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Abstract

Objective

To classify individuals with diabetes mellitus (DM) into DM subtypes using population-based

studies.

Design

Population-based survey

Setting

Individuals participated in 2003–2004, 2005–2006, or 2009–2010 the National Health and

Nutrition Examination Survey (NHANES), and 2010 Coronary Artery Risk Development in

Young Adults (CARDIA) survey (research materials obtained from the National Heart, Lung,

and Blood Institute Biologic Specimen and Data Repository Information Coordinating Center)

Participants

3084, 3040 and 3318 US adults from the 2003–2004, 2005–2006 and 2009–2010 NHANES

samples respectively, and 5,115 US adults in the CARDIA cohort

Primary outcome measures

We proposed the Diabetes Typology Model (DTM) through the use of six composite measures

based on the Homeostatic Model Assessment (HOMA-IR, HOMA-%β, high HOMA-%S), insu-

lin and glucose levels, and body mass index and conducted latent class analyses to empirically

classify individuals into different classes.

Results

Three empirical latent classes consistently emerged across studies (entropy = 0.81–0.998).

These three classes were likely Type 1 DM, likely Type 2 DM, and atypical DM. The classifica-

tion has high sensitivity (75.5%), specificity (83.3%), and positive predictive value (97.4%)

when validated against C-peptide level. Correlates of Type 2 DM were significantly associated
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with model-identified Type 2 DM. Compared to regression analysis on known correlates of

Type 2 DM using all diabetes cases as outcomes, using DTM to remove likely Type 1 DM and

atypical DM cases results in a 2.5–5.3% r-square improvement in the regression analysis, as

well as model fits as indicated by significant improvement in -2 log likelihood (p<0.01). Lastly,

model-defined likely Type 2 DM was significantly associated with known correlates of Type 2

DM (e.g., age, waist circumference), which provide additional validation of the DTM-defined

classes.

Conclusions

Our Diabetes Typology Model reflects a promising first step toward discerning likely DM

types from population-based data. This novel tool will improve how large population-based

studies can be used to examine behavioral and environmental factors associated with differ-

ent types of DM.

Introduction

Diabetes mellitus (DM) is a public health concern in the US. It has been estimated that 9.3% of

the US population (29.1 million) have DM; of those, 27.8% are undiagnosed [1]. DM was the sev-

enth leading cause of death in the US in 2010, claiming 69,071 lives [1]. DM is a complex meta-

bolic disorder that develops due to inadequate insulin production or ineffective insulin utilization

by insulin target cells in muscle, fat and the liver. Patients with diabetes are typically classified as

having Type 1 (T1DM), Type 2 (T2DM) or gestational diabetes based on the lack of insulin pro-

duction, insulin resistance or insulin resistance during pregnancy, respectively. Although T2DM

is most common, paradoxically some patients manifest symptoms of both T1DM and T2DM.

Additionally, other rarer forms of diabetes occur because of specific genetic mutations and pan-

creatic disease owing to tissue insults from drugs and toxins. Although the incidence of T1DM is

highest among children and young adults, it is an autoimmune disease that can manifest at any

age [2]. Owing in part to the global obesity epidemic, the incidence of T2DM in children contin-

ues to increase, and minority youth are disproportionately affected [3–5].

A current challenge in diabetes research is to use population-based studies to estimate the

prevalence of diabetes subtypes despite the imprecise nature of the classification of diabetes in

these studies. Respondents are often asked about whether they have ever been diagnosed with

diabetes, but are not often asked a follow up question regarding DM type. Further, individuals

with undiagnosed DM will not be able to provide information on diabetes subtypes. Addition-

ally, no large national surveys of adults that measured autoantibodies that can be used to iden-

tify T1DM cases. In contrast, it is increasingly common for population-based studies to collect

physiologic data, including blood glucose and insulin levels that can be used to screen for dia-

betes and evaluate insulin resistance and sensitivity. Surrogate indicators for insulin resistance

and sensitivity, as well as pancreatic β-cell function, can be extrapolated from fasting blood

glucose and insulin levels that are commonly included in population-based studies. The

homeostatic model assessments (HOMA) are well recognized methods for estimating pancre-

atic β-cell function and how well insulin is utilized by its target cell populations. Specifically,

HOMA-%β is a surrogate for pancreatic β-cell insulin production, HOMA-IR is a measure for

insulin resistance, and HOMA-%S is a measure for insulin sensitivity [6, 7]. While we cannot

use these surrogate indexes to diagnose DM subtypes, it is possible that we can use these surro-

gate indexes coupled with anthropometric measures like body mass index (BMI) to correctly
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classify individuals with DM, both diagnosed and undiagnosed, into their corresponding sub-

types. No studies to date have leveraged these measures to perform DM subtype classification.

In this study, we proposed the Diabetes Typography Model (DTM), which aimed to classify

individuals with DM into subtypes of DM using a latent class analysis approach. We then

examined the sensitivity, specificity, and positive predictive value of this classification method.

Lastly, we tested these model-defined classes using known correlates of T2DM to examine the

construct validity of these classes in discerning different subtypes of DM. The proposed DTM

will enable researchers to estimate prevalence of the various subtypes of DM and to examine

the behavioral and environmental factors associated with each subtype of DM in population-

based studies.

Materials and methods

Data sources

The data analyzed come from 2003–2004, 2005–2006, and 2009–2010 samples of the National

Health and Nutrition Examination Survey (NHANES) and from year 25 (2010, Wave 8) of the

Coronary Artery Risk Development in Young Adults survey (CARDIA). Respondents with

diabetes ranged from 270 (NHANES 2005/6) to 451 (CARDIA 2010) representing 9–13% of

each cohort.

The NHANES is a serial cross-sectional health survey of a US representative sample of

adults and children undertaken by the U.S. Centers for Disease Control and Prevention [8]. It

includes a detailed survey component and full medical examination using a mobile examina-

tion center. Data collected include self-reported demographic; social, health and nutrition

information; supplementary blood test results and anthropometric measurements. NHANES

includes Mexican American, non-Mexican Hispanic, non-Hispanic White, non-Hispanic

Black, and participants of other races.

The CARDIA study, began in 1985–1986 with 5,115 adults aged 18–30, is a prospective lon-

gitudinal study evaluating the risk of developing heart diseases over time for Black and White

US adults [9]. The same cohort of respondents has been followed for eight waves through 2010

(3,450 respondents, ages 43–55) at varying intervals ranging from 1–5 years between waves.

Like NHANES, CARDIA collects biological and survey data. The data we used are from Wave

8 collected in 2010. This was a secondary data analysis on de-identified data and therefore was

exempted from a review by the institutional review board.

Measures

DTM Model Variables. Due to the importance of the Homeostasis Model in discerning

diabetes type [7], we included three measures based in this model- HOMA-IR, HOMA-%β,

and HOMA-%S. Due to the importance of insulin levels in these calculations, we omitted all

respondents currently taking insulin as the presence of exogenous insulin would affect the

validity of the models. HOMA-IR estimates insulin resistance (IR, Eq 1). Higher HOMA-IR

values reflect higher IR where the body is producing enough insulin, but the insulin produced

is not effectively controlling blood glucose levels; a characteristic of T2DM [10]. A value of 3

indicates moderate insulin resistance and� 5 indicates severe insulin resistance [10]. We use a

cut point of 1.7 to classify respondents as having had low HOMA-IR (0–1.7 = 1; else = 0).

HOMA � IR ¼
fasting insulin mU

mL

� �
� fasting glucose mmol

L

� �

22:5

� �

ð1Þ

HOMA-%β estimates pancreatic β cells’ insulin production function (Eq 2). Insulin
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production is normal-high in T2DM and low-absent in T1DM. [11] Calculated values 81.7%

or lower were classified as low HOMA-%β (0–81.7 = 1; else = 0).

HOMA � %b ¼
fasting glucose mmol

L

� �
� 20

fasting glucose mmol
L

� �
� 3:5

 !

� 100% ð2Þ

HOMA-%S estimates insulin sensitivity (Eq 3). High insulin sensitivity indicates the body

is utilizing insulin effectively. High insulin sensitivity values are uncommon in T2DM and are

more common in T1DM. Respondents with a value of 65% or above were classified as having

high HOMA-%S.

HOMA � %S ¼
1

fasting insulin mU
mLð Þ�fasting glucose mmol

Lð Þ
22:5

0

@

1

A� 100% ð3Þ

Past research has shown a strong relationship between being overweight and obese accord-

ing to body mass index (BMI, Eq 4) and risk of T2DM [12, 13]. Respondents were classified as

low-normal BMI if their BMI was<25.

BMI ¼
weightðkgÞ
heightðmÞ2

 !

ð4Þ

The remaining two measures focus on insulin: (1) low fasting insulin (0–5 μU/mL = 1;

else = 0), which is uncommon in T2DM and frequently seen with T1DM and other types of

diabetes; [14] and (2) high glucose to insulin ratio (G: I, Eq 5). Type 2-diabetics typically have

relatively low G:I ratios because they have high insulin production relative to glucose levels.

The opposite pattern is typically seen with T1DM. Respondents with values >20 were classi-

fied as having high G:I ratio.

Glucose to insulin ratio ¼
fasting glucose mg

dL

� �

fasting insulin mU
mL

� �

 !

ð5Þ

Demographic and T2DM correlates. Both NHANES and CARDIA sample different

racial/ethnic groups. For CARDIA data, we include both Black and White respondents. For

NHANES data, we re-categorized racial/ethnic categories to Hispanic (of any origin), non-

Hispanic Black, non-Hispanic White, and other. Other demographic variables included sex

(male = 1; female = 0), age at interview (continuous), marital status (married = 1; else = 0), and

level of education (high school or less, some college, or college or above). We included the fol-

lowing six dichotomous measures of known T2DM correlates in our analyses: high gender-

specific waist circumference (female—35+ inches, male 40+ inches), severe insulin resistance

(HOMA-IR = 5+), high triglycerides (200+), high total cholesterol (200+), high diastolic blood

pressure (90+ mmHg), and high systolic blood pressure (140+ mmHg).

Statistical analysis

Our focal analyses involve latent class analyses (LCA) across four samples of diabetic respon-

dents identified either through self-report (diagnosed) or by hemoglobin A1c (HA1c) level

(undiagnosed) in each sample of individuals. LCA is a type of mixture model, which is devel-

oped to explore the heterogeneity within a population that is not directly observed. LCA aims

to categorize individuals into mutually exclusive and exhaustive subpopulations (i.e., classes),
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based on their responses to a set of directly observed variables, so that each class will present a

unique pattern of responses. “Best” model was chosen based on entropy, model fit, interpret-

ability, and class sizes. Goodness of fit was tested using Vuong-Lo-Mendell-Rubin Likelihood

Ratio Test to examine if a k-class model was a better fit than a k-1 class model, in which a sig-

nificant (p<0.05) test results means the model with higher number of classes is a better fit than

the one with lower number of classes. Six indicators (HOMA-IR, HOMA-%β, HOMA-%S,

BMI, glucose to insulin ratio, and fasting insulin) were included in the LCA models. The analy-

sis was conducted across four different samples to determine if the best-fit model is replicated

across samples. Mplus version 7.4 was used to conduct the latent class analysis. Class member-

ship based on the “best” model was then assigned to each individual in each sample.

To validate the empirically derived classes, we cross-tabulated class membership against

whether respondents had C-peptide values consistent with LCA defined classes. Low C-pep-

tide is a T1DM correlate that quantifies endogenous insulin secretion [15, 16], which would be

low in T1DM and normal/high in T2DM cases. C-peptide measurements were only available

in the 2003–2004 NHANES data. We calculated positive predictive value, sensitivity, and spec-

ificity of DTM in this sample. We also examined whether excluding DTM-defined cases that

were inconsistent with the physiological profile of T2DM would increase the model fit and var-

iance explained when assessing the association between demographics and known T2DM cor-

relates across studies. For these analyses, we ran logistic regression models predicting all

diabetes against logistic regression models predicting DTM-defined likely T2DM. Model fit

statistics (variance explained, pseudo r-square, negative 2-log likelihood) were examined.

Results

Table 1 displays means or proportions of relevant values for measures included in the pro-

posed DTM, demographics, and diabetes correlates for each sample for both the full sample

and all diabetics in the sample. As shown, the prevalence of low fasting insulin, low/normal

BMI, and high G:I ratios progressively decrease between 2003–2004 and 2009–2010. However,

among all diabetics, the HOMA indicators did not show a clear trend between 2004 and 2010.

Latent class analyses

Table 2 displays results of the latent class analyses. The percentages under each class represent

the proportion of respondents in that particular class having a specific attribute. For example,

in 2003–2004 NHANES, 100%, 1.5%, and 4.1% of respondents in Class 1, 2, and 3, respectively,

had HOMA-IR lower than 1.7. We also presented the size of each class and its proportion to

all diabetes respondents in a given sample. Three of the four models had entropy values above

0.995 with the fourth (NHANES 2009–2010 sample) at 0.817, indicating high classification cer-

tainty. Both Vuong-Lo-Mendell-Rubin tests and Lo-Mendell-Rubin adjust likelihood ratio

tests showed a three-class model fitted the data significantly better than a two-class model in

all samples (P<0.0001), while a four-class model did not significantly fit the data better than a

three-class model (P>0.05).

The profiles of these three classes were also consistent across samples. Fig 1 presents the

percent of respondents in each class having each of the six indicators. Class 1 is characterized

by uniformly low HOMA-IR, high prevalence of low HOMA-%β, high prevalence of high

HOMA-%S, moderate-high prevalence of high G:I ratios, high prevalence of low fasting insu-

lin. The measurement profile of this class was consistent with T1DM. We named this class

“likely T1DM”. Class 2 was characterized by uniformly low prevalence of high HOMA-%S,

low prevalence of low fasting insulin, high G:I ratios; low prevalence of low HOMA-IR, and
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low prevalence of low or normal BMI. The measurement profile of this class was consistent

with T2DM. We named this class “likely T2DM”.

A consistent third class with a unique measurement profile also exists among individuals

with DM. Class 3 had uniformly high prevalence of low HOMA-%β and low prevalence of

high HOMA-%S, moderate-high prevalence of high G:I ratios, very low prevalence of low

HOMA-IR, low prevalence of low or normal BMI, and low prevalence of low fasting insulin.

Since the measurement profile of this class was inconsistent with either T1DM or T2DM, we

named this class “atypical DM”.

Validation analyses

The top part of Table 3 presents the validation analysis of DTM-defined T2DM against C-pep-

tide. When cross-tabulating C-peptide (low vs. normal/high) and class membership (class 2 vs.

Table 1. Means or percentages of relevant variables in NHANES 2003–2004, 2005–2006, and 2009–2010 & CARDIA 2010.

NHANES 2003–2004 NHANES 2005–2006 NHANES 2009–2010 CARDIA 2010

Full Sample All Diabetics Full Sample All Diabetics Full Sample All Diabetics Full Sample All Diabetics

Measures Included in the LCA

Model

Insulin Resistance

Low HOMA-IR* 43% 13% 36% 17% 27% 10% 41% 11%

Beta Cell Function

Low HOMA-%β* 41% 62% 39% 66% 20% 51% 37% 46%

Insulin Sensitivity

High HOMA-S%* 38% 12% 31% 15% 22% 9% 36% 10%

Insulin and Glucose

Fasting Insulin below 5 μU/mL* 25% 14% 19% 14% 10% 8% 23% 7%

Glucose to Insulin Ratio 20+* 22% 25% 17% 28% 8% 19% 19% 14%

Body Mass Index

Low or Normal BMI* 42% 16% 41% 15% 35% 12% 25% 8%

Demographics

Hispanic 26% 33% 27% 24% 33% 36%

NH White 44% 39% 43% 40% 45% 39% 54% 34%

NH Black 25% 23% 26% 33% 17% 19% 46% 66%

Other Race 4% 5% 4% 3% 6% 6%

Female 50% 50% 51% 54% 52% 48% 56% 59%

Male 50% 50% 49% 46% 48% 52% 44% 41%

Diabetes Correlates and

Indicators

Glycohemoglobin (%) 5.49 7.42 5.44 7.52 5.66 7.37 5.71 7.34

Hemoglobin A1C 10+ 1% 9% 1% 13% 1% 9% 1% 11%

Gender-Adjusted Waist

Circumference

91.00 101.99 92.17 105.49 93.52 103.93 94.25 105.42

High Triglycerides 11% 25% 14% 31% 11% 24% 9% 21%

Total Cholesterol 200+ 36% 46% 35% 39% 36% 33% 29% 28%

High Diastolic Blood Pressure 3% 4% 3% 6% 4% 7% 8% 11%

High Systolic Blood Pressure 13% 27% 12% 27% 13% 30% 9% 16%

Notes:

* Indicates specific dichotomous measure used in latent class analysis models

doi:10.1371/journal.pone.0173103.t001
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Table 2. Latent class analysis of the Diabetes Typology Model.

Diabetes Correlate Cut

Point

2003–2004 NHANES 2005–2006 NHANES 2009–2010 NHANES 2010 Cardia

Class 1 Class 2 Class3 Class 1 Class 2 Class3 Class 1 Class 2 Class3 Class 1 Class 2 Class3

HOMA-IR 1.7 or Lower 100.00% 1.50% 4.10% 100.00% 1.50% 0.00% 100.00% 0.00% 2.50% 100.00% 1.90% 0.00%

HOMA-%β 81.7 or Lower 96.90% 49.00% 100.00% 88.70% 51.50% 100.00% 78.50% 24.20% 100.00% 72.40% 36.70% 100.00%

HOMA-%S 65+ 99.10% 0.00% 0.00% 90.20% 0.00% 0.00% 94.20% 0.00% 0.00% 97.10% 0.00% 0.00%

BMI 25 or Lower 46.40% 10.40% 19.20% 36.10% 6.10% 29.50% 40.20% 2.80% 21.30% 29.80% 5.20% 15.90%

Glucose to Insulin Ratio

above 20

81.40% 0.00% 100.00% 72.10% 0.00% 100.00% 70.00% 0.00% 43.00% 45.20% 0.00% 100.00%

Fasting Insulin Below 5 90.70% 0.00% 20.90% 74.40% 0.00% 13.60% 70.00% 0.00% 3.60% 63.20% 0.00% 11.40%

Number in Estimated Class 32 202 42 44 182 44 37 289 68 44 363 44

Percentage of Diabetics in

Sample

11.59% 73.19% 15.22% 16.30% 67.41% 16.30% 9.39% 73.35% 17.26% 9.76% 80.49% 9.76%

Model Fit 3 Classes

Entropy 0.998 0.996 0.817 0.998

Diabetic total that year 276 270 394 451

Vuong-Lo-Mendell-Rubin

P-Value

(3-class versus 2-class

model)

0.0000 0.0000 0.0000 0.0000

Lo-Mendell-Rubin Adj. LRT

P-Value (3-class versus

2-class model)

0.0000 0.0000 0.0000 0.0000

doi:10.1371/journal.pone.0173103.t002

Fig 1. Latent class analysis of all diabetic respondents in the study samples indicated, by the

diabetes correlates on the X-axis: National Health and Nutrition Examination Survey (NHANES) and

the Coronary Artery Risk Development in Young Adults survey (CARDIA).

doi:10.1371/journal.pone.0173103.g001
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other) among diabetics not taking insulin in the 2003–2004 NHANES data, the DTM has

75.5% sensitivity and 83.3% specificity for T2DM, indicating it identified 75.5% of all cases

with normal/high C-peptide as likely to be T2DM and 83.3% of all cases with low C-peptide as

unlikely to be T2DM (Table 3). More importantly however, is that the positive predictive value

of the DTM is 97.42%, which shows that 97.42% of the model-identified T2DM cases had nor-

mal or high C-peptide. This further demonstrates that the DTM can classify T2DM with a

high level of certainty.

The bottom part of Table 3 presents variance explained and various model fit statistics from

regression models with all DM cases versus regression models with only DTM-defined T2DM

cases. When comparing the variance explained by known correlates of T2DM, we found that

excluding DTM-defined unlikely T2DM cases (i.e., classes 1 and 3) increased the variance

explained by known correlates in multiple logistic regression models. Specifically, variance

explained was 19%-32% using all cases of diabetes in the regression models, and increased to

24%-35% (a 2.6%-5.3% increase in variance explained; Table 3). Similarly, we observed signifi-

cant improvement in model fit (i.e., -2-log likelihood after excluding unlikely T2DM cases)

from the models.

Table 3. Sensitivity analyses using C-peptide matching and increased variance explained.

2003–2004 NHANES 2005–2006 NHANES 2009–2010 NHANES 2010 CARDIA

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Sensitivity Analysis 1. C-Peptide

Matchinga

Positive Predictive Value of C-Peptide

and not on Insulin

97.42%

Sensitivity with C-Peptide and not on

Insulin

75.50%

Specificity with C-Peptide and not on

Insulin

83.33%

Sensitivity Analysis 2. Variance

Explained Using Classesb

Predicting All Diabetes Cases

(1 = Diabetes, 0 = No Diabetes)

0.3197 0.2990 0.2466 0.1898

LCA Defined Class (1 = Class,

0 = Else)

0.2161 0.3549 0.1882 0.1390 0.3519 0.1476 0.1288 0.2729 0.1554 0.0364 0.2380 0.1213

Best Measure Class 2 Class 2 Class 2 Class 2

Model Fit

Increase in R-Squared Using Best

Class

0.0352 0.0529 0.0263 0.0482

Negative 2 Log Likelihood of All

Diabetes Model

-644.64 -655.94 -930.38 -1083.92

Negative 2 Log Likelihood of Likely

Type 2 Diabetes Model

-483.06 -447.93 -685.84 -884.31

Model Degrees of Freedom 14 14 14 12

Improvement in -2 Log Likelihood 161.58 208.01 244.54 199.61

P-Value of Improvement 0.0000 0.0000 0.0000 0.0000

Notes:

a. C-peptide values only available in 2003–2004

b. Model includes: Race, gender, age, marital status, education level, gender adjusted waist circumference, high total cholesterol, high triglycerides, high

diastolic blood pressure, high systolic blood pressure, and an indicator for severe insulin resistance.

doi:10.1371/journal.pone.0173103.t003
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Table 4 shows the associations between known T2DM correlates and DTM-define T2DM

(Class 2), after removing DTM-defined non-T2DM (classes 1 and 3). Significant positive asso-

ciations were observed between Class 2 (vs. non-diabetics) and known T2DM risk factors:

non-White race/ethnicity, older age, high gender-adjusted waist circumference, severe insulin

resistance, and high triglycerides.

Discussion

Existing research on prevalence, incidence, and predictors of DM type across the life course is

often limited to small clinical samples of diagnosed T1DM or T2DM cases, [17–19] or samples

restricted to one stage of the life course [20]. Population-based research can inform trends on

DM prevalence and incidence among diagnosed and undiagnosed diabetics. However, the

inability to classify diabetes subtype in population-based studies hinders researchers from

tracking DM prevalence, and from using population-based studies to examine risk factors for

each subtype of DM.

Table 4. Detailed logistic regression predicting model-defined Type 2 Diabetes Mellitus (Class 2) using LCA defined classes of NHANES & CAR-

DIA Data.

NHANES 2003–2004 NHANES 2005–2006 NHANES 2009–2010 CARDIA 2010

AOR (95% CI) AOR (95% CI) AOR (95% CI) AOR (95% CI)

Demographics

Hispanic 1.80 (1.16,2.79) ** 2.06 (1.25,3.41) ** 2.67 (1.89,3.78) ***

NH Black 1.91 (1.20,3.04) ** 3.70 (2.38,5.76) *** 2.32 (1.54,3.49) *** 2.09 (1.58,2.78) ***

Other Race 2.93 (1.29,6.67) * 0.79 (0.22,2.78) 2.22 (1.12,4.40) *

Male 1.03 (0.72,1.46) 0.47 (0.32,0.69) *** 0.71 (0.53,0.95) * 0.55 (0.42,0.71) ***

Age at Interview 1.06 (1.05,1.07) *** 1.07 (1.06,1.08) *** 1.06 (1.05,1.07) *** 1.06 (1.03,1.10) ***

Married 1.25 (0.87,1.81) 1.56 (1.08,2.26) * 1.44 (1.07,1.93) * 1.20 (0.93,1.56)

High School or Less 1.09 (0.64,1.84) 1.13 (0.65,1.98) 1.42 (0.90,2.23) 1.20 (0.87,1.66)

Some College 1.06 (0.58,1.94) 1.02 (0.55,1.90) 1.67 (1.02,2.73) * 1.20 (0.89,1.61)

Known Type 2 Diabetes Correlates

High Gender-Adjusted Waist Circumference 1.01 (1.00,1.02) ** 1.02 (1.01,1.03) *** 1.02 (1.01,1.03) *** 1.05 (1.04,1.06) ***

Severe Insulin Resistance 14.70 (10.21,21.18) *** 6.00 (4.05,8.89) *** 4.99 (3.68,6.76) *** 4.93 (3.72,6.53) ***

High Triglycerides 1.89 (1.25,2.85) ** 2.64 (1.75,3.99) *** 2.13 (1.49,3.04) *** 2.14 (1.51,3.03) ***

Total Cholesterol 200+ 0.84 (0.59,1.20) 0.55 (0.37,0.80) ** 0.57 (0.42,0.77) *** 0.93 (0.71,1.23)

High Diastolic Blood Pressure 0.80 (0.33,1.94) 1.35 (0.64,2.82) 1.25 (0.69,2.25) 0.69 (0.43,1.11)

High Systolic Blood Pressure 0.92 (0.60,1.40) 1.00 (0.66,1.54) 1.30 (0.92,1.83) 1.42 (0.92,2.19)

Model Fit Indicies

LR Chi-Squared Value 531.59 486.43 514.93 554.95

LR Chi-Squared Value Degrees of Freedom 14 14 14 12

Prob >Chi-Squared 0.0000 0.0000 0.0000 0.0000

Psuedo R Squared 0.3549 0.3519 0.2729 0.2338

N 3084 3040 3318 3450

Notes:

*P<0.05

**P<0.01

***P<0.001

AOR = Adjusted odds ratios, CI = Confidence interval, NH-non-Hispanic. Reference group: Race/ethnicity = non-Hispanic White; gender = female; marital

status = not married; education = college graduate; waist circumference = normal or low gender-adjusted waist circumference; insulin

resistance = HOMA-IR<5; triglycerides = triglycerides<200; total cholesterol = total cholesterol<200; diastolic blood pressure = diastolic blood pressure

<90mmHg; systolic blood pressure = systolic blood pressure <140mmHg.

doi:10.1371/journal.pone.0173103.t004
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Even though some studies, such as SEARCH for Diabetes in Youth, [20, 21] are able to clas-

sify diabetes subtype from a blood sample and testing for autoantibodies, this ability comes

with high costs and is not standard practice for adult population-based surveys without an

expressed diabetes focus. It is expensive and logistically challenging to have blood drawn via

venipuncture for all respondents in a large national sample. Additionally, sending phleboto-

mists to individuals’ homes is costly and practically cumbersome. Alternatively, asking indi-

viduals to visit a clinic for a blood draw is likely to result in low response rate, particularly

among those with limited access to medical care including residents in rural areas and individ-

uals of low socioeconomic status. Due to the challenges of collecting blood samples by veni-

puncture, some nationally representative studies have shifted toward blood collection via

blood spots especially for glucose and HbA1c testing [22].

Given the utility of a method to sort population-based samples of DM by subtype, we

sought to create a model that could use multiple sources of biological and anthropometric data

from population-based data to meet this goal. Moreover, we sought measures that would yield

valid indicators from blood samples collected by either venipuncture or blood spot methods.

As demonstrated here the DTM, based on an expanded set of variables and measures of the

Homeostatic Model, is capable of meeting this goal. Model fit statistics showed that the DTM

possesses a high certainty in assigning individuals with diabetes into three classes (likely

T1DM, likely T2DM, atypical DM). Our validation analyses also showed that DTM has a high

positive predictive value, sensitivity, and specificity in identifying DM cases that are consistent

with the physiological and anthropometrical profile of T2DM among individuals with diabe-

tes. Herein we also showed that by excluding model-defined classes 1 and 3, known T2DM

correlates (e.g., non-White race/ethnicity, older age, high gender-adjusted waist circumfer-

ence, severe insulin resistance, and high triglycerides) explained a greater amount of variance

for class 2 (T2DM) than unsorted comingled DM cases. Given that the physiological measures

used in LCA can be obtained through blood spots, DTM greatly increases our ability to sepa-

rate DM type in large population-based studies, thus enhancing our ability to examine the risk

factors for each type of DM outside of clinical studies.

Interestingly, DTM consistently detects a third class of individuals with DM that did not fit

the T1DM-T2DM dichotomy. The size of this class (10%-17% across four samples of individu-

als) is non-trivial among all diabetics and additional investigations are needed to determine

the significance of this DTM identified population. While the available data is insufficient to

determine whether this group reflects a different subtype of DM, we suspect that it could be an

atypical presentation of a variant or subtype of either T1DM or T2DM, e.g., Maturity Onset

Diabetes of the young (MODY) or secondary diabetes. However, we cannot conclusively

determine this with our data. Nonetheless, the finding that a clear third class emerged from

the use of the DTM is promising given that the model clearly functions with its intended pur-

pose of distinguishing different subtypes of DM, which would make research on this atypical

DM variant possible in future studies.

As prevalence of all subtypes of DM increase and present across the age spectrum, it will

become increasingly important for population-based research to identify social and environ-

mental precursors to the development of DM. The only information required to replicate our

latent class analyses are respondent DM status (either self-report or confirmed using HbA1c

levels), body mass index (or both height and weight), and fasting glucose and fasting insulin

levels, which can be collected by either venipuncture or blood spot. Thus, the simplicity of this

model and general availability of these measures in population-based studies employing select

biological sample collections creates a unique and important opportunity to begin more com-

prehensive research on the incidence, prevalence, and socio-environmental contexts of DM by

subtype.
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Despite DTM’s ability to classify DM subtypes in population-based studies, our analysis has

several limitations. First, DTM cannot be used in pre-diabetic or normoglycemic individuals.

However, once the presence of diabetes has been established, this model can facilitate sorting

of cases by likely diabetes subtype. Second, while we were able to replicate the model in four

different national adult samples, the utility of DTM in specific subpopulations is unknown.

Future research needs to focus on refining this model and testing its accuracy across the age

spectrum and race/ethnicity. Third, we were only able to validate DTM-defined likely T2DM

classification with C-peptide in one of the four samples since the measure was not available in

the other three samples. Measures to validate DTM-defined likely T1DM and atypical DM

were not available in NHANES and CARDIA. A previous analysis estimated the prevalence of

T1DM based on age of DM diagnosis, age of insulin initiation, and current use of insulin. [23]

However, with the increasing prevalence of late onset T1DM and early onset T2DM resulting

in early insulin use, the previous approach may misclassify DM subtypes and should not be

used to validate DTM-defined likely T1DM cases. DTM will benefit from additional validation

using data from large samples of clinically confirmed T1DM and T2DM cases. This will allow

for a more confident determination of the model’s validity and its ability to predict T1DM and

T2DM. Lastly, we did not have information about use of oral hypoglycemic agents in our sam-

ples. It is possible that some individuals may be using these agents at the time of study. How-

ever, we did not find reports in the literature that indicate oral hypoglycemic agents having the

ability to change insulin levels and to alter HOMA indexes used in DTM. In conclusion, DTM

is a novel tool for classifying DM subtypes in large population-based datasets, and it has great

potential to improve how these vast datasets are used to examine behavioral and environmen-

tal factors associated with different types of DM. Potential discoveries using this tool can

inform preventive clinical practice in the near future.
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