(4):599–653.

11. Zhou T, Liu JG, Bai WJ, Chen G, BH W. Behaviors of susceptible-infected epidemics on scale-free net-

works with identical infectivity. Phys Rev E Stat Nonlin Soft Matter Phys. 2006; 74(5):121–137.

12. Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks. Physical Review Letters.

2001; 86(14):3200–3. https://doi.org/10.1103/PhysRevLett.86.3200 PMID: 11290142

13. Fenichel EP, Carlos CC, Ceddia MG, Gerardo C, Parra PAG, Hickling GJ, et al. Adaptive human behav-

ior in epidemiological models. Proceedings of the National Academy of Sciences of the United States of

America. 2011; 108(15):6306–6311. https://doi.org/10.1073/pnas.1011250108 PMID: 21444809

14. Valdez L, Macri PA, Braunstein LA. Temporal percolation of a susceptible adaptive network. Physica A:

Statistical Mechanics and its Applications. 2013; 392(18):4172–4180.

15. Zhang H, Fu F, Zhang W, Wang B. Rational behavior is a ‘double-edged sword’when considering volun-

tary vaccination. Physica A: Statistical Mechanics and its Applications. 2012; 391(20):4807–4815.

16. Miller JC, Hyman JM. Effective vaccination strategies for realistic social networks. Physica A: Statistical

Mechanics and its Applications. 2007; 386(2):780–785.

17. Mao L. Evaluating the combined effectiveness of influenza control strategies and human preventive

behavior. PLoS One. 2011; 6(10):e24706. https://doi.org/10.1371/journal.pone.0024706 PMID:

22043275

Contact pattern and disease transmission dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0173411 March 14, 2017 12 / 13

https://doi.org/10.1371/journal.pone.0020891
http://www.ncbi.nlm.nih.gov/pubmed/21789166
https://doi.org/10.1103/PhysRevLett.96.208701
http://www.ncbi.nlm.nih.gov/pubmed/16803215
https://doi.org/10.1103/PhysRevLett.86.3200
http://www.ncbi.nlm.nih.gov/pubmed/11290142
https://doi.org/10.1073/pnas.1011250108
http://www.ncbi.nlm.nih.gov/pubmed/21444809
https://doi.org/10.1371/journal.pone.0024706
http://www.ncbi.nlm.nih.gov/pubmed/22043275
https://doi.org/10.1371/journal.pone.0173411


18. Dong C, Yin Q, Liu W, Yan Z, Shi T. Can rewiring strategy control the epidemic spreading? Physica A

Statistical Mechanics & Its Applications. 2015; 438:169–177.

19. Wu ZX, Zhang HF. Peer pressure is a double-edged sword in vaccination dynamics. Epl. 2013; 104

(1):10002–7(6).

20. Yamin D, Gavious A, Solnik E, Davidovitch N, Balicer RD, Galvani AP, et al. An innovative influenza

vaccination policy: targeting last season’s patients. Plos Computational Biology. 2014; 10(5):e1003643.

https://doi.org/10.1371/journal.pcbi.1003643 PMID: 24851863

21. Vardavas R, Breban R, Blower S. Can Influenza Epidemics Be Prevented by Voluntary Vaccination?

Plos Computational Biology. 2007; 3(5):e85. https://doi.org/10.1371/journal.pcbi.0030085 PMID:

17480117

22. Del VS, Hethcote H, Hyman JM, Castillo-Chavez C. Effects of behavioral changes in a smallpox attack

model. Mathematical Biosciences. 2005; 195(2):228–151. https://doi.org/10.1016/j.mbs.2005.03.006

PMID: 15913667

23. Zhang HF, Xie JR, Chen HS, Liu C, Small M. Impact of asymptomatic infection on coupled disease-

behavior dynamics in complex networks. Epl. 2016; 114(3):38004.

24. Yang R, Wang BH, Ren J, Bai WJ, Shi ZW, Wang WX, et al. Epidemic spreading on heterogeneous net-

works with identical infectivity. Physics Letters A. 2007; 364(3–4):189–193.
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