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Abstract

Self-organized mechanisms are frequently encountered in nature and known to achieve

flexible, adaptive control and decision-making. Noise plays a crucial role in such systems: It

can enable a self-organized system to reliably adapt to short-term changes in the environ-

ment while maintaining a generally stable behavior. This is fundamental in biological sys-

tems because they must strike a delicate balance between stable and flexible behavior. In

the present paper we analyse the role of noise in the decision-making of the true slime mold

Physarum polycephalum, an important model species for the investigation of computational

abilities in simple organisms. We propose a simple biological experiment to investigate the

reaction of P. polycephalum to time-variant risk factors and present a stochastic extension

of an established mathematical model for P. polycephalum to analyze this experiment. It

predicts that—due to the mechanism of stochastic resonance—noise can enable P. polyce-

phalum to correctly assess time-variant risk factors, while the corresponding noise-free sys-

tem fails to do so. Beyond the study of P. polycephalum we demonstrate that the influence

of noise on self-organized decision-making is not tied to a specific organism. Rather it is a

general property of the underlying process dynamics, which appears to be universal across

a wide range of systems. Our study thus provides further evidence that stochastic reso-

nance is a fundamental component of the decision-making in self-organized macroscopic

and microscopic groups and organisms.

1 Introduction

Self-organization enables even simple organisms to solve surprisingly complex tasks, specifi-

cally optimization tasks essential for survival [1]. Prominent examples are ant colonies which

optimize their foraging choices among multiple food patches [2] taking a variety of criteria

into account [3] and slime molds, which optimize path choices even in complex mazes [4].

In the past, the self-organized behavior of such organisms has mostly been investigated in

unchanging, static environments. While this seems a natural starting point for such
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investigations, dynamic settings are much more relevant to the behavior of organisms in the

real world, where change is ubiquitous. This is why recently the focus of research has been

shifting towards dynamic environments where the properties of the environment change over

time. The question addressed is “can species x efficiently adapt its behavioral patterns to the

environmental changes?”

Such a dynamic setting imposes additional burdens on a systematic investigation. First, the

notion of optimality becomes even more slippery than it is in the static case already [5]. Sec-

ond, the corresponding experimental set-ups are more complex, leading to an increase in the

number of parameters governing numerical studies. Thus, theoretical research guiding the

design of meaningful (and realistically feasible) experiments becomes very important. Here we

present a theoretical study that analyzes fundamental properties of dynamic decision making

by the true slime mold Physarum polycephalum, an important model species for the study of

information processing in biological systems [6, 7]. Our study directly suggests foraging exper-

iments that will allow us to verify these properties for the real system.

1.1 Noise-induced adaptive decision-making

One of the recent advances in research into dynamic foraging was the finding that noise in the

decision making process is one of the crucial factors enabling self-organized insect societies to

adapt their foraging patterns to changes in the environment [8, 9]. This interesting and

counter-intuitive result suggests that noise is not a disturbance in self-organized systems. On

the contrary, noise serves an important functional role. The studies [8, 9] are based on experi-

ments with mass foraging ant colonies, one of the prototypical model systems in the study of

self-organization. Interestingly, the fact that noise enables adaptive decision making is not due

to any specific physical details of the ant foraging mechanism. Instead, it arises from very gen-

eral mathematical properties of the underlying self-organized processes [10]. This suggests

that the same should also apply to other similar types of self-organized collective decision mak-

ing in organisms such as slime molds and bees.

In the present paper we investigate the assessment of time-variant risk for the true slime

mold P. polycephalum. We show that noise can enable P. polycephalum to correctly assess

time-variant risk factors in dynamic environments and, as a consequence, to make near-opti-

mal foraging choices. We extend a deterministic phenomenological model developed by Tero

et al. [11] for the foraging behavior of P. polycephalum to explicitly capture effects of noise.

Numerical and analytical investigation of the resulting stochastic model shows that a well-

attuned level of noise can enable P. polycephalum to integrate variable risk factors correctly

over time. This is not the case if there is little or no noise in the system. We suggest compara-

tively simple biological experiments that will allow us to test these predictions.

Our results hold interest beyond their immediate relevance for the study of P. polycepha-
lum. They demonstrate with a concrete case that it is possible to transfer insights about collec-

tive behavior from one species (ants) to another species (slime molds). Ants and slime molds

are physically entirely different systems. Yet, the self-organized mechanisms that govern their

fundamental behavior are so similar that both species share essential behavioral

characteristics.

Most importantly, the fundamental mathematical structure of the self-organized decision

making mechanisms in these systems is similar to those in a broad variety of other organisms,

such as bees [1] and bacteria [12], to those in human social decision making [13, 14], and even

to those in bio-inspired engineering solutions, such as swarm robots [15]. In conjunction with

earlier work on similar phenomena in ant colonies our study thus provides further evidence

Noise-induced decision making in Physarum polycephalum
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that noise may play a crucial role in the decision making of a broad range of self-organized sys-

tems beyond those investigated so far.

1.2 Path finding by P. polycephalum

P. polycephalum is a slime mold that spends most of its life cycle as a plasmodium, a uni-cellu-

lar multinucleate amoeboid. The plasmodium is an aggregate of protoplasm with a network of

tubular elements. The protoplasm is differentiated into two phases: a gel phase (ectoplasm)

that makes up the walls of the tubular structures, and a sol phase (endoplasm) that flows within

the tubes. The motion of the sol, so-called shuttle streaming, is driven by organized rhythmic

contractions of the gel with a period of ca. two minutes. The sol serves as a circulation system

for the cell transporting nutrients and chemical signals. The tubes act as pseudopodia and

enable the organism to navigate around its environment [4, 16]. The organism can reconfigure

the tube network within a few hours in response to changes in external conditions. As it moves

over a surface, the plasmodium changes its shape and if food is placed at different points, it

will put out tubes that connect these food sources [6].

It has been shown that P. polycephalum, despite its extremely simple morphology, is able to

solve computational problems of surprising complexity. About a decade ago, a seminal experi-

ment [4] demonstrated that P. polycephalum can solve the shortest path problem in mazes.

Since then, these studies have been extended and it has been demonstrated that it can solve (or

approximately solve) a variety of other network optimization problems [7, 17, 18] even when

taking multiple objectives into account [19]. It has also been shown that P. polycephalum pos-

sesses a memory and is able to anticipate periodic events [20]. These capabilities in combina-

tion with its simple morphology and comparatively large size make P. polycephalum an almost

ideal model system for the study of information processing and problem solving in biological

systems.

The most fundamental demonstration of its computational abilities is the maze experiment

[4]. In this experiment an agar surface is masked with plastic film, such that the accessible sur-

face forms a maze. Food (oat flakes) is placed at the entrance and exit points of the maze, and

pieces of the plasmodium are distributed in the maze. These pieces spread and coalesce to

form a single plasmodium that fills the agar maze and avoids the dry surface of the plastic film.

Subsequently the plasmodium shrinks and only leaves a single thick tube behind which traces

the shortest path between the two food sources (see Fig 1).

It appears this is the result of the organism’s attempt to simultaneously optimize two differ-

ent goals, namely to (1) maintain sufficient connectivity of the entire plasmodium in order to

maintain chemical communication, and (2) to maximize food absorption [19]. The maximiza-

tion of both goals causes almost all body mass to cover the two food sources while only a mini-

mal connection between these areas is maintained.

While a full explanation of these abilities from first bio-physical principles is currently still

beyond reach, Tero et al. have proposed a simple phenomenological model that describes the

development of the tube network [11]. We use this model as the departure point for our analy-

sis of risk evaluation by P. polycephalum.

2 Methods

2.1 The deterministic Tero-Kobayashi model

In the Tero–Kobayashi model, the shape of the cell body is represented by a graph: the edges

correspond to tubes and nodes correspond to the junctions between tubes. Fig 1(d) shows the

example graph for the maze-solving experiment. The two nodes with food-sources are labeled

N1 and N2 and the other nodes are numbered N3, N4, N5, . . .. Edges (tubes) between node i

Noise-induced decision making in Physarum polycephalum
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and j are labeled Mi,j. Suppose that the fluid (sol) pressure at nodes i and j is pi and pj, respec-

tively, and that the tubes are idealized as cylinders of length Li,j and radius ri,j. Assuming a Poi-

seuille flow, the flux through the tube is

Qi;j ¼
8pr4ðpi � pjÞ

ZLi;j
¼

Di;j

Li;j
ðpi � pjÞ ð1Þ

where η is the viscosity of the fluid (sol), and Di;j ¼
8pr4

Z
is a measure of the conductivity of the

tube. Although the tube walls are not rigid and the radius changes over time, the dynamics of

tube adaptation are slow enough (10-20 minutes) for the flow to be taken as steady in time.

The amount of fluid at internal nodes must be conserved, while the nodes that correspond to

food sources drive the flow through the network by changing their volume, so that

X

j

Qi;j ¼

(
0 if i 6¼ 1; 2

Si otherwise
ð2Þ

with S1 + S2 = 0, because the total volume of fluid in the network is conserved. The source

terms Si could be periodic in time and drive shuttle streaming through the network. However,

because the time scale of network adaptation is an order of magnitude longer than the time

scale of shuttle streaming, the sources are taken to be constant in the following.

In P. polycephalum the radii of the tubes change in response to the sol flux: while generally

all tubes have a tendency to shrink, tubes with a large flow expand in response to the flow.

Thus the evolution of tube conductivities can be modelled as:

@Di;j

@t
¼ f ðjQi;jjÞ � dDi;j

ð3Þ

With initial conditions Di,j(t = 0) to be specified. This establishes a self-limiting feedback sys-

tem in which positive feedback is counterbalanced by negative feedback (shorter and larger

tubes attract more flow, which in turn expands the tubes, while longer and less used tubes

Fig 1. Maze solving by P. polycephalum following [4]. Panel (a) shows a schematic of the set-up used by

[4], where black color corresponds to inhabitable space for P. polycephalum. Panel (b) shows the abstract

graph model of the maze in (a) with nodes in black and edges in blue color. The two food sources N1, N2 are

shown in red.

https://doi.org/10.1371/journal.pone.0172933.g001
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shrink and thus attract even less flow). The evolution of the tubular network according to this

model agrees well with biological experiments [11]. A biologically plausible choice for f is a sig-

moidal function. To make our results comparable with earlier literature we choose the follow-

ing form which has been used to analyse the Tero-Kobayashi model in previous work [11]:

f½a;g;m�ðQÞ ¼ ðgþ aÞ
Qm

gþ aQm
ð4Þ

While the forcing function f appears as a three-parametric function (parameters are α, γ and μ)

of the dependent variable Q, it is only the linear combination γ/αwhich has an impact on the

forcing. This symmetry is exploited by rewriting f as a two-parametric function reducing the

number of parameters on which the system depends, by one:

f½�;m�ðQÞ ¼ ð1þ �Þ
Qm

�þ Qm
; with � � g=a: ð5Þ

Hence, a specific value of � incorporates all combinations of α and γ which yield this specific

value.

Note that this is a saturating feedback function. While it complicates analytical investigation

of the system, a saturating function is biologically more realistic. In the following we use Eq (4)

with μ = 2 and � = 0.2 unless stated otherwise. The choice of μ = 2 is motivated by comparabil-

ity with previous work. The parameter ε is chosen such that the system is well within its trista-

ble regime. Backed by the extensive analytical investigation of the system in Appendix A, we

are confident that the dynamics of the system depend on the value of ε only in quantitative

details, but not qualitatively.

To gain an understanding of the system dynamics, we consider the simplest possible deci-

sion network consisting of only two different paths between two food sources. Dropping sub-

scripts i, j for nodes and simply numbering the two tubes as i 2 {1, 2}, the system becomes

@Di

@t
¼ � dDi þ f�

Di=Li

D1=L1 þ D2=L2

� �

ð6Þ

with initial conditions D1(t = 0)� D1,0 and D2(t = 0)� D2,0. In Appendix A we show that

dynamics of this system critically depend on �. For � < 1/4 it can be shown that the system has

two unstable and three stable equilibria (Fig 2). Two of the stable equilibria correspond to full

convergence to a single tube (i.e. a single foraging path) (D1 = 0 or D2 = 0) and the third one

corresponds to equal utilization of both paths D1 = D2 6¼ 0. As �! 1/4 the basin of attraction

for the third fixpoint vanishes and the fixpoint becomes unstable for � < 1/4. Thus, depending

on the parameter �, the system is either a binary or a ternary decision model.

2.2 Dynamic path finding: A thought experiment

Our fundamental concern is whether self-organized decision making enables P. polycephalum
to successfully react to dynamically changing environments. The maze experiment reviewed

above investigates a static scenario. The question arises whether it can be adequately modified

into a dynamic version. A commonly used set-up for dynamic foraging experiments is to

change the type or location of food sources or the paths to these. However, as the body of P.
polycephalum actually covers the food sources and the paths, this is difficult to achieve without

disturbing the organism too much. The possibility of an alternative set-up arises as P. polyce-
phalum exhibits phototaxis, being photophobic at some wavelengths in the visible range of EM

radiation [21]. The organism experiences bright light as a “risk” factor and consequentially

tends to withdraw its tubes in more brightly lit areas. In the model this can be captured by

Noise-induced decision making in Physarum polycephalum
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increasing the thinning factor δ. It has been shown experimentally that P. polycephalum is able

to select paths in inhomogeneously lit fields such that the risk imposed by light and path

lengths, respectively, are balanced [19]. This photophobic behavior of the organism suggests a

different set-up for a dynamic foraging experiment: instead of changing the spatial arrange-

ment we can change the lighting on different parts of the set-up, thus avoiding to disturb the

organism in the process. Toxic light has also been used to induce a time variant risk in [22].

However, the focus of [22] was on spatial search rather than on the role of noise in a funda-

mental binary decision task, which we investigate here.

We propose the following dynamic foraging experiment to clarify how the self-organized

organism can successfully cope with changing environments. P. polycephalum is presented

with a minimal “maze” of only two alternative paths connecting two food sources. Both paths

have the same length and are illuminated with light sources of the same calibrated luminosity.

The reduction to only two possible paths is made to ensure that the mathematical model

remains tractable. So far there is no reason for the organism to prefer either path. From experi-

ments and the analysis of the basic model [11] we know that the organism will select one of the

two paths depending on which one is initially set up with the thicker tube (note that we can

regulate the initial tube thickness according to requirements by preceding the experiment with

an initialization phase in which targeted lighting is used to thin selected tubes). Now consider

the use of intermittent lighting instead of continuous lighting. Conceptually, if both paths are

lit with the same luminosity, but with different light-dark periods, one of them should be

selected preferentially, because it represent the lower total risk (integrated over time). Number

the two paths 1 and 2 and let the light-to-dark ratio on these be ri ¼
li
di

, where li and di are the

durations of the light and dark period on path i, respectively. If r1 < r2, the organism should

select path 1 provided it assesses the time-variant risk factors correctly. Of course, the time-

scale of the light-dark cycles must be significantly faster than the time scale of adaptation, as

Fig 2. Schematic of the δD1–δD2 parameter space. (a) for � < 1/4 and (b) for � > 1/4. Stable equilibria are marked by

a red circle, unstable ones by a blue circle; linear stability of the respective equilibria is also indicated by arrows

surrounding them. The equilibria are numbered as in Appendix A. Trajectories in the D1–D2 phase-space cannot cross

any of the lines drawn; hence the lines divide the phase space into 8 sectors in which trajectories stay for all times. The

blue lines are given by D2 = a2,3D1 and divide the basins of attraction of the three (� < 1/4) respectively two (� > 1/4) fix

points.

https://doi.org/10.1371/journal.pone.0172933.g002

Noise-induced decision making in Physarum polycephalum

PLOS ONE | https://doi.org/10.1371/journal.pone.0172933 March 29, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0172933.g002
https://doi.org/10.1371/journal.pone.0172933


the organism could otherwise simply adapt to every period separately and would not need to

integrate the time-variant signal.

An interesting question is whether we potentially need to account for directional bias of the

organism. Recently, P. polycephalum was found to exhibit chirality [23] in the search phase of

the foraging, i.e. a directional preference when the plasmodium is expanding. In contrast to

this, our suggested experiment investigates the contraction phase of foraging, i.e. the shrinking
of the tube network. Previous studies [16] have not found a bias in the contraction phase in

very similar set-ups. However, we cannot categorically exclude that it may occur in some

experimental settings. We thus suggest to account for this possibility in the following way. In a

preliminary phase our experiment is conducted without lighting to check for any directional

bias. If, contrary to our assumptions, bias is found we can proceed in two ways. Firstly, we can

modify the experiment to use a different geometry that eliminates directional differences:

Three food sources are arranged such that a central source is located in the middle between

two other sources. The plasmodium is restricted in the usual way to use two paths from the

central source to the outer sources. The paths are shaped such that together they form a sym-

metric ‘S’-shape. Since both paths have the same left-right curvatures, we would expect this to

eliminate bias. Any bias that cannot be eliminated can easily be accommodated in the numeri-

cal model by using a different thinning factor δi for each branch (Eq (5)) and fitting these to

the experiment. We emphasise that it is unlikely that this is necessary, since previous studies

have not found bias in the contraction phase [16].

2.3 Revised stochastic Tero-Kobayashi model

The proposed experiment corresponds to the following variation of the Tero-Kobayashi model

restricted to two paths as given in Eq (6). As outlined above, a variation of lighting can be cap-

tured as a variation of δ. For intermittent lighting we introduce a forcing function

Fðt;DiÞ ¼

(
� biDi if ðot mod 2pÞ > bri

0 otherwise
ð7Þ

where ω is the frequency of the forcing, bri is the length of the darkness period on path i, and βi
is a measure of the intensity of the lighting on path i. The lighting function is shown in Fig 3A.

The different behaviours of a system that remains forever in one of the three forcing

regimes are shown in Fig 3B, which also gives the corresponding equilibria. The filled squares

at (1/0), (0, 1), and *(0.7, 0.7) are the stable equilibria of a system in which both branches are

continuously dark. Thus these are the states that such a system would attain in the long-run.

Equivalently, circles mark the equilibria for an unchanging system in which only a single path

is lit. Stars mark the equilibria for an unchanging system in which both paths are continuously

lit. We direct the reader’s attention to how the equilibrium point that corresponds to equal use

of both paths in the unlit regime moves away from the lit path(s). The corresponding basins of

attraction (delineated with red lines for the light/dark regime and blue lines for the light/light

regime) shift together with the stable equilibrium from their position in the completely unlit

regime (grey shading). For reference, Fig 3 also shows with hollow markers the corresponding

unstable equilibria. These are, however, not relevant to the long-run behaviour.

In each of the forcing regimes, the lighting can be taken into account as a modification of

the tube thinning δ. If forcings are on a significantly faster time scale than the relaxation time

of the system ( o

2p
� 1

d
), we may ignore the phase of the signal. Taking intensities into account,

Noise-induced decision making in Physarum polycephalum
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the time-averaged ratio of risks (ratio of forcings) is

r ¼
b1

b2

�
2p � br1

2p � br2

¼
hF1ðtÞi
hF2ðtÞi

ð8Þ

where the second path is preferred for ρ< 1 and the first one for ρ> 1.

As our aim is to analyze the role of noise in the assessment of time-variant risk, we intro-

duce an explicit noise term ξi(t) into the model. Here ξi(t) is a Gaussian white noise process

with an expected value of hξi(t)i = 0, unit variance hξi(t)ξi(t)i � σ2 = 1, and uncorrelated in

time. This is also in line with the experimental finding that tube thicknesses fluctuate randomly

to some degree.

The full model for the two path experiment with intermittent lighting becomes

@Di

@t
¼

( FðDiÞ; if Di > 0

0; otherwise
ð9Þ

FðDiÞ ¼ � dDi þ f�
Di=li

P2

j¼1
Dj=lj

 !

þ Fðt;DiÞ þ sxiðtÞ ð10Þ

where we propose additive noise representing random perturbation originating from external

sources.

Fig 3. Influence of forcing. a) Forcing functionΦ(t) for the modified deterministic Tero–Kobayashi model

with intermittent lighting and parameters br1 < br2 and β1 < β2. Solid lines show the instantaneous forcingΦ1(t)

(red) andΦ2(t) (blue), dashed lines are for the time-averaged forcing as denoted by the angle brackets h�i. b)

Attractors (markers) and basin of attraction (shaded) for the stable equilibrium with both D1 6¼ 0 and D2 6¼ 0 of

the deterministic model. Squares are for the unforced model ðt mod 2pÞ < br1 (dark/dark), circles are for br1 <
ðt mod 2pÞ < br2 (light/dark), stars are for br2 < ðt mod 2pÞ (light/light). Filled symbols denote stable

equilibria, hollow symbols stand for unstable equilibria. The shaded region denotes the basin of attraction for

the unforced model. The basins of attraction for the forced models are between the corresponding red lines

(light/dark) and blue lines (light/light), respectively. The unshaded regions left/right respectively above/below

these lines are the basins of attraction for convergence on a single path (D1 = 0 or D2 = 0). We assume here

the model is locked forever into the respective forcing regime.

https://doi.org/10.1371/journal.pone.0172933.g003
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We use the parameters in Table 1 with l� L1 = L2 and D1,0� D1(t = 0) and similarly for D2.

The risk ratio ρ is not a parameter, but is calculated from br1, br2, β1, β2. With ω� δ, this

establishes a process in which the forcing frequency is significantly faster than the relaxation

time, but not so fast that—in the corresponding biological experiment—time averaging would

happen on the sensory level of the organism. This combination of parameters implies a week

preference of path 1 since ρ = 5/6� 1 and we expect that it is hard for the system to decide

correctly.

3 Results

3.1 Integration of the modified Tero–Kobayashi model

Numerical integration of the modified model (Eqs (9) and (10)) with parameters as listed in

Table 1 confirms that a well-attuned level of noise allows the system to decide correctly in

respect to the time-variant risk. As a one-dimensional measure for the correctness of the deci-

sion we define

c ¼
D1 � D2

D1 þ D2

: ð11Þ

For these parameters and assuming time-averaged risks, Path 1 is preferable to Path 2, because

r ¼
0:25

0:6
�

2 � 1

2 � 3=2
¼

5

6
: ð12Þ

Note that this risk ratio corresponds well to the ones found in biological experiments [19].

Thus, if the system decides “correctly” we expect limt!1 c! 1.

Disregarding forcing and noise, the system has three fixpoints (steady-states). Initialization

determines which steady-state is attained. As we are interested in the question whether noise

improves the decision behavior of the system, we initialize biased towards the wrong steady

state with (D0
1
¼ 0:5; D0

2
¼ 1; c ¼ � 1=3). It turns out that the system decides correctly if a

noisy process is assumed, while it will not be able to do so if noise is eliminated or reduced to a

very low level.

The evolution of the noise-free deterministic process (Eqs (9) and (10)) for the parameters

given above and σ2 = 0 is plotted in Fig 4A with a solid gray line. It is clearly visible that the

process does not reach the correct decision c = 1, but instead assumes the third fixpoint

(D1� D2 with c� 0 but slightly shifted due to the forcing).

If noise is introduced into the system it does, however, decide correctly. To show this we

compute 5000 sample paths of the stochastic process (Eqs (9) and (10)) with σ2 = 0.05 for over

2000 forcing cycles (200π) with 16 time steps per forcing cycle (Δt = 2π/(16ω)� 0.04) using

the method of Milstein forward integration [24]. Fig 4B shows the mean and standard devia-

tion for this process (refer to the bold continuous and bold dotted lines). It is clearly visible

that the vast majority of samples decides correctly (c! 0.76). A further inspection of individ-

ual sample paths (not shown) reveals that none of them develops towards the state of no

Table 1. Experimental parameters.

General parameters Forcing

L1 = L2 � δ μ σ2 Δt D0
1

D0
2

br1 br2 ω β1 β2

1 0.2 1 2 0.05 0.05 0.5 1 π 3

2
p 10 0.25 0.6

https://doi.org/10.1371/journal.pone.0172933.t001
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decision D1� D2 such that 88% of the realizations end up on the path imposing lower risk.

This is due to the fact that noise destabilizes this fixpoint of the deterministic system.

3.2 Construction and analysis of a one-dimensional Itô Process

In principle, Markov theory offers us powerful means to further analyze this process. However,

it is impossible (or at least extremely difficult) to apply such an analysis to the two-dimensional

system (Eqs (9) and (10)) with a discontinuous forcing function. We thus aim to reduce it to a

one-dimensional system that approximates the main properties of the full system well and is

amenable to a formal analysis. A one-dimensional continuous-time continuous-space Markov

process for the c value can be specified as an Itô-Diffusion

dc
dt
¼ mðc; tÞ þ sðc; tÞxðtÞ; ð13Þ

where μ describes the deterministic development (so-called drift), and ξ is a Gaussian noise

|ξ(t)| = 1, with mean hξ(t)i = 0, and uncorrelated in time hξ(t)ξ(t0)i = δ(t − t0). σ captures the

fluctuation of the noise amplitude.

3.2.1 Equation-free analysis. For a temporally homogeneous process we can attempt to

infer a one-dimensional Itô-Diffusion from experimental data or simulation data by a tech-

nique known as equation-free analysis (EFA [25]). The idea is the following: We assume the

existence of μ(�) and σ(�) and measure them from simulation data of the full system Eq (6). We

then compare the evolution of c(t) measured from this simulation data with the evolution of c
(t) obtained by forward integration of Eq (13) for a large number of sample paths. If these

agree statistically, we are justified in our choice of μ(�) and σ(�) and can proceed by analysis of

Fig 4. Comparison of system dynamics. Evolution of the mean correctness c :¼
D1 � D2

D1þD2
and the variance σ for the full model (black/gray lines;

subscript full) and the reduced one-dimensional one (red lines; subscript 1D). Opaque lines show the evolution of cdet, i.e. for the corresponding

deterministic system where σ = 0. (a) Poincaré section of the system forωt = 2πn with n 2 N, i.e. at the beginning of each forcing cycle; (b) complete

time series for t/(2π) < 5, i.e. the first 50 forcing cycles.

https://doi.org/10.1371/journal.pone.0172933.g004
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Eq (13) to understand the properties of the full system. We use a variant of EFA [15] that esti-

mates drift and variance parameters for a process X(t) as:

mðxÞ ¼
hXðt þ dtÞ � XðtÞjXðtÞ ¼ xi

dt
ð14Þ

s2ðxÞ ¼
h½Xðt þ dtÞ � XðtÞ � mðxÞdt�2jXðtÞ ¼ xi

dt
ð15Þ

where h�i denotes the sample average.

A complication is that the process under consideration is not temporally homogeneous,

because of the forcing function, i.e. μ = μ(c, τ(t)) and σ2 = σ2(c, τ(t)) with τ(t) = t mod 2π. We

thus divide the process into three different regimes corresponding to the three different forms

of forcing: both paths dark; both paths lit; one path dark and one path lit. Note that the combi-

nation lit/dark only occurs in a single form with always the same path lit, depending on br1

and br2. Based on this we estimate the coefficients μi(�), σi(�) for each of the regimes i sepa-

rately. Thus, assuming br1 < br2, each of the regimes by itself can be treated as a time-homoge-

nous process.

dc
dt
¼

m1ðcÞ þ s1ðcÞxðtÞ; t � br1

m2ðcÞ þ s2ðcÞxðtÞ; br1 < t � br2

m3ðcÞ þ s3ðcÞxðtÞ; t > br2

ð16Þ

8
>>><

>>>:

Fig 5 shows the results of EFA carried out with a bin size of 0.04.

In the first regime both tubes are unlit so that there is no forcing (0� τ< π). As one would

expect based on the underlying deterministic process (Fig 2), the shape of the estimated drift

function μ1(c) implies two locally stable equilibria, one globally stable equilibrium at the

Fig 5. Equation-free analysis. EFA-estimated drift (a) and noise (b) coefficients of a one-dimensional temporally homogeneous Markov process

for each of the three forcing regimes. In (b) the time-weighted average of all three forcing regimes is shown as well.

https://doi.org/10.1371/journal.pone.0172933.g005
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downgoing zero c� 0, and two further globally stable equilibria at the absorbing interval

boundaries (c� ±1).

In the second regime only the first tube is lit (p � t < 3

2
p), which makes the second one

more attractive. Thus the drift is shifted negative. The magnitude of the drift is increased due

to the larger difference in risks between tubes.

In the third regime the first tube is more attractive (3

2
p � t < 2p; both tubes lit, but the sec-

ond one more strongly than the first one). The drift is shifted to the positive region with the

exception of the range c< −0.7 where the absorption of the boundary at c = −1 dominates.

The dominating stable equilibrium is, however, the one at the interval boundary c = 1. Diffu-

sion depends only weakly on the forcing regime.

3.2.2 Simulation of the Itô process. We simulate the one-dimensional Markov process

Eq (13) with μ, σ as obtained by EFA. Averages and variance for 500 sample paths are given in

Fig 4B and compared to the full two-dimensional system. The figure shows that there is very

good agreement between the expected values of the two processes. The variance follows the

same pattern for both processes and is lower for the reduced system. The good agreement indi-

cates that the essentially features of the process are captured in the reduced system and we may

proceed with further analysis based on the reduced system.

3.2.3 Governing Fokker–Planck equation and transition probabilities. To this end, we

construct a temporally-homogeneous Markov process by time-averaging the forcing regimes

according to br1, br2. This is equivalent to a linear approximation of the influence of forcing

within each period. A similar time-averaging could be achieved by performing an EFA assum-

ing only a single (averaged) forcing regime for the whole process. Fig 6 gives the potential

function F of this process [26]:

FðcÞ :¼ �

Z x

� 1

2m̂ðsÞ
ŝ2ðsÞ

ds ð17Þ

Fig 6. FPE potential.Φnorm� (Φ− min[Φ])/(max[Φ] − min[Φ]), and splitting probabilities p±1(c) of the

temporally homogeneous process.

https://doi.org/10.1371/journal.pone.0172933.g006
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where m̂ and ŝ2 are the time-averaged drift and variance. Local minima in F correspond to

meta-stable points of the stochastic process and locally stable equilibria of the underlying

deterministic process. It is clearly visible that the meta-stable point at c� 0 has almost become

a saddle due to the influence of noise. We are mainly interested in how likely it is that the sys-

tem will evaluate the time-variant risk correctly and make a decision for Path 1.

This can be computed as the so-called splitting probability [24]. For a given interval [a, b],

the splitting probability pa(x) gives the probability that the system initialized at c = x will reach

the state c = a before the state c = b, i.e. in the case of a bi-stable process that it will make a deci-

sion for a. The corresponding probability pb(x) is defined symmetrically.

Let f(t, y) be the probability density for c(t) to take the value y at time t. The time-develop-

ment of f(�, �) is described by the Kolmogorov-forward or Fokker–Planck Equation (FPE [27]).

@t f ðt; yÞ ¼ � @y m̂ðyÞ f ðt; yÞ½ � þ @yy
1

2
ŝ2ðyÞ f ðt; yÞ

� �

ð18Þ

Its steady state π(c) = f(c, t) is time-independent, so that Eq (18) reduces to the ODE

0 ¼ �
d
dy

m̂ðyÞ pðyÞ½ � þ
1

2

d2

dy2
ŝ2ðyÞ pðyÞ½ � ð19Þ

We can thus calculate the steady state probability density function π(x) as the solution of

Eq (19)

cðxÞ ¼ e
R x

0
ð2m̂ðyÞ=ŝ2ðyÞÞdy

pðxÞ ¼ C
cðxÞ
ŝ2ðxÞ

ð20Þ

where C is a suitable normalization constant [24]. Splitting probabilities for the process to

leave the interval through the end at c = 1, i.e. with a correct decisions, can now be calculated

for the PDF π(x) as [24, Eq (5.2.190)]

pbðxÞ ¼
Z x

a
cðsÞds

Z b

a
cðsÞds

� �� 1

ð21Þ

The splitting probabilities are shown in Fig 6. The decision point lies at c� −0.5 where

p+1 = p−1. Thus, the system will decide correctly with c! 1 for most initialization points in the

range. The transition from a wrong decision to a correct one is remarkably sharp considering

that outside of the interval [−0.75, −0.25] the residual probability for the system to revise its

decision is less than 0.001. From the potential F we know that the c-space projection of the

attractor for the meta-stable point of no decision D1� D2 is −0.5< c< 0.5. The expected

probability of the process to decide correctly when initialized at a random position in this

range is
R 0:5

� 0:5
pþ1ðcÞdc ¼ 0:969. In conclusion, the stochastic process will almost always decide

correctly unless it is initialized with a very strong bias towards the wrong decision (c< −0.5).

This is unlike the underlying deterministic process in which the decision depends almost

entirely on the initialization and over a wide range of initializations no decision at all will be

achieved.

Based on this analysis, we expect that the model can be tested with the proposed experiment

in a straightforward fashion. We expect the success rate of the organism in the biological

experiment to be significantly different from the one predicted by the noise-free model (ξ = 0),

but we would expect these differences to disappear if ξ 6¼ 0 is fitted to the data in a cross-valida-

tion procedure.
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4 Discussion and conclusions

The mathematical analysis clearly shows that a well-attuned level of noise can enable the

organism to correctly assess a time-variant risk, while the corresponding noise-free system

fails to do so. This corroborates that noise plays a crucial functional role in self-organized sys-

tems. In biological terms, this is of evolutionary significance. Biological systems need to strike

a delicate balance between flexible and stable behavior: Stability allows an organism or a group

to concentrate its resources and to ignore irrelevant short-term fluctuations in the environ-

ment. Yet, adaptation in the case of stronger or more long lasting changes is required. A multi-

stable behavior selection mechanism, such as the one analyzed here, can achieve exactly this by

exploiting noise. It enables a self-organized system to reliably react to short-term changes in

the environment while maintaining a generally stable behavior. The alternative of a control

mechanism that follows every change in the environment would potentially be disadvanta-

geous because it leads to unstable behavior.

Related findings have earlier been reported for ant colonies [8, 9]. There are two important

differences between these studies and the present one. Firstly, the two biological systems inves-

tigated, ants and slime molds, are fundamentally different. Secondly, in the case of ants it was

shown that noise enables them to react to changes in the environment by switching between

multiple behaviors, whereas our study shows that noise can enable the slime mold to select the

correct behavior in an environment that changes too frequently for it to follow individual

changes. Instead of attempting to track each change, the organism can adopt a single behavior

that maximizes the average long-term benefit. Yet, despite these differences both studies show

that the decision making in ants and slime molds can be understood as instances of the same

phenomenon: behavior selection as stochastic attractor switching [28].

In the case of ants, the effects have already been experimentally verified for the real biologi-

cal system [9]. We have proposed a simple and concrete experiment to do this for P. polycepha-
lum. Our mathematical analysis shows that this experiment will yield interesting outcomes

whether it verifies our theoretical predictions or reveals that the model does not capture the

full spectrum of decision making mechanisms in P. polycephalum.

Generally speaking, the fact that noise facilitates adaptive decision making is not tied to spe-

cific physical details of any particular biological system. Instead, it arises from very general

mathematical properties of the underlying self-organized processes [10]. Mass recruiting ants

and slime molds have very little in common biologically and physically. Yet, despite this, the

phenomenological mathematical models that describe their behavior selection are very similar

when constructed on the right level of observation. The same holds for a variety of other types

of self-organized collective decision-making mechanisms in social organisms and human

social systems. For example, food source selection [1] and clustering behavior [15] of honey

bees, foraging patterns of bacteria [12], the emergence of fashion trends [13] and the disper-

sion of innovations [14] all can be and have been described with very similar mathematical

models. This explains why some fundamental principles that govern self-organized collective

behavior appear to be universal across the range [29, 30]. We may thus expect to also find simi-

lar beneficial effects of noise in other instances of self-organized decision making.

Noise has many origins. In any biological system two major influences are fluctuations in

the environment and the stochastic nature of the underlying bio-chemical processes them-

selves. In the behavior of social groups, variations between individuals’ characteristics and the

stochastic nature of interactions between group members provide additional sources of noise

[9]. Pseudo-randomness in the form of deterministic chaos may also enter into the equation

[15]. In fact, no real physical system is noise-free. Usually, however, we expect noise to be a
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disturbance and to degrade system performance or at best to be irrelevant. It is thus fascinating

that evolution seems to have enabled some organisms to make constructive use of noise.

Appendix A Analysis of the deterministic system

A.1 Equilibria

Consider the system

@Di

@t
¼ � dDi þ f

Di

D1 þ D2

� �

ð22aÞ

with f(Qi) = (1 + �)Q2/(� + Q2) and Qi = Di/(D1 + D2) for i = {1, 2}. In an equilibrium, it is

@tD1 = @tD2 = 0 and hence

1þ �

d
¼
�ðD1 þ D2Þ

2
þ D2

1

D1

ð22bÞ

1þ �

d
¼
�ðD1 þ D2Þ

2
þ D2

2

D2

ð22cÞ

Substituting Eq (22b) into Eq (22c) delivers a sixth-order polynomial in D2, i.e. there are a

maximum of six equilibria. The first three are easily determined

1) the trivial equlibrium with (δD1, δD2) = (0, 0)

2) one equilibrium on the D2 axis: (δD1, δD2) = (0, 1)

3) one equilibrium on the D1 axis: (δD1, δD2) = (1, 0)

Assuming that for the latter three D1 6¼ 0 and D2 6¼ 0, we may let D2 = aD1 where physical

realizability implies a 2 Rþ. With D2 = aD1, Eqs (22b) and (22c) read as

dD1 ¼ f
D1

D1ð1þ aÞ

� �

¼ f
1

1þ a

� �

¼
1þ �

�ð1þ aÞ2 þ 1
ð23aÞ

daD1 ¼ f
aD1

D1ð1þ aÞ

� �

¼ f
a

1þ a

� �

¼
ð1þ �Þa2

�ð1þ aÞ2 þ a2
ð23bÞ

eliminating D1 from these equations delivers the following relation for a which is independent

of δ:

ð1þ �Þa
�ð1þ aÞ2 þ 1

¼
ð1þ �Þa2

�ð1þ aÞ2 þ a2
ð23cÞ

) 0 ¼ �a3 þ ð� � 1Þa2 � ð� � 1Þa � � ð23dÞ

with the roots a1 ¼ 1 and a2=3 ¼
1 � 2�

2�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� � 1

2�
� 1

r

: ð23eÞ

The criterion for a2/3 to be real is � < 1

4
. Such that we find the three remaining equilibria

4) a = a1 = 1: ðdD1; dD2Þ ¼
1þ�
1þ4�

; 1þ�
1þ4�

� �
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5) a = a2: ðdD1; dD2Þ ¼
1þ�

�ð1þa2Þ
2
þ1
;

a2ð1þ�Þ

�ð1þa2Þ
2
þ1

� �

6) a = a3: ðdD1; dD2Þ ¼
1þ�

�ð1þa3Þ
2
þ1
;

a3ð1þ�Þ

�ð1þa3Þ
2
þ1

� �

These features are summarized in Fig 7.

A.2 Linear stability of equilibria

The Jacobian of the System (22a) reads as

J ¼
� dþ @D1

½f ðQ1Þ� @D2
½f ðQ1Þ�

@D1
½f ðQ2Þ� � dþ @D2

½f ðQ2Þ�

0

@

1

A ð24aÞ

where we have (without summation over double-occurring indices)

@Di
½f ðQiÞ� ¼ 2�ð1þ �Þ

D1D2ðD1 þ D2Þ

½D2
i þ �ðD1 þ D2Þ

2
�
2 ð24bÞ

@D1
½f ðQ2Þ� ¼ 2�ð1þ �Þ

D2
2
ðD1 þ D2Þ

½D2
2
þ �ðD1 þ D2Þ

2
�
2 ð24cÞ

@D2
½f ðQ1Þ� ¼ 2�ð1þ �Þ

D2
1
ðD1 þ D2Þ

½D2
1
þ �ðD1 þ D2Þ

2
�
2 ð24dÞ

Fig 7. Linear stability. Solutions a1, a2 and a3 for the coefficient a linking D1 and the corresponding three

equilibria for � < 1/4. The symbols are equidistantly spaced in the range 0 < � < 1/4 with Δ� = 0.005. For �� 1/4,

only one equilibrium exists which is shown by the dashed black line. Line style indicate the stability of the

respective equilibrium where dashed corresponds to unstable and solid corresponds to stable equilibria.

https://doi.org/10.1371/journal.pone.0172933.g007
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such that

1

d
J ¼

� 1þ 2
�

d
ð1þ �Þ

D1D2ðD1 þ D2Þ

½D2
1
þ �ðD1 þ D2Þ

2
�
2

2
�

d
ð1þ �Þ

D2
1
ðD1 þ D2Þ

½D2
1
þ �ðD1 þ D2Þ

2
�
2

2
�

d
ð1þ �Þ

D2
2
ðD1 þ D2Þ

½D2
2
þ �ðD1 þ D2Þ

2
�
2
� 1þ 2

�

d
ð1þ �Þ

D1D2ðD1 þ D2Þ

½D2
2
þ �ðD1 þ D2Þ

2
�
2

0

B
B
B
B
@

1

C
C
C
C
A
ð25Þ

A.2.1 Instability of the equilibrium (δD1, δD2) = (0, 0). For small perturbations, the

equilibrium is unstable along the axes. Consider a small perturbation η> 0 along the direction

of D1 and no perturbation along D2 such that Q1 = 1:

@D1

@t
¼ � dZþ 1 > 0 ð26Þ

and we see that for small perturbations η< 1/δ, these perturbations continue to grow. The

same holds for symmetry reasons along the D2 axis.

A.2.2 Stability of the equilibrium (δD1, δD2) = (1, 0). The normalized Jacobian of the

system is

1

d
J ¼

� 1 2
�

d
ð1þ �Þ

1

D1½1þ ��
2

0 � 1

0

B
@

1

C
A ¼

� 1
�

1þ �

0 � 1

0

B
@

1

C
A ð27Þ

with eigenvalues −1 and −1. The system is hence stable with respect to small perturbations in

on of the two variables. For symmetry reasons, the same must hold for the equilibrium (δD1,

δD2) = (0, 1).

A.2.3 Stability of the equilibrium with D1 = D2. For D1 ¼ D2 ¼
1þ�

1þ4�
, it is

@Di
½f ðQjÞ� ¼ 2�ð1þ �Þ

2D3

½ð1þ 4�ÞD2�
2
¼ d

4�ð1þ �Þ

ð1þ 4�Þ
2

1þ 4�

1þ �
¼ d

4�

1þ 4�
� dC ð28Þ

1

d
J ¼

C � 1 C

C C � 1

 !

ð29Þ

with eigenvalues −1 and 2C − 1. The criterion for linear stability of the equilibrium is hence

2C � 1 < 0) 8� < 1þ 4�) � < 0:25

A.3 Summary of the stability features

In summary, we find that the bifurcation at � ¼ 1

4
is a sub-critical pitchfork bifurcation (cf.

Fig 7):

• For � < 1/4 (Fig 2a), the system has three basins of attraction. The margins of these basins of

attraction in the D1–D2 phase space are given by the lines D2 = a2D1 and D2 = a3D1. These

lines cannot be crossed by trajectories since for a2 and a3, it is also @t D2 = a@tD1. The values

of a2,3 depend on the parameter � only (they are independent of δ). In between these two

lines, the equilibrium D1 = D2 = (1 + �)/(1 + 4�) is attracted; trajectories originating else-

where in the parameter space converge towards an equilibrium on one of the two axes.
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• For � > 1/4 (Fig 2b), the system has two basins of attraction. The margin between these two

basins is given by the line D1 = D2 (which, is not crossed by any trajectory) and initial values

on either side of this line converge to the respective equilibrium on that side. The equilib-

rium with utilization of both tubes continues to exist as a saddle point but looses its stability.
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