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Abstract

Short single-stranded oligonucleotides represent a class of promising therapeutics with

diverse application areas. Antisense oligonucleotides, for example, can interfere with various

processes involved in mRNA processing through complementary base pairing. Also RNA

interference can be regulated by antagomirs, single-stranded siRNA and single-stranded

microRNA mimics. The increased susceptibility to nucleolytic degradation of unpaired RNAs

can be counteracted by chemical modification of the sugar phosphate backbone. In order to

understand the dynamics of such single-stranded RNAs, we investigated their fate after expo-

sure to cellular environment by several fluorescence spectroscopy techniques. First, we eluci-

dated the degradation of four differently modified, dual-dye labeled short RNA oligonucleotides

in HeLa cell extracts by fluorescence correlation spectroscopy, fluorescence cross-correlation

spectroscopy and Förster resonance energy transfer. We observed that the integrity of the oli-

gonucleotide sequence correlates with the extent of chemical modifications. Furthermore, the

data showed that nucleolytic degradation can only be distinguished from unspecific effects like

aggregation, association with cellular proteins, or intramolecular dynamics when considering

multiple measurement and analysis approaches. We also investigated the localization and

integrity of the four modified oligonucleotides in cultured HeLa cells using fluorescence lifetime

imaging microscopy. No intracellular accumulation could be observed for unmodified oligonu-

cleotides, while completely stabilized oligonucleotides showed strong accumulation within

HeLa cells with no changes in fluorescence lifetime over 24 h. The integrity and accumulation

of partly modified oligonucleotides was in accordance with their extent of modification. In highly

fluorescent cells, the oligonucleotides were transported to the nucleus. The lifetime of the RNA

in the cells could be explained by a balance between release of the oligonucleotides from

endosomes, degradation by RNases and subsequent depletion from the cells.
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Introduction

Oligonucleotide therapeutics have gained in importance over the last decades as they can be

utilized to interfere with almost every cellular process by simply selecting the appropriate

sequence and format[1]. Combined with the progress that has been made in the delivery of oli-

gonucleotides, some of them are already approved for market access and numerous candidates

are currently under investigation in clinical trials for treatment of a variety of different diseases

[2, 3]. Delivery can be accomplished in both the double or single-stranded configuration[4].

While the double-stranded representatives are mostly limited to RNA interference[5, 6], sin-

gle-stranded oligonucleotides have a broader spectrum of applications. Single-stranded micro-

RNA[7, 8] or siRNA guide strands[9–11] have been shown to successfully mediate RNA

interference and antagomirs have been used to effectively down regulate endogenous micro-

RNAs[12, 13]. CpG oligodeoxynucleotides are single-stranded DNA oligonucleotides contain-

ing an unmethylated cytosine/guanine motif, which acts as an immunostimulant through the

Toll-like receptor 9[14, 15]. Furthermore, antisense oligonucleotides represent a class of com-

plementary sequences that can interfere with mRNA at various processing stages including

splicing, translation or polyadenylation[16, 17]. Compared to double-stranded RNAs, the sin-

gle-stranded formats are more prone to nucleolytic degradation upon exposure to the cellular

environment. Chemical modification of the RNA backbone has proven to be an attractive

solution to slow down or even suppress nucleolytic degradation. Examples include ribose

modifications in the 2’ position such as 2’-O-Methyl, 2’-Fluoro or locked nucleic acids (LNA)

[18, 19]. Another highly nuclease protective intervention, especially in combination with the

2’-modifications mentioned above, is the replacement of the natural phosphodiester linkages

by phosphorothioates where one of the non-bridging oxygens is replaced by sulfur[20]. Most

studies on the impact of chemical modifications on bioactivity rely on quantitative read-out

systems like reporter gene knockdown efficiency[21, 22] or, in the case of antagomirs, on

microRNA target up regulation[23, 24]. Less focus has been placed on the intracellular fate of

such modified RNAs. Examples include a study indicating the formation of nuclear bodies

after transfection of phosphorothioate oligonucleotides[25] and a work on subcellular traffick-

ing of modified molecular beacons by fluorescence microscopy[26]. Furthermore, the behavior

of differently modified antagomirs in mice was investigated by Stoffel and coworkers[27] and

an interesting study by Hirsch et al. examined the duplex stability and localization of siRNA by

intensity based FRET[28].

In this work, we measured the stability of different chemically modified, short, fluores-

cently-labeled RNA oligonucleotides using fluorescence spectroscopy and microscopy meth-

ods. In cellular extract, we measured the stability of the various constructs using fluorescence

correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and För-

ster resonance energy transfer (FRET). The RNAs consisted of different chemically stabilizing

modification patterns and were labeled with a FRET pair (Atto488 and tetramethylrhodamine

(TMR)). Their stability correlated with the extent of chemical modification. Utilizing the dif-

ferent read-outs of each technique made it possible to distinguish degradation from unspecific

effects. For measurements in cultured cells, we present an approach to monitor the localization

and integrity of such small RNAs using fluorescence lifetime imaging microscopy (FLIM).

Transfection was accomplished with a sequence defined cationic transfection agent recently

developed in our lab[29, 30]. As the lifetime of the donor dye increases with decreasing FRET,

each spot in the cell can be assigned a lifetime value representing the integrity of the RNA at

this specific location. The extent of chemical modification correlated with RNA integrity and

with an increasing intracellular accumulation over time. For highly transfected cells, we

observed a significant nuclear translocation of the RNAs.
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Methods

Coupling of the RNA oligonucleotides to Atto488 and tetramethylrhoda-

mine

The 3’-amino and 5’- C6SSC6 disulfide modified oligonucleotide (Axolabs, Kulmbach, Ger-

many) was dissolved in 100 mM sodium borate buffer containing 20% acetonitrile (pH 8.5) to

a final concentration of 800 μM. Atto488-NHS ester (Atto-Tec, Siegen, Germany) was dis-

solved in anhydrous DMSO to a working concentration of 1 mM. Three molar equivalents of

Atto488-NHS ester solution were added over 2 h every 15 min, following 3 h incubation at

25˚C. The resulting construct was purified by EtOH precipitation and redissolved in water to a

concentration of 1 mM. The C6SSC6 disulfide modified end was reduced with buffered tris

(2-carboxyethyl)phosphine (TCEP, 700 times molar excess, Sigma Aldrich, Steinheim, Ger-

many) for 2.5 h at RT. TCEP was removed by EtOH precipitation. The remaining pellet was

redissolved in 50 mM sodium phosphate buffer 20% acetonitrile (pH 7) to a concentration of

800 μM. Tetramethylrhodamine-6-maleimide (Life Technologies, Darmstadt, Germany) was

dissolved in anhydrous DMSO to a working concentration of 1 mM. The tetramethylrhoda-

mine-6-maleimide solution (1.3 equivalents) was added immediately to the oligonucleotide

solution, following incubation of 2 h at 25˚C. The product was purified by EtOH precipitation

and high-performance liquid chromatography.

Purification with high-performance liquid chromatography

Purification of the dual-labeled RNA oligonucleotide was performed using high-performance

liquid chromatography (VWR Hitachi Chromaster consisting of 5430 Diode array detector and

5160 gradient pump, Darmstadt, Deutschland). The products were separated with a XTerra C8

column (5 μm, 4.6 x 150 mm, Waters, Eschborn, Germany) and eluted with an ACN /0.1 M

triethylammonium acetate gradient (5:95 to 65:35 in 30 min). Product containing fractions

were lyophilized and stored at -20˚C.

Polyplex formation

The sequence-defined lipo-oligomer 278 was synthesized by solid-phase assisted synthesis as

described in our previous publications [11, 29, 31]. It is a U-shaped lipo-oligocation consisting

of a protonable backbone of three succinoyl-tetraethylene pentamine (Stp) units for complexa-

tion of the nucleic acids. Terminal cysteines introduced for polyplex stabilization by disulfide

formation are separated from the Stp units by branching lysines, which are connected to four

linoleic acids, which aid particle stabilization through hydrophobic interactions. The oligonu-

cleotide and the required amount of oligomer 278 were separately diluted in 20 mM HEPES-

buffered 5% glucose pH 7.4 in a final volume of 25 μL. Both solutions were pooled resulting in

an amine/phosphate ratio of 20 (final concentration oligonucleotide: 1 μM, final concentration

oligomer 278: 46 μM) and incubated for 45 min at RT.

Cell culture

HeLa wild-type cells (ATCC, CCL-2) were cultured at 37˚C in folate free RPMI 1640 medium,

supplemented with 10% fetal calf serum, 4 mM glutamine, 100 U/mL penicillin and 100 μg/

mL streptomycin (Life technologies, Darmstadt, Germany). For maintenance, the cells were

detached with a trypsin-EDTA solution (0.25%) every two days and seeded at a dilution of 1/

10.
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Transfection

HeLa wild-type cells were seeded in 8 well Nunc Lab-Tek chamber slides (Thermo Scientific,

Germany) in 300 μL medium (25,000 cells per well). After 24 h, the medium was exchanged with

250 μL fresh medium. The formed polyplexes containing the oligonucleotide were added in a

volume of 50 μL to each well resulting in an oligonucleotide concentration of 167 nM. After 15

min incubation time at 37˚C, the medium was exchanged with 300 μL fresh medium. Fixation

was accomplished by washing the wells twice with PBS (resuspending) at the desired time point

(15 min, 1 h, 6 h or 24 h after transfection), followed by 10 min incubation with 4% paraformal-

dehyde/PBS at RT. The wells were washed three times with PBS and stored at 4˚C up to 3 days.

HeLa whole cell extracts

Cells were seeded in 150 cm2 plates. After 48 hours, the cells were detached with trypsin-EDTA

solution (0.25%) and washed three times with PBS. The resulting pellet was resuspended in 4

packed cell volumes of buffer A (10 mM HEPES, 10 mM KCl, 1.5 mM MgCl2, 0.2 mM phenyl-

methylsulfonyl fluoride (PMSF), 0.5 mM dithiothreitol (DTT), pH 7.9) and sonicated three

times for 5 s at 30% amplitude with 30 s incubation on ice in between. PMSF and DTT were

added to the buffer immediately before use. The cells were centrifuged for 20 min at 14000 × g

and the supernatant was collected. After aliquotation, the extract was frozen in liquid nitrogen

and stored at -80˚C.

Cell extract measurements

HeLa whole cell extracts were incubated with 100 nM of the oligonucleotide at 37˚C. The con-

centration of cell extract was optimized to ensure an appropriate degradation rate for a mea-

surement duration of 3 h (1/10 dilution). Correlation and FRET measurements in cell extract

were performed on a home-built pulsed interleaved excitation laser scanning confocal micro-

scope described previously[32, 33] in TM buffer (10 mM Tris-Cl; 5 mM MgCl2; pH 7.5). For

focusing the excitation light and collecting the fluorescence, a 60x water immersion objective

with a numerical aperture (NA) of 1.27 was used (Plan Apo IR 60x WI, Nikon). This resulted

in a diffraction limited lateral focus size ωr of 210 nm for the green and 260 nm for the red

channel, respectively. The laser power measured directly before the objective was set to 10 μW

for the blue 475 nm laser and 3 μW for the yellow 565 nm laser. To prevent evaporation of the

immersion liquid, an immersion oil with a refractive index of 1.33 was used.

During the measurements, the fluorescence intensity of the two channels was recorded at a

single point in the solution. The experiments were performed at 37˚C for 3 h each, divided

into individual measurements of 1 min. A home written software package, PAM, was then

used for FCS, FCCS and FRET analysis. The analysis methods are described in greater detail in

the supporting information.

FLIM measurement on fixed cells

FLIM measurements on fixed cells were performed on the same microscope as the cell extract

measurements. For single cell images, a 1.27 NA 60x water immersion objective (Plan Apo IR

60x WI, Nikon) was used. Areas of 100 μm by 100 μm were recorded as 300x300 images,

resulting in a pixel size of 333 nm. In order to image larger areas, a 0.45 NA 10x air objective

was used (CFI Plan APO 10x 0.45 NA, Nikon). This resulted in 600 μm by 600 μm sized images

with a pixel size of 1.17 μm for a resolution of 512x512 pixels.

For each region, 50–100 frames were recorded at a frame time of 5 s. The laser power of the

475 nm laser was set to 2–10 μW for the 60x objective and 10–90 μW for the 10x objectives to
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achieve a count rate between 50 kHz and 1 MHz. This guaranteed a high enough signal for the

FLIM analysis while preventing artifacts from detector dead-time and photon pileup. The

home written software package PAM was used for the phasor analysis of the FLIM data. A

detailed description of the analysis method is given in the supporting information.

Results & discussion

Oligonucleotide design

Our model sequence is 23 nucleotides in length, with a thiol modification at its 5’ and an

amine modification at its 3’ end. The sequence was originally selected as a putative antagomir

against microRNA200c, which has been the subject of other research in our lab [23, 34–35].

Loss of microRNA200c correlates with carcinoma progression to a more aggressive and che-

moresistent mesenchymal state [23, 35–36]. The current study focuses on the stability and

localization of the RNAs irrespective of their effector function and builds that basis for future

sequence-specific degradation studies. Thus, to avoid any sequence-specific interactions, we

have selected HeLa cells where microRNA200c is not present in significant quantities[37].

Atto488 (excitation maximum: 501 nm; emission maximum: 523 nm, NHS-ester modified)

and TMR (excitation maximum: 557 nm; emission maximum: 576 nm, maleimide modified)

were selected as a FRET pair for dual labeling of the RNA constructs at the ends and attached

to the 3’ end via an amide bond and to the 5’ end via formation of a thioether. This approach

provided us with a very sensitive read-out as cleavage of a single nucleotide already leads to

separation of the two dyes (Fig 1A). Cleavage can be detected using FCS (through a reduction

in the diffusion time), FCCS (via a loss in cross-correlation signal) and FRET (via a loss in

FRET signal, which can be detected using either fluorescence intensity or fluorescence lifetime

measurements). After the sequence is exposed to the cellular environment, cleavage is medi-

ated by nucleases. RNase A and RNase T2 family members cleave single-stranded RNA with

high specificity and affinity[38, 39].

Three different chemical backbone modifications were selected for our approach: natural

phosphodiester bonds were replaced with phosphorothioate bonds (PS). RNA residues were

replaced by 2’-modified analogues. We selected 2’-F and 2’-O-Methyl modifications as these

are widely used in RNAi and antisense applications. As a stable control, a sequence consisting

of a completely PS-modified backbone and alternating 2’-O-Me and 2’-F modifications was

selected, since it was shown that this sequence provides adequate nuclease resistance[9]. Con-

struct 1 is almost identical to the stable control with the exception of a single phosphodiester

bond between nucleotide 10 and 11 counted from the 3’ end surrounded by two non-modified

nucleotides on each side (Fig 1B). This provides a relatively stable sequence, which might still

be susceptible to nucleolytic cleavage and can be used to investigate the intracellular location-

specific RNase activity. Construct 2 has four PS and four 2’-O-Me modifications at the 5’ and

the 3’ ends, giving a stretch of 15 unmodified nucleotides in the middle. This should result in

faster nucleolytic degradation, however, leaving the dyes attached to a four-nucleotide RNA

strand. Hence, the cell treats the residual, labeled construct similar to unlabeled RNA even

after degradation of the unmodified domain. As a second control, a completely unmodified

RNA strand is included to confirm the effect of the modifications (Fig 1B).

Stability evaluation in cell extracts

Initial experiments were conducted in cell extracts to get a first hint of the stabilizing effect of

the modifications. The time course of degradation was observed for 3 h every 5 min with a

confocal microscope. Evaluation was accomplished simultaneously using FCS, FCCS and
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FRET, providing us with distinct information about the behavior of the differently modified

oligonucleotides.

Fluorescence correlation spectroscopy. The diffusion time of Atto488 or TMR contain-

ing particles through the focus was determined using the temporal auto-correlation analysis of

the fluorescence intensity fluctuations (Fig 2A). Here, the laser pulses of the two colors were

delayed by ca. 20 ns with respect to each other, a technique called pulsed interleaved excitation

(PIE) [32]. Using this additional timing information, it is possible to separate the signal not

only by the detection channel, but also by the excitation source. Thus, the influence of spectral

crosstalk was removed completely, resulting in correlation functions that are not biased by the

presence of the other dye.

The diffusion coefficient inversely correlates with the particle size. This means that the dif-

fusion coefficient of the dye conjugate increases when nucleotides are removed from the RNA

construct over time. To quantify this degradation, an autocorrelation function (ACF) for two

diffusing components was used to fit the data. In this simplified assumption, the slow compo-

nent represents the full construct while the fast component corresponds to a digested dye-

RNA fragment. The decrease in the amplitude of the slow component was taken as a measure

for oligonucleotide degradation.

The degradation dynamics of the different RNAs can be nicely observed from the FCS sig-

nal of Atto488. While no change in ACF was observed for the stable control and construct 1,

the instable control and construct 2 degraded with time (Fig 3A). Assuming a monoexponen-

tial decay, the half-life of construct 2 was 4.7 times longer than for the instable control (con-

struct 2: 220 min, instable control: 47 min). This stabilizing effect is attributed to the

Fig 1. Design of the dual-labeled RNA oligonucleotide. (A) 23 nucleotide RNA oligonucleotide conjugated to tetramethylrhodamine (TMR) at its 5’ end

via a thioether bond and to Atto488 at its 3’ end via an amide bond. Upon exposure to the cellular environment, the oligonucleotide can be degraded by

various RNases. (B) Modification patterns selected to monitor intracellular localization and integrity of the oligonucleotide. RNA backbone modifications to

modulate stability towards nucleolytic degradation: 2’-F, 2’-O-Me and phosphorothioate.

doi:10.1371/journal.pone.0173401.g001
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chemically modified ends of construct 2 (Fig 1). A single cleavage event at the unmodified

position of construct 1 might not be recognized by this technique, as the dyes still contain a rel-

atively long stretch of modified RNA which contributes to the slow component in the fit.

Fig 2. Monitoring oligonucleotide degradation using FCS, FCCS and FRET. The stability of various RNAs was measured as a function of incubation

time in cell extracts. The main changes and parameters corresponding to RNA degradation are shown exemplary for construct 2, representing: (A) the

diffusion time from the autocorrelation function (FCS), (B) the amplitude of the cross-correlation function (FCCS), (C) an apparent FRET efficiency

determined from the fluorescence intensity and (D) the donor fluorescence lifetime based FRET using a phasor analysis. The colored crosses represent the

center of mass in the phasor plot of measurements after 1 min (blue), 60 min (green), 120 min (orange) and 180 min (magenta). The grey arrows indicate the

direction of the main changes.

doi:10.1371/journal.pone.0173401.g002
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Analysis of the ACF from FCS measurements of TMR provided similar results with

construct 1 and the fully modified RNA strand being more stable than construct 2 and the

unprotected RNA strand (S1 Fig). However, the change in the diffusion coefficient for the

unprotected RNA strand was not as large as expected. This could be due to the association of

the TMR with cellular proteins, as FCS measures only the mobility of the probe. The FCS mea-

surements of TMR showed a high variation in diffusion coefficients of the slow component

between the different constructs, suggesting that aggregation may play a crucial role. To avoid

the complications of a purely FCS based analysis, we also performed a fluorescence cross-cor-

relation analysis on the same data.

Fluorescence cross-correlation spectroscopy. In FCCS, the fluorescence intensity fluctu-

ations in one channel (corresponding to Atto488) are correlated to the fluctuations in the

other channel (corresponding to TMR). Hence, when a RNA carries both labels, a cross-corre-

lation signal will be observed. A single cleavage event leads to a complete loss in the cross-cor-

relation amplitude, which makes this technique very sensitive (Fig 2B). As with the dual-color

FCS experiments, the use of PIE during FCCS experiments [32, 40] allows for the complete

removal of spectral cross-talk and thus further increases the sensitivity of the technique. This

method is less biased towards cellular protein association compared to FCS, as the cross-corre-

lation does not depend on the size of the construct. The FCCS results were consistent with

FCS, with the exception that construct 1 revealed a slight degradation compared to the stable

control, which is in accordance with the increased sensitivity of FCCS (half-life of 610 min).

Fig 3. Evaluation of the degradation of the dual-labeled RNAs in cell extract by different techniques. The constructs were incubated in HeLa

cell extract for 3 h and the degradation was monitored with a confocal microscope. The degradation was analyzed using FCS (A), FCCS (B) and FRET

via intensity (C) and fluorescence lifetime (D). The curves were normalized to 1 for the initial data-point.

doi:10.1371/journal.pone.0173401.g003
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As determined by this technique, the half-life of construct 2 (172 min) was 1.9 times longer

than the half-life of the instable control with 89 min (Fig 3B and S1 Table).

Förster resonance energy transfer. Another measure of dual-labeled RNA integrity is

FRET, which can be evaluated based on fluorescence intensity ratios or via the fluorescence

lifetime of the donor dye. Non-radiative energy transfer from the donor to the acceptor dye

depends on their spatial separation and can be observed for distances up to 10 nm. Hence, the

intact double-labeled RNA should give a significantly higher emission in the red channel

(TMR) and a reduced lifetime for the donor upon excitation of Atto488 than the cleaved con-

struct (Fig 2C and 2D). Similar to FCCS, this technique is sensitive to a single cleavage event.

Intensity based FRET is calculated from the ratio of the red signal after Atto488 excitation to

the sum of red and green fluorescence after Atto488 excitation, corrected for spectral crosstalk

of Atto488 into the acceptor channel and direct excitation of TMR. A parameter that was not

accounted for was incomplete labeling of the RNA and possible degradation of the RNA before

the experiment. However, since the RNA degradation in cell extracts was expected to be expo-

nential, these parameters would only change the initial values and not affect the rate constants.

FRET also provides information on the conformation of the RNAs. As transitions between

coiled and stretched conformations change the distance between the dyes, the measured FRET

efficiencies depend on the conformational state. Furthermore, FRET measurements can be

sensitive to artifacts from pH or aggregation dependent quenching of the dyes.

The results from the FRET experiments show that the instable control is degraded the fast-

est with half-lives of 102 min and 128 min for measurements based on lifetime and intensity,

respectively. As expected, construct 1 was more stable than construct 2 for the intensity mea-

surements (half-life construct 1: 331 min, half-life construct 2: 239 min). For the lifetime based

analysis, the stability-difference between the two constructs was insignificant (half-life con-

struct 1: 149 min, half-life construct 2: 170 min). Interestingly, the stable control revealed a

slight decrease in FRET efficiency over time (half-life: 401 min for lifetime based and 564 min

for intensity based FRET) (Fig 3C and 3D, S1 Table). As no degradation is visible when evalu-

ated by FCS or FCCS, we speculate that this is due to interactions with cellular components

affecting the conformation of the construct or the lifetime of the Atto488.

Taken together, the results obtained from the different read-outs show that the extent of modifi-

cation of the construct strongly correlates with its stability in cell extracts. Highly sensitive data for

cleavage of just a single nucleotide can be obtained by FCCS. FRET provides additional informa-

tion on the conformational state of the RNA while FCS detects association with cellular compo-

nents. Applying only a single technique might lead to misinterpretation of the data, as artifacts like

quenching, conformational changes and aggregation might be mistaken for stability related issues.

Measurements in cells

Transfection. After having elucidated the fate of the chemically modified oligonucleotides

in cell extracts, the next question was if the results hold true when the RNAs are transfected

directly into HeLa cells. The sequence defined cationic oligomer 278 [29, 30] was selected as a

carrier, as it displays fast cellular uptake, which is indispensable for a time course degradation

experiment (Fig 4A). HeLa cells were incubated for 15 min with polyplexes formed using olig-

omer 278 and the respective modified oligonucleotide. Non-bound polyplexes were washed

away from the cells followed by an additional incubation at 37˚C. Biological processes were

stopped at different time points by fixation with 4% paraformaldehyde and the cells were

examined under a confocal microscope.

Fluorescence intensity. The fluorescence intensities of the four modification patterns

were investigated after 15 min, 1 h, 6 h and 24 h (Fig 4B and 4C). We observed that the
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Fig 4. Fluorescence intensities of HeLa cells in culture after transfection with oligomer 278. (A) A U-shaped, sequence defined

cationizable lipo-oligomer 278 for complexation of the dual-labeled RNAs (C: cysteine, K: lysine, Stp: succinoyl-tetraethylene

RNA integrity and localization by ultrasensitive fluorescence methods
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polyplexes are not immediately released after endosomal uptake. In fact, the RNA constructs

continuously enter the cytosol over a longer time span. This accumulation is counteracted by

RNA degradation and subsequent depletion from the cells. The fluorescence intensities that

we observe for the four constructs at different time points reflect this balance (Fig 4C). In our

measurements, the increase of the fluorescence intensity correlates with the extent of modifica-

tion and, for the two most stable constructs, also with the duration of the incubation time after

the transfection. For the less stable patterns, even a slight decrease in RNA concentration was

observed over time. Especially the instable control shows very low fluorescence intensity at all

time points. After the construct is taken up, it is almost immediately degraded by RNases.

Since the dyes are no longer coupled to the RNA, they are not retained in the cells, resulting in

a low steady-state concentration.

Taking a closer look at the cells, one can distinguish between two populations: cells showing

a high fluorescence intensity in the nucleus and cells showing a higher fluorescence intensity

in the cytosol (Fig 5B, S2 and S3 Figs). The cells that show a strong nuclear translocation of the

constructs also have a brighter total intensity. This nuclear translocation is not present for the

instable control as degradation dominates over other cellular processes.

Fluorescence lifetime in cells. Using FLIM, we can gather information regarding the integ-

rity of the RNA constructs at different locations within the cells. Images were collected from cells

that had been incubated at 37˚C for 15 min, 1 h, 6 h and 24 h after transfection using oligomer

278 as the carrier. Due to quenching via FRET, Atto488 in intact constructs shows a reduced fluo-

rescence lifetime compared to that in cleaved RNA fragments. Thus, the lifetime can be used as a

read-out for the progress of RNA degradation. The image is scanned pixel by pixel and the life-

time at each spot is determined using the phasor approach to FLIM (Fig 5A and 5B).

The phasor approach is a fit-free way of analyzing lifetime data in the Fourier space by utiliz-

ing certain rules that simplify the analysis[41, 42]. The first of these rules is the fact that all purely

mono-exponential decays lie on the universal circle centered at (0.5,0) with a radius of 0.5. The

exact position on the circle is determined by the fluorescence lifetime, with short decays lying

close to the (1,0) point while long lifetimes are closest to the origin. The second important rule is

that mixtures of different lifetime species result in a phasor that is a linear combination of the two

species. The vector is intensity-weighted meaning that any mixture of two lifetimes will lie on a

straight line connecting the phasors of the pure species. Knowing the end positions of this line

makes it possible to calculate the fractional contributions for any unknown mixture. In the pha-

sor plot, the combined FLIM data of all measurements and patterns show a distribution along a

line connecting the mono-exponential decays at 4.1 ns (corresponding to unquenched Atto488)

and at 1.25 ns (corresponding to the intact construct showing FRET) (Fig 5A).

However, there are other sources of fluorescence quenching that need to be considered.

The first one is quenching in densely packed particles (vesicles or polyplex aggregates). These

regions are recognizable as small bright spots in the images and form a tail towards very short

lifetimes in the phasor plot (S3 Fig). In constructs without an acceptor dye, quenching in these

spots is still noticeable, but much reduced. This suggests that increased FRET between the

densely packed RNAs is the main quenching source, but that self-quenching by the dyes or

quenching from the carrier oligomer may also play a role. This is also noticeable with intensity

based FRET (S4 Fig). Using an upper intensity threshold, these aggregates can be easily filtered

pentamine, linA: linoleic acid). (B) Fluorescence intensity images of the HeLa cells, 15 min, 1 h, 6 h and 24 h after transfection of the four

different modifications patterns. The contrast level is equal for all images. The scale bar represents 200 μm. (C) Average fluorescence

count rate of the cells at the different conditions shown in (B). The error bars represent the standard deviation of three independent

measurements.

doi:10.1371/journal.pone.0173401.g004
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Fig 5. Phasor FLIM analysis in cultured HeLa cells. (A) The phasor histogram of images shown in panel B. The grey dotted line indicates the axis

used for color-coding the FLIM images in (B) and (C). (B) FLIM images 24 h after transfection of the stable control RNA, construct 1, construct 2 and the
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out and removed from further analysis. As FRET is highly sensitive to the distance between the

donor-acceptor dye pair, changes in the conformation of the RNA will also result in differ-

ences in the FRET efficiency and consequently in changes of the fluorescence lifetime. In

order to investigate the degradation of the RNAs, the distribution of the pixels of the different

patterns at different time points were plotted (Fig 5C, Fig 6A–6D) and the average value was

extracted using a Gaussian fit (Fig 6E). The pixel positions along the line (i.e. the average pixel

lifetimes) can also be depicted in the images using a color code (see Fig 5B and 5C). Blue repre-

sents a short fluorescence lifetime corresponding to an intact construct. Red represents a long

lifetime indicating a degraded oligonucleotide.

In order to distinguish short lifetimes that originate from FRET and represent a high construct

integrity from unspecific quenching effects, we included an additional control sample. Here, the

stable control pattern was conjugated only to Atto488. Since no FRET can occur, any differences

in lifetime observed are due to unspecific quenching. As expected, the fluorescence lifetime was

long in the cytosol as well as the nucleus after 1 h and 24 h (S5 Fig). Nevertheless, plenty of small

bluish dots could be observed in the cytosol. These spots are visible for all constructs and most

probably possess a high density of Atto488 leading to quenching through aggregation (S3 and S4

Figs). Possible sources are endosomes that have not yet released the constructs or polyplexes that

have not disassembled. Consequently, as soon as the oligonucleotides are liberated into the cytosol

or the nucleus, a decreased lifetime can be assigned to FRET originating from an intact construct.

The dual-labeled stable control and construct 1 do not show any change in lifetime over the

whole time course of 24 h (Fig 5C rows 3 and 4). This lack of degradation also explains the

strong accumulation of the constructs within the cells. However, taking into account the fact

that construct accumulation is a little stronger for the stable control, we assume there is a slight

degradation of construct 1, which increases the ability of the cells to dispose of the oligonucleo-

tide. Considering the fact that the cells are constantly fed with intact constructs from endo-

somes and aggregates, it is not surprising that the lifetime experiment reveals no significant

differences (Fig 6A and 6B) as, at any point, the amount of degraded RNAs is negligible com-

pared to that of the intact constructs. Construct 2 nicely shows an increase in lifetime over the

time course, corresponding to degradation of the construct. Especially highly fluorescent cells

have a long lifetime, originating from accumulation of the degraded oligonucleotide (Fig 6C).

For the instable control, the observed fluorescence lifetime increases slower than for the more

stable construct 2 (Fig 6C and 6D). However, considering the very low fluorescence intensity

of the control, it is most likely that the oligonucleotides are degraded and depleted from the

cells so fast that the lifetime values mostly originate from intact constructs that have just been

released into the cytosol. In contrast, construct 2 Atto488 still has a stabilized four nucleotides

stretch of RNA attached, which is not as easily expelled from the cells as free dye (Figs 5C and

6E). This is supported by the fact that the fluorescence intensity of construct 2 images is signifi-

cantly higher than that of the instable control images.

In general, the measured lifetime values can be explained by a balance originating from

the release of intact RNA, its degradation and subsequent depletion from the cells. Longer

stretches of nucleotides accumulate in the cells and are transported into the nucleus when the

cells are efficiently transfected. With decreasing length of the stabilized RNA stretch, depletion

from the cells is favored.

stable control RNA without TMR in cultured HeLa cells. The scale bar is 30 μm. (C) FLIM images for all measured constructs and time points. These

measurements are the same as those shown in Fig 4. The scale bar is 200 μm.

doi:10.1371/journal.pone.0173401.g005
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Fig 6. Quantification of the fluorescence lifetime measurements. (A-D) Distribution of the pixels along the line connecting the mono-exponential

decays at 4.1 ns and at 1.25 ns in the phasor plot for the four modification patterns. (E) Summary of the average fluorescence lifetimes of the cell

populations shown in panels A-D using a Gaussian fit to the distribution. The error bars represent the standard deviations of three independent

measurements.

doi:10.1371/journal.pone.0173401.g006

RNA integrity and localization by ultrasensitive fluorescence methods

PLOS ONE | DOI:10.1371/journal.pone.0173401 March 9, 2017 14 / 19



Conclusion

The stability of short single-stranded RNA oligonucleotides modified with phosphorothioates,

2’-O-Me and 2’-F was compared in cellular extracts and in cultured cells. By evaluating the

degradation with FCS, FCCS and FRET (both intensity and fluorescence lifetime based) in cell

extracts, we could conclude that each methodology provides distinct information on the

behavior of the two-dye labeled constructs, which is indispensable to understand the fate of

those RNAs. With FCCS, we monitor the integrity of the connection between the two dyes

with very high sensitivity. Additional information on interactions with cellular components

are detected by FCS, but at the expense of sensitivity for RNA degradation. FRET is not only

sensitive towards construct cleavage, but can also detect conformational changes as FRET effi-

ciency depends on the distance between the two dyes. We needed to utilize all techniques to

minimize biases in the analysis from unspecific effects like aggregation, interactions with cellu-

lar components, quenching or conformational changes. Taking the results from the four tech-

niques together, the non-modified oligonucleotide was, on average, degraded 2.2 times faster

than the construct with the modified ends and 8.3 times faster than the almost completely

modified construct 1. A completely stabilized stable control was not degraded in cell extracts.

Even the short modification at the ends of construct 2 already have a significant effect on RNA

stability in the cell extract. This is understandable, as the stabilization of the 3’- and 5’-ends

interferes with exonucleolytic degradation of the RNA and hence increases the survival time of

the construct. Modifications in the center regions additionally interrupt cleavage by endonu-

cleases, further increasing the stability of the other constructs.

These findings are in good agreement with previous works on chemically modified RNAs

[43].

Fluorescence lifetime measurements in cells in culture revealed interesting information on

modification dependent integrity and localization of the oligonucleotides. We can conclude

that non-stabilized single-stranded RNA oligonucleotides are degraded before a significant

accumulation of the constructs can occur. For the stabilized constructs, on the other hand,

intracellular fluorescence intensity increased with the extent of modification. Construct 2,

with only a few modifications, showed no continuous increase in fluorescence intensity, but

the equilibrium concentration was significantly higher than for the instable control. For con-

struct 1 and the stable control, however, the release of the constructs into the cytosol far

exceeded their degradation and depletion, leading to an accumulation over time. The short,

non-modified region in construct 1 slightly decelerated the accumulation within the cells. Fur-

thermore, in cells displaying a high fluorescence intensity, the oligonucleotides were trans-

ported into the nucleus. A high transfection rate is a prerequisite for the domination of the

nuclear translocation mechanism over the depletion mechanism.

The lifetime of the constructs in living cells can be explained by a balance between release

of the intact constructs from endosomes and polyplexes, and degradation by RNases and sub-

sequent depletion of the fluorophores from the cells. The difference of construct 1 and the sta-

ble control observed for the fluorescence intensities has no significant effect on the lifetime

measurements, since the small contribution of the cleaved constructs is drowned out by the

majority of intact RNAs. Construct 2 transfected cells reached a plateau in lifetime after 6 h

with a mean fluorescence lifetime that is ca. 0.35 ns longer than for the stable control. The

slower increase in the fluorescence lifetime over time for the instable control can be attributed

to the fast complete degradation and depletion of the dyes from the cells directly after their

release into the cytosol. The lifetime values mostly originated from the few intact constructs

immediately after their liberation.
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Taken together, considering also the results from the cell extract measurements, we

conclude that a fully PS modified backbone and alternating 2’-O-Methyl and 2’-Fluoro

modifications provide complete resistance towards nuclease activity for single-stranded

oligonucleotides under the experimental conditions. A single unmodified region acceler-

ates degradation and reduces accumulation significantly, but still shows highly increased

RNase resistance when compared to non-modified RNA. Stability decreases with the

length of the stretch of unmodified nucleotides as demonstrated by the difference between

construct 1 and construct 2.

With FLIM, we obtain information on the endosomal release, liberation from polyplexes

and localization dependent stability of any double-labeled construct after its transfection.

Hence, this technique can be a useful tool to understand more about the behavior of trans-

fected oligonucleotides and their dependency on different chemical modification patterns.

The information on localization-dependent integrity and availability can be used to figure out

the bottlenecks of oligonucleotide delivery and help to specifically improve the functionality of

a carrier.
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