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Abstract

The source-sink term in water temperature models represents the net heat absorbed or

released by a water system. This term is very important because it accounts for solar radia-

tion that can significantly affect water temperature, especially in lakes. However, existing

numerical methods for discretizing the source-sink term are very simplistic, causing signifi-

cant deviations between simulation results and measured data. To address this problem,

we present a numerical method specific to the source-sink term. A vertical one-dimensional

heat conduction equation was chosen to describe water temperature changes. A two-step

operator-splitting method was adopted as the numerical solution. In the first step, using the

undetermined coefficient method, a high-order scheme was adopted for discretizing the

source-sink term. In the second step, the diffusion term was discretized using the Crank-Nic-

olson scheme. The effectiveness and capability of the numerical method was assessed by

performing numerical tests. Then, the proposed numerical method was applied to a simula-

tion of Guozheng Lake (located in central China). The modeling results were in an excellent

agreement with measured data.

Introduction

Water temperature significantly affects aquatic ecosystems. A precise forecast of the temporal

and spatial variation of water temperature can help to understand the physical, chemical, and

biological processes occurring in aquatic systems, and to determine suitable economic and sci-

entific conservation strategies.

Studying the processes that affect the water temperature and thermal stratification in lakes

is of especial significance. Research indicates that shallow lakes can exhibit thermal stratifica-

tion lasting for several days and possibly longer [1]. Thermal stratification can lead to a series

of ecological responses, such as stratified flows, differences in water density between the sur-

face and bottom layers [2], and changes in the aquatic population structure and eutrophication
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processes [3]. Therefore, uncovering the processes that underlie temperature change and

thermal stratification in shallow lakes can help to better understand the associated physical,

chemical, and biological processes, and to develop suitable economic and scientific conserva-

tion strategies, thereby providing data and technological support for lake environmental

management.

Assuming lateral uniformity of temperature in shallow lakes, the process of temperature

change in lakes is usually described as a vertical one-dimensional (1D) heat conduction

model. Dake and Harleman [4] developed the first 1D model to predict vertical temperature

profiles in lakes or reservoirs. Later models accounted for the heat budget by computing the

heat fluxes from solar radiation, convection, and evaporation at the water-air interface [5,

6]. Kim and Chapra [7] used a vertical 1D well-mixed model to predict the temperature in a

shallow stream.

Development of realistic temperature models requires having suitable numerical meth-

ods for simulations of water temperature. An operator-splitting method, documented by

Strang [8], uses dedicated numerical solvers for each physical phenomenon accounted by a

specific model (e.g., advection, diffusion). The method has become very popular for solving

many hyperbolic and parabolic equations. Valocchi and Malmstead used the operator-split-

ting method for discretizing the advection-dispersion-reaction equation [9]. Blom and

Verwer compared four splitting methods for solving the advection-dispersion-reaction

equation [10]. To address some practical needs associated with simulation approaches,

many high-order schemes were developed for solving computational fluid dynamics (CFD)

equations, such as the Holly–Preissmann scheme [11], the six-point scheme [12], and the

WAF method [13]. Most of these methods focus on the convection and diffusion terms

rather than the source-sink term. However, scholars gradually realized that an accurate dis-

cretization of the source-sink term is equally important as those of the convection and diffu-

sion terms [14]. Siviglia and Toro noted that for inappropriately discretized source-sink

terms, the overall results may be almost the same as those obtained using lower-order

schemes [13]. The source-sink term in a water temperature model is very important because

it accounts for the heat budget process such as solar radiation, which significantly affects the

distribution of water temperature. In addition, in some temperature models, the source-

sink term is more complicated, depending not only on time and space, but also on tempera-

ture. Source-sink terms of this variety may be more problematic (e.g., as in the 1D stream

temperature model by Siviglia and Toro [13], in which the source-sink term depended on

the stream temperature). Unfortunately, numerical methods for the source-sink term have

received little attention. Existing numerical discretization methods are quite simplistic, such

as the pointwise method (a simple evaluation of the source term functions at the grid point)

[15]. This simplicity can lead to large deviations between simulation results and measured

data. Thus, more efficient numerical methods for discretizing the source-sink term are

strongly needed.

In this paper, we apply a high-order scheme for the source-sink term in a 1D vertical water

temperature model to precisely predict the water temperature in shallow lakes. Using the oper-

ator-splitting method, the vertical 1D water temperature model was solved in two steps: (1) the

source-sink term was discretized in the proposed high-order scheme, using an undetermined

coefficient method; (2) the diffusion term was discretized using the Crank–Nicolson scheme.

The proposed method was used in numerical testing, and the significance of the proper treat-

ment of the source-sink term was assessed. Finally, the proposed method was applied to the

Guozheng Lake data.

A high order scheme for source-sink term
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Mathematical model

Water temperature model

Water temperature in a shallow lake depends on the heat exchange with the atmosphere and

with the bottom sediment. As a rule, small and stratified lakes exhibit weak horizontal temper-

ature gradients, implying lateral uniformity of temperature. Thus, the process of temperature

change can be described by a vertical 1D heat conduction model [16]

@T
@t
¼
@

@z
ðKz

@T
@z
Þ þ

1

rcp

@I
@z

ð1Þ

where z denotes the vertical coordinate and z = 0 is the surface level; t is time; T is the water

temperature (˚C); Kz is the vertical diffusion coefficient (m2/s); I is the solar radiation (W/m2);

ρ is the water density (1.0 × 103 kg/m3); cp is the water specific heat capacity [4.2 × 103 J/

(kg˚C)].

The second term on the right hand side of Eq (1), related to solar radiation, can be regarded

as the source-sink term. The Beer–Lambert–Bouguer radiation model (Beer’s law) is often

adopted for calculating solar radiation. The radiation is described by an exponential attenua-

tion function. Although this approach is very popular, it requires having a significant amount

of observed data. However, solar radiation data suitable for simulations are quite scarce, owing

to the high associated cost of monitoring. In addition, data insufficiency requires using inter-

polations and averaging. While distinct from other meteorological indicators, solar radiation

exhibits an obvious diurnal variation. Given the data scarcity, the obvious differences in daily

and nocturnal solar radiation patterns may be eliminated after performing a simple interpola-

tion or averaging; in either case, the interpolated (or averaged) solar radiation will be very dif-

ferent from the actual one, potentially yielding significant deviations of simulation results

from real data. Therefore, to quantify the influence of solar radiation on water temperature in

a more feasible manner, a practical method sufficiently grounded in physics is required. It is

well known that a close relationship exists between solar radiation and water temperature.

This relationship can be quantified by introducing a variable α that represents the ratio of

water temperature to solar radiation, namely α = T/I, where T is the water temperature and I is

the solar radiation. Solar radiation and water temperature are time-dependent implying that α
is time-dependent as well. The time dependence of α is believed to be subject to physical prin-

ciples. The relationship between solar radiation and water temperature should obey certain

principles for a specified body of water (e.g., a lake) over a designated time frame (i.e., seasonal

patterns). Thus, α(t) can be described using a mathematical function (e.g., a trigonometric

function, a logarithmic function, or even a complicated piecewise function). Of note is that

α(t) can have a more complicated form (e.g., α(t) can account for the effects of solar radiation,

air temperature, and wind force). Yet this is not necessary because the effects of air tempera-

ture and wind force on water temperature have been considered in the water temperature

model (as is described below when discussing the problem’s boundary conditions). The main

role of α(t) is to relate water temperature to solar radiation to enable replacing the spatial gra-

dient of solar radiation with the gradient of the water temperature. This link would allow to

solve the water temperature model [Eq (1)] even in the absence of solar radiation data. Substi-

tuting α(t) into Eq (1) yields Eq (2):

@T
@t
¼
@

@z
ðKz

@T
@z
Þ þ

aðtÞ
rcp

@T
@z

ð2Þ
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After the substitution, the source-sink term in Eq (2) (the second term on the right hand

side) can be understood as capturing the effects of solar radiation (external heating) on the

temperature of water in a natural lake [13]. Although α(t) is time-dependent, the time depen-

dence does not impact the final mathematical expression of the finite difference equation [Eq

(16)]. At any time, the exact value of α can be obtained from an empirical function or a PC

program. Eqs (1) and (2) appear to be similar, but are actually quite different. Eq (1) features a

source term of the form R(z) (where R denotes the source term operator), while Eq (2) features

a source term of the form R(T). In principle, R(T) might be more problematic that R(z) because

it depends on the state variable (temperature). Therefore, it is not clear whether conventional

numerical methods are still applicable to the system described by Eq (2). If this is not the case,

then numerical methods will have to be developed for properly treating the source term in

Eq (2).

Boundary conditions

Atmospheric heat fluxes were computed from a balance between solar radiation (W/m2), long-

wave radiationHL (W/m2), evaporation heat fluxHE (W/m2), and convective heat transferHC
(W/m2). Solar radiation was included in the source term while the other heat fluxes were con-

sidered at the free surface boundary condition. The heat flux at the water-sediment interface

HB (W/m2) was considered in the bottom boundary condition.

Boundary conditions [17].

Water surface:

� rcpKz
@T
@z
¼ HL þHE þHC ðz ¼ 0Þ ð3Þ

Water bottom:

� rcpKz
@T
@z
¼ HB ðz ¼ � HÞ ð4Þ

The plus signs before HL,HE,HC capture the fact that the heat transfers from water to air. The

plus sign before HB captures the fact that the heat transfers from sediment to water.

(a) Long-wave radiation. HL was computed from Eq (5) [7]:

HL ¼ εsðTs þ 273:15Þ
4
� εsðTa þ 273:15Þ

4
ðCa þ 0:031

ffiffiffiffi
ea
p
Þ ð5Þ

In Eq (5), σw is the Stefan–Boltzmann constant [W/(m2K4)], and its value is σw = 5.67 × 10−8;

ε is the emissivity of the water surface, set to ε = 0.97; Ta is the air temperature (˚C); and Ca is

the coefficient related to the air temperature, set to Ca = 0.6 in this paper.

(b) Evaporation heat flux. Water evaporation is the major route of heat loss for a lake.

The evaporation-related heat fluxHE was computed from Eqs (6–8) [18, 19]:

HE ¼ f ðwÞðes � eaÞ ð6Þ

f ðwÞ ¼ ða0 þ a1wþ a2w
2Þ ð7Þ

A high order scheme for source-sink term
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es ¼ 6:112 expð
17:67Ta
Ta þ 243:5

Þ ð8Þ

In Eqs (6–8), es is the saturated vapor pressure (mb); ea is the vapor pressure (mb), ea =

hum�es, hum is the air humidity (%); w is the wind speed (m/s). Some expressions are found

in the literature for the wind speed function f(w) [7, 20]. Ahsan and Blumberg discussed the

form of f(w) [21]. The correlation used by Ahsan and Blumberg [21] was adopted in this paper

(a0 = 6.9, a1 = 0 and a2 = 0.345).

(c) Convective heat transfer. Sensible heat conduction corresponds to the heat exchange

between water and the atmosphere, driven by a temperature gradient. Sensible heat conduction

is mainly caused by conduction and convection. In the present work,HC was computed from

Eq (9) [22, 23]:

HC ¼ chracpawðTs � TaÞ ð9Þ

In Eq (9), Ch is the turbulence exchange coefficient, set to Ch = 1.1 × 10−3; ρa is the atmo-

sphere density, ρa = 1.2 (kg/m3); cpa is the specific heat capacity of water, cpa = 1.005 × 103

[J/(kg˚C)]; Tw is the surface water temperature (˚C).

(d) Heat flux at the water-sediment interface. The heat flux at the water-sediment inter-

face is much weaker than that at the water-air interface; consequently, the former was often

neglected in previous studies. However, evidence suggests that the heat flux at the water-

sediment interface is significant when shallow lake stratifies [24, 25]. Various methods have

been used for calculating the heat flux at the water-sediment interface, such as “the gradient

method” [26], and “the integration of the lake sediment temperature profile” [27]. However,

all of these methods still require solving complicated partial differential equations (PDEs). In

this study, an equation from the CE-QUAL-W2 software was adopted for calculating HB [Eq

(10)]. This equation assumes thatHB is directly proportional to the temperature difference

between the water and sediment [28].

HB ¼ � KBðTb � TBÞ ð10Þ

where KB is the sediment’s heat transfer coefficient, set to KB = 0.01 in this study; TB is the sedi-

ment temperature (˚C); and Tb is the water temperature at the water-sediment interface (˚C).

Numerical solution

Choosing a suitable discretization scheme is critical for obtaining a good solution. The finite

difference method (FDM) was adopted for spatial discretization in this study. Since each heat

flux procedure in lake temperature systems possesses distinct physical features, the most suit-

able discretization scheme for each operator differs from all other operators. Thus, it is difficult

to select an optimal discretization scheme that would satisfy the requirements imposed by

these different possesses. To overcome this problem, we used the operator-splitting method.

Operator-splitting method

The operator-splitting method [8] allows to solve the problem imposed by the difficulty of

selecting a unified discretization scheme for discretizing all operators. Although arbitrarily

replacing one scheme with another (especially replacing an implicit scheme with an explicit

scheme) will create some inconsistencies, research has shown that using a proper time step

can help to avoid inconsistencies. Using the operator-splitting method, Eq (2) can also be

A high order scheme for source-sink term
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formulated in the following form:

CðTÞ ¼ DðTÞ þ RðTÞ ð11Þ

Where C is the overall (effective) operator, D is the diffusion operator and R is the source-sink

operator. Therefore, the full initial value problem (IVP) in Eq (2) can be written as a system of

PDEs and initial conditions (ICs):

IVP :
PDEs : @tT ¼ DðTÞ þ RðTÞ

ICs : Tðz; 0Þ ¼ Tn

( )

)
Dt
Tnþ1 ð12Þ

Then, Eq (12) can be divided into two parts:

IVP1 :
PDEs : @tT ¼ RðTÞ

ICs : Tðz; 0Þ ¼ Tn

( )

)
Dt
T1 ð13Þ

IVP2 :
PDEs : @tT ¼ DðTÞ

ICs : Tðz; 0Þ ¼ T1

( )

)
Dt
Tnþ1 ð14Þ

First, IVP1 [Eq (13)] is solved in one time step Δt. It is worth mentioning that the initial

condition Tn in IVP1 is the initial condition of the full IVP. Next, the intermediate solution T1
is defined as the solution of IVP1, and T1 is defined as the initial condition of IVP2. Then,

IVP2 [Eq (14)] is solved, and Tn+1 from IVP2 is output as the solution of the full IVP.

Layout of variables

Fig 1 shows the layout of the model variables. In this figure, for better presentation, mesh

cells represent water cells. A mesh cell in Fig 1 should be interpreted as a segment in the ver-

tical direction, without a horizontal space step. Suppose water body is divided into K cells in

the vertical direction. k denotes the mesh center in the z direction, with the space step of Δz.
The index k = 1 corresponds to the bottom cell, and the index k = K corresponds to the sur-

face cell. Water temperature T locates in the middle of a cell, and is indexed as Tk; A repre-

sents the upper or lower surface of a cell, and is indexed as Ak±1/2; H is the overall depth of

water; zk is the displacement from the water surface to the center of cell k. The system is

solved by advancing from the current time state, n, to the next time state, n+1, with the time

step of Δt.

Solution of IVP1: A high-order scheme for the source-sink term

In the operator-splitting approach, the right hand side of Eq (2) is divided into two parts,

namely the source-sink term operator and the diffusion operator. Considering only the

source-sink term operator is equivalent to solving the following equation:

@T
@t
�

aðtÞ
rcp

@T
@z
¼ 0 ð15Þ

The pointwise method is often used for the temperature-dependent source-sink term

[R(T)]. Yet it was claimed in some studies that this method may not work in complicated

cases. This paper adopts an improved method to discretize the source-sink term. This method

is based on selecting an appropriate scheme for Eq (15), e.g., a six-point scheme. To obtain a

more accurate scheme, the following strategy is used: every node is given a certain weight coef-

ficient, following which the appropriate values of these weight coefficients are determined for

A high order scheme for source-sink term
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minimizing numerical fluctuations and diffusion. According to the undetermined coefficient

method [29], the final form the finite difference equation can be written as

a1T1nþ1

k� 1
þ a2T1nþ1

k þ a3T1nþ1

kþ1
¼ a4T1nk� 1

þ a5T1nk þ a6T1nkþ1
ð16Þ

Where ai (i = 1,2,. . .,6) are the undetermined coefficients. By using appropriate values of ai, a

higher-order scheme can be obtained. Using the Taylor expansion on the grid T(i, k), we set

Fig 1. Layout of variables.

doi:10.1371/journal.pone.0173236.g001
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B ¼ � aðt¼tnÞ
rcp

, where tn represents the current time, and Eq (16) becomes:

ða1 þ a2 þ a3ÞDt
@T
@t
þ ð� a1 þ a3 þ a4 � a6ÞDz

@T
@z
¼ � a1 � a2 � a3 þ a4 þ a5 þ a6

� ½ða1 þ a2 þ a3Þ
B2ðDtÞ2

2
þ ða1 � a3ÞBDtDz þ ða1 þ a3 � a4 � a6Þ

ðDzÞ2

2
�
@2T
@z2

þ½ða1 þ a2 þ a3Þ
B3ðDtÞ3

6
þ ða1 þ a3Þ

BDtðDzÞ2

2
þða1 � a3Þ

B2ðDtÞ2Dz
2

þ ða1 � a3 � a4 þ a6Þ
ðDzÞ3

6
�
@3T
@z3

� ½ða1 þ a2 þ a3Þ
B4ðDtÞ4

24
þ ða1 � a3Þ

BDtðDzÞ3

6
þ ða1 þ a3Þ

B2ðDtÞ2ðDzÞ2

2

þða1 � a3Þ
B3ðDtÞ3Dz

6
þ ða1 þ a3 � a4 � a6Þ

ðDzÞ4

24
�

þ . . .

ð17Þ

Thus, Eq (17), which is derived from Eq (16), is the equivalent finite difference equation of

Eq (15). By comparing Eqs (17) and (15), to minimize numerical spurious oscillations, the fol-

lowing algebraic equations can be obtained:

a1 þ a2 þ a3 ¼ 1;

� a1 þ a3 þ a4 � a6 ¼
BDt
Dz

;

� a1 � a2 � a3 þ a4 þ a5 þ a6 ¼ 0;

ða1 þ a2 þ a3Þð
BDt
Dz
Þ

2
þ 2ða1 � a3Þð

BDt
Dz
Þ þ a1 þ a3 � a4 � a6 ¼ 0;

ða1 þ a2 þ a3Þð
BDt
Dz
Þ

3
þ 3ða1 � a3Þð

BDt
Dz
Þ

2
þ 3ða1 þ a3Þ

BDt
Dz
þ a1 � a3 � a4 þ a6 ;

ða1 þ a2 þ a3Þð
BDt
Dz
Þ

4
þ 4ða1 � a3Þð

BDt
Dz
Þ

3
þ 6ða1 þ a3Þð

BDt
Dz
Þ

2
þ 4ða1 � a3Þ

BDt
Dz
þ a1 þ a3 � a4 � a6 ¼ 0

ð18Þ

Solving Eq (18) gives:

a1 ¼
1

12
ð
BDt
Dz
� 1Þð

BDt
Dz
� 2Þ ; a2 ¼ 1 �

1

6
½ð
BDt
Dz
Þ

2
þ 2�

a3 ¼
1

12
ð
BDt
Dz
þ 1Þð

BDt
Dz
þ 2Þ ; a4 ¼

1

12
ð
BDt
Dz
þ 1Þð

BDt
Dz
þ 2Þ

a5 ¼ 1 �
1

6
½ð
BDt
Dz
Þ

2
þ 2� ; a6 ¼

1

12
ð
BDt
Dz
� 1Þð

BDt
Dz
� 2Þ

ð19Þ

Using Eq (19), the finite difference equation [Eq (16)] for all grid points T(i, k) can be

obtained. These equations form a system of a linear tri-diagonal matrix equations. This system

can be solved using the Thomas method [30]. Finally, the intermediate temperature T1 can be

calculated. The empirical function α(t) can be obtained by fitting historic water temperature

and solar radiation data to the model. The values of α in each time step can be calculated from

the empirical function, so that the finite difference equation [Eq (16)] at that corresponding

time can be obtained.

A high order scheme for source-sink term
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Solution of IVP2: Crank-Nicolson scheme for the diffusion term

Using the calculated intermediate temperature T1 from the first step, only considering the dif-

fusion operator in Eq (2) yields the following equation:

@T
@t
¼
@

@z
ðKz

@T
@z
Þ ð20Þ

The Crank-Nicolson scheme (which is second-order accurate in space and time) was used

for treating the diffusion operator. In its discretized form, the Crank-Nicolson scheme can be

expressed as follows:

@f
@t
¼
f nþ1
i � f ni

Dt
ð21Þ

@f
@z
¼

1

2
ð
f nþ1
iþ1
� f nþ1

i� 1

2Dz
þ
f niþ1
� f ni� 1

2Dz
Þ ð22Þ

@2f
@z2
¼

1

2
ð
f nþ1
iþ1
� 2f nþ1

i þ f nþ1
i� 1

ðDzÞ2
þ
f niþ1
� 2f ni þ f

n
i� 1

ðDzÞ2
Þ ð23Þ

The finite difference form of Eq (20) can be found in literature [13]. Using these equations,

the final Tn+1 of the whole cell can be calculated.

Numerical tests

The proposed numerical method was applied to the numerical model, and the numerical

results were compared with exact solutions for validating the method. Eq (24) (published in

[13]) was selected as the test equation. This equation was selected because the source term in

Eq (24) follows the source term in Eq (2), which is temperature-dependent (namely, R = R(T)).

Hence, the test results have great reference value.

@T
@t
¼ D

@2T
@z2
þ a0 cosðoptÞT ð24Þ

In the above equation, T is the water temperature; D is the diffusion coefficient; a0 is the

amplitude; ωp = 2π/Tp; Tp is the period of oscillations. All of the variables are non-dimensional.

The water depth was set toH = 4000. The boundary conditions at both interfaces were zero

gradient (əT/əz = 0). The initial condition was

Tðz; 0Þ ¼
T0 ¼ 10 zL < z < zR
T0 ¼ 0 z > zR or z < zL

(

ð25Þ

With zL and zR set to 1500 and 1800, respectively. The initial condition prescribed a square

wave between zL and zR. Therefore, temperature was discontinuously distributed in the

computational domain. Besides, the source-sink term was cosine-like. Thus, the proposed

numerical experiment allowed to test whether the proposed numerical method could be used

to exactly predict the thermal wave propagation in the presence of such oscillations. The

A high order scheme for source-sink term

PLOS ONE | DOI:10.1371/journal.pone.0173236 March 6, 2017 9 / 18



numerical results were compared to the exact solution of this system, which is:

Tðz; tÞ ¼
T0

2
erfð

z � zL
2
ffiffiffiffiffi
Dt
p Þ � erfð

z � zR
2
ffiffiffiffiffi
Dt
p Þ

� �

exp
a0

op
sinðoptÞ

" #

ð26Þ

Experiment 1: Pure diffusion

Let a0 = 0; then, Eq (24) only contains the diffusion term. The main purpose of this experiment

was to check whether the proposed numerical technique possessed the capability to exactly

predict thermal wave propagation in the condition of pure diffusion. The difference scheme

for the diffusion term was the Crank–Nicolson scheme. We considered different diffusion

coefficients (D = 0.0001, D = 1, D = 5, and D = 10) and conducted four experiments. For each

experiment, two cases were considered: (1) a coarse mesh (Δz = 100) and (2) a refined mesh

(Δz = 10). The time step was Δt = 10. The outcome at the time t = 9600 was chosen. The simu-

lation results were compared to the analytical solutions and the results of this comparison are

shown in Fig 2. In Fig 2(a)–2(d), circles correspond to the case of the refined mesh, and the

results are presented for different diffusion scenarios; this illustrates that the solution obtained

using the Crank–Nicolson scheme can satisfactorily reproduce the square wave’s location

and temperature peak, with no spurious oscillations induced by sharp temperature transitions.

In the case of the coarse mesh, for weak diffusion (D = 0.0001) [triangles in Fig 2(a)], the

scheme can capture temperature discontinuities. However, for larger D, the numerical solu-

tions become inconsistent with the analytical ones (especially regarding the temperature peak

prediction), as is captured by triangles in Fig 2(b)–2(d). In conclusion, the results of Experi-

ment 1 demonstrate that the Crank–Nicolson scheme is sufficiently stable and accurate for

solving the pure diffusion problem. The accuracy is also closely related to the spatial step Δz.
Coarse spatial steps yield large truncation errors that distort the solution.

Experiment 2: Diffusion term and source-sink term

In this experiment, we set a0 = 0.005 and Tp = 1500. The purpose of this experiment was to

check whether the proposed method has the capability to predict the thermal wave propaga-

tion process in the presence of a long-lasting disturbance. Similar to Experiment 1, using the

refined mesh (Δz = 10), we considered different diffusion coefficients (D = 0.0001, D = 1,

D = 5, and D = 10). We considered two methods for numerical simulations. The first method

was the method proposed in this paper (referred to as RESOURCE1); in this method, the

source-sink term was discretized using the proposed high-order scheme based on the undeter-

mined coefficient method, and the diffusion term was discretized using the Crank–Nicolson

scheme. The second method was referred to as RESOURCE2; in this method, the source-sink

term was discretized using the conventional pointwise method [R = R (Tkn)], and the diffusion

term was discretized using the Crank–Nicolson scheme. The outcome at the time t = 9600 was

analyzed. The time step was selected to maintain consistency with Experiment 1 and satisfy the

Courant–Friedrichs–Lewy (CFL) condition to ensure stability.

The simulation results are shown in Fig 3 and the relative root mean square errors (RREs)

are listed in Table 1. The RRE was generally smaller than 4% using the RESOURCE1 (the pro-

posed high-order scheme for discretizing the source-sink term); the RRE was generally above

11% when using the RESOURCE2 (based on the pointwise method for discretizing the source-

sink term). For all considered diffusion scenarios, ranging from the weak (D = 0.0001) to

the strong (D = 10) diffusion, the results obtained using the proposed RESOURCE1 scheme

A high order scheme for source-sink term
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[hollow squares in Fig 3(a)–3(d)] demonstrated better performance compared with the results

obtained using the RESOURCE2. The simulated curve obtained using the RESOURCE2 dis-

tinctly deviated from the analytic curve, and the predicted results for the waveform and tem-

perature peak values also deviated from their corresponding analytical results. These results

suggest that, even when the second-order accurate Crank–Nicolson scheme is used for discre-

tizing the diffusion part, a poor treatment of the source-sink term yields unsatisfactory results.

The numerical deviations associated with the RESOURCE2 may originate from an inappro-

priate treatment of the diffusion term or of the source-sink term. The treatment of the diffu-

sion term in Experiment 2 was identical to that in Experiment 1 (the Crank–Nicolson scheme

was used for the diffusion term). However, comparing Figs 2 and 3 for the same space step

(the refined mesh), the numerical solution calculated using the Crank–Nicolson scheme (CN)

in Experiment 1 captured the diffusion process well (Fig 2); however, for Experiment 2, the

numerical solution calculated using the RESOURCE2 (CN+ pointwise method), significantly

differed from the numerical solution calculated using the RESOURCE1 (CN+ the proposed

Fig 2. Comparison of simulation outcomes and analytical solutions for Experiment 1: (a) D = 0.0001; (b) D = 1; (c)

D = 5; (d) D = 10.

doi:10.1371/journal.pone.0173236.g002
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method) and the analytical solution (Fig 3). This observations support the assertion that the

solution discrepancy reflects the improper treatment of the source-sink term, rather than the

diffusion term. Therefore, we concluded that: even using a numerical scheme with higher-

order accuracy and good stability to discretize the diffusion term, an inadequate discretization

of the source-sink term will generate deviations between numerical and analytical solutions.

This finding is consistent with the conclusions of Siviglia and Toro [13].

Fig 3. Comparison of simulation outcomes and analytical solutions for Experiment 2, using the refined mesh:

(a) D = 0.0001; (b) D = 1; (c) D = 5; (d) D = 10.

doi:10.1371/journal.pone.0173236.g003

Table 1. RRE values for Experiment 2.

RRE D = 0.0001 D = 1 D = 5 D = 10

RESOURCE1 3.5% 0.8% 1.2% 1.5%

RESOURCE2 11.4% 11.5% 15.2% 17.9%

doi:10.1371/journal.pone.0173236.t001
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Simulations of water temperature in the Guozheng Lake

The model and the proposed numerical method were used for performing simulations of

water temperature in Guozheng Lake. Guozheng Lake is located in the city of Wuhan, prov-

ince of Hubei (central China). Its geographical coordinates are 114˚ 21 ’ E and 30˚ 33’ N. The

gross area of this lake is 11.3 km2, with the water level of 20 m. The average depth is 3.81 m

and the maximal depth is 4.75 m. According to the available yearly observation data, the high-

est monthly temperature is 29.8˚C (August) and the lowest monthly temperature is 4.8˚C

(January).

The recorded temperature data from July 1978 to August 1978 were used to validate the

model and the numerical method. The year 1978 was the hottest among the 1976–2005 years.

The observation period covers a significant range of lake thermal processes and yields large

variations in the amplitude of water temperature, compared with other years. The meteorolog-

ical data (including air temperature, relative humidity, and wind) were provided by the obser-

vation station of Lake Dong, located 3.5 km away from the lake. The original meteorological

data used in this case are shown in Fig 4 and in S1 Table. Readers can access the website via

“http://www.weather.com.cn” for more information on the meteorological data for Wuhan

city. The observed data of water temperature were obtained from three observation ships and

three fixed observation points. A 7151-2B conductor thermometer was used. The initial condi-

tion was the vertical distribution of water temperature on July 1, 1978. The sediment tempera-

ture during summer exhibited little change, so it was regarded as constant [31]. According to

Cole [28], in this paper the typical value of the sediment temperature was defined as the aver-

age air temperature.

Here, we explain how to obtain α(t). A comparison was rendered between the average

annual solar radiation and the average annual solar radiation from July to September 1978,

which yielded a fit to α(t). The fitting function was α(t) = 0.03�(1+0.2sin0.0785t), with t = 0

corresponding to July 1, 1978. Thereafter, a comparison was performed between the observed

solar radiation and the solar radiation calculated using the fit equation, for the period from

July to September 1978. The calculated solar radiation curve was in an excellent agreement

with the measured data. Thus, we believe that the functional form of α(t) can be used for esti-

mating solar radiation. The detailed data on average annual solar radiation, the average annual

solar radiation, and the observed solar radiation can be found in S2 Table. Although this has

proven to be effective for simulating the summer period, the relatively simple functional form

of α(t) cannot be guaranteed to be valid for all seasons. For example, we have tried to use this

functional form to calculate the solar radiation during spring and the results were not satisfac-

tory. Perhaps a more elaborate function or a piecewise mathematical function is required for

describing other water bodies during other seasons.

In the case of Guozheng Lake, some consideration should be given to selecting the values of

the spatial and temporal steps. If the selected vertical resolution is too high, the corresponding

time step has to be very small to satisfy the CFL stability condition. This computation will

require significant computing resources. Conversely, if the vertical resolution is too low, the

model may not properly represent the actual vertical distribution of the water temperature.

After several attempts, we found that when the lake was divided vertically into 10 cells (with

Δz = 0.4 m), the vertical resolution converged to a value that correctly recognized the thermo-

cline in most circumstances. In this case, the time step was Δt = 10 s.

Simulation results and discussion

The simulated and the observed values of daily average temperature are shown in Fig 5. The

simulation outcomes are in a good agreement with the observed data, accurately reflecting
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Fig 4. Meteorological data for the period from July 1 to August 31, 1978.

doi:10.1371/journal.pone.0173236.g004

Fig 5. Simulated and observed daily average temperatures.

doi:10.1371/journal.pone.0173236.g005
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actual changes in the lake’s water temperature. The simulation results successfully capture the

actual maximal temperature from August 5 to August 6. For the first few days, the simulation

outcomes somewhat deviate from the actual data. This can be explained by noting that the

model is in the “warm-up” period with respect to the numerical simulation; thus, some

calculation errors are inevitable. After the “warm-up” period, the calculated values gradually

approach the actual values.

July 13, 1978 was a fine day. The weather conditions were characterized by a typical high

temperature and weak wind. According to the survey report of hydrologic characteristics per-

taining to Guozheng Lake [32], the temperature difference between the surface and the bottom

layers of water in the lake was 2˚C (the measurement was performed near the center of the

lake). Since this lake is a shallow urban lake and is usually well-mixed, the stratification phe-

nomenon on July 13 was rare, which has great scientific research value. The simulated and the

observed water temperatures in the vertical direction on July 13 are shown in Fig 6. According

to the data in this figure, the simulation results were in a good agreement with real data. The

simulation identified the distribution of the water temperature in the vertical direction and

successfully predicted the major features of the positive temperature distribution. These fea-

tures include the magnitudes of gradients in the vertical direction and the depth of the surface

mixed layer, to name a few. For an overall assessment of the simulation outcomes in relation

to actual data, Fig 7 shows the correlation between the simulated temperature and the observed

temperature; the correlation coefficient R was bounded by 0.94. This further suggests that the

simulation results are in a good agreement with actual data.

We also note that the simulated temperature in the vertical direction was somewhat smaller

than the actual temperature (Fig 6, especially the thermocline temperature). This difference

Fig 6. Simulated and observed water temperatures in the vertical direction, on July 13.

doi:10.1371/journal.pone.0173236.g006
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can be explained in terms of the wind patterns. On that day, wind directions were northeast,

northwest, and southeast. However, there are trees in the northeast, northwest, and southeast

bank corners of Guozheng Lake, and these trees provide sheltering, thereby decreasing the

speed of wind at the lake. However, sheltering was not considered in the present model. There-

fore, the input wind speed was higher than the actual speed, causing the calculated evaporation

heat flux and the calculated convective heat transfer to be somewhat higher. These factors

resulted in a lower simulated water temperature.

Conclusion

In this paper, a novel numerical method was developed for solving a 1D vertical water temper-

ature model. Using the operator-splitting method, the vertical 1D water temperature model

was solved in two steps: (1) the source-sink term was discretized by a high order scheme, using

an undetermined coefficient method; (2) the diffusion term was discretized by the Crank–

Nicolson scheme. Two numerical tests were performed to validate the proposed method. Test

results showed that the proposed numerical method is effective for solving equations with tem-

perature-dependent source-sink terms. The results also demonstrated the importance of prop-

erly discretizing the source-sink term. Even when the diffusion term was solved using a high-

accuracy and good-stability scheme, an inappropriate treatment of the source-sink term could

yield numerically inaccurate solutions. Finally, the model and the proposed numerical method

were used for simulating the temperature distribution in Guozheng Lake, and the simulation

results were in a good agreement with real data.

Supporting information

S1 Table. Original data of meteorological input.

(XLSX)

Fig 7. Correlation analysis of simulated and observed water temperatures.

doi:10.1371/journal.pone.0173236.g007
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S2 Table. Original data of average annual solar radiation and average annual water tem-

perature from July to September as well as the observed solar radiation from July to Sep-

tember in 1978.
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