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Abstract

Ion channels and transporters have increasingly recognized roles in cancer progression

through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like

cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a

highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in

this population. However, little is known about the expression and functional relevance of

ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed

the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identi-

fied a unique set of GSC-enriched ion channels using differential expression analysis that is

also associated with distinct gene mutation signatures. In support of potential clinical rele-

vance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma

databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with

patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of

individual or classes of GSC-enriched ion channels constrained growth of GSCs compared

to normal neural stem cells. This first-in-kind global examination characterizes ion channels

enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular

subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental

responses to loss-of-function. Together, the data support the potential biological and thera-

peutic impact of ion channels on GSC malignancy and provide strong rationale for further

examination of their mechanistic and therapeutic importance.
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Introduction

Glioblastoma multiforme (GBM; grade IV glioma) is the most prevalent and malignant

form of primary brain tumor in adults [1,2]. Median survival is a mere 15 months despite

radiotherapy, surgical resection, and chemotherapeutic interventions [1]. GBM tumors are

especially difficult to treat, since surgical resection invariably leaves behind glioblastoma stem-

like cells (GSCs), which are highly invasive tumor cells uniquely resistant to standard

therapies.

GSCs are a population of GBM cells that play a major role in the particularly aggressive

nature of GBM tumors and share traits with neural stem cells (NSCs), including self-renewal

and multipotency [3]. Remarkably, transplantation of only 100 GSCs into the mouse forebrain

is sufficient to form a glioma tumor [4]. Several features of GSCs contribute to GBM malig-

nancy following initial tumor formation, including rapid proliferation and highly diffuse inva-

sion throughout the brain [5]. Additionally, standard chemotherapeutic agents, which

eradicate the majority of GBM cells, have a reduced effect on GSCs, and surviving GSCs con-

tribute to tumor recurrence, a hallmark of GBM [5,6]. These features underscore the necessity

for development of novel therapeutic candidates that precisely target GSCs and halt uncon-

trolled growth and invasion.

Ion channels passively conduct ions down their electrochemical gradient in response to

external stimuli, whereas ion transporters use energy to pump ions across their concentration

gradients [7,8]. Ion channels and pumps are responsible for conducting electrical currents in

all nerve, muscle, and cardiac cells, however, they also play vital roles outside of regulating

electrical excitability in both normal and cancerous cells. It is increasingly being understood

that dysregulated ion channels and pumps are implicated in multiple processes in various can-

cers [9], including regulation of the cell cycle [10], migration [11], and apoptosis [12]. Promis-

ingly, inhibitors to various ion channels have been demonstrated to hinder tumor formation

and growth [13,14].

Ion channels and transporters are likewise implicated in GBM tumor growth and malig-

nancy [15–17]. Genomic analysis reveals that genes involved in passing or transporting Na+,

K+, and Ca2+ are among the most frequently mutated functional groups in GBM affecting

90% of the GBM samples studied [18,19]. Functionally, ion channels and pumps influence

both GBM cell migration and proliferation. For instance, dysregulated K+ and Cl- channels

regulate osmotic drive allowing for cell shape and volume changes that promote glioma

cell migration [20], and Ca2+-activated K+ (BK) channels control glioma cell growth [21].

However, little is known about the expression and functional relevance of ion channels in the

stem cell population despite their central importance to GBM tumor initiation and

progression.

We propose that dysregulation of ion channel expression is central to the abnormal growth

and migratory properties that drive GSC malignancy. Therefore, a greater understanding of

the ion channels operating in GSCs may reveal novel, therapeutically relevant mechanisms to

target GSCs. To assess the expression pattern of ion channels that may contribute to glioma

malignancy, we analyzed an RNA sequencing database of 20 patient-derived GSC isolates and

5 neural cell type controls. We identified a unique set of druggable ion channels enriched in

GSCs that were associated with distinct gene mutation signatures and poor patient survival

outcomes. Pharmacological blockade and genetic knockdown of these channels impaired GSC

viability. Identification of GSC-enriched ion channels and the mechanism by which they drive

GSC malignancy could identify novel therapeutics to inhibit GSC-driven tumor growth and

improve patient outcomes.
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Results

Expression of ion channels, transporters, and gap junctions in GSCs

To profile the enrichment patterns of ion channel genes in GSCs, we compared transcriptomic

data for 20 human GSC isolates to that of 3 human NSC lines and 2 normal human astrocyte

(NHA) cell lines. We used a comprehensive list of 266 (7 out of the original 273 were not avail-

able in our dataset) druggable human ion channel genes [22] (guidetopharmacology.org) and

152 human ion transporter genes (broadinstitute.org/gsea/msigdb, GO:0015075). The strategy

of comparing GSCs to NSCs/NHAs was used as a first approximation to enrich for genes spe-

cific to malignant stem cell phenotypes and not shared by non-transformed neural progenitors

or astrocytic glia. Gene expression was calculated as CPM (counts per million) values for this

data analysis. Note that, as opposed to CPM, other reports referred to later used FPKM (frag-

ments per kilobase of exon per million reads mapped) values in a similar way to quantify and

report differential gene expression. Additional details are provided for: cell lines (S1 Table),

RNA-seq methods (Materials and methods), and ion channel gene set (S2 Table). S1 Fig sum-

marizes the experimental design used throughout this study.

Using a simple fold-change approach, we found differential expression (�|2| log2 fold

change) in 56 out of 251 ion channel-related genes (15 genes were excluded due to zero values

in denominator) when comparing GSCs to NSCs/NHAs. Of these 56 genes, 44 were GSC-

enriched (�2 log2 fold change; Fig 1A, red points), and 12 were NSC/NHA-enriched (�-2 log2

fold change; Fig 1A, blue points). Since fold change differences can skew contributions from

lowly expressed genes, Gene Set Enrichment Analysis (GSEA; details in Materials and meth-

ods) was used to further analyze differential expression patterns. Using a Signal2Noise metric,

which accounts for both mean absolute levels and variance within the classes, we found that

107 out of 266 ion channels highly contributed to the enrichment of ion channels in GSCs

compared to control cells. These genes were rank-ordered according to their GSEA enrich-

ment score, and the top 40 differentially expressed ion channel-related genes were selected for

further study. Twenty-five of these met our threshold expression criteria (mean GSC CPM

�1) and formed the basis of a GSC-enriched ion channel gene set (hereby referred to as

“IGCs”) used for all remaining analyses in this study (Fig 1B; see S1 Fig for summary of selec-

tion criteria). Notably, these genes represented a diversity of ion channel types. Scatter plots of

CPM values for selected highly-ranked IGCs demonstrated the significant differences in

expression between GSC and NSC/NHA cell lines (Fig 1C). This was validated in multiple

GSC lines compared to the NSC line CB660 using real-time quantitative PCR (RT-qPCR) for

all IGCs tested except P2RX4, for which expression differences were not robust (Fig 1D). In

summary, we found a high frequency (~40%) of ion channel genes associated with GSCs com-

pared to control NSCs/NHAs, and ~10% overall formed the basis of a GSC-enriched ion chan-

nel gene set.

By contrast, ion transporters, which also contribute to cancer progression in multiple cell

types [23], were infrequently enriched in GSCs. Of the 152 ion transporters assessed, only 1

(~0.7%) met our criteria to be considered differentially enriched (average CPM values�1 and

�2 log2 fold change enriched in GSCs vs. NSCs/NHAs; data not shown). Gap junction pro-

teins also modulate electrical properties of cells and have a recently demonstrated role in pro-

moting malignant phenotypes in GBM [24]. Gap junction-forming connexins, which were

included in the overall set of 266 ion channel genes, were enriched in some GSC isolates

(S2 Fig), but their low absolute expression levels failed to meet our cutoff for further analysis.

In summary, when comparing GSCs to other neural cell types, differential expression of

ion channel genes is markedly more prevalent than that of ion transporter and connexin

Ion channel expression in glioblastoma stem cells
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Fig 1. RNA sequencing identifies ion channels enriched in GSCs. A. Mean GSC CPM values plotted against mean control

(NSC and NHA) CPM values for all ion channel-related genes. Red and blue points represent genes that are differentially

expressed�|2| log2 fold change in each subclass. B. Heat map of the most differentially enriched ion channels in GSCs

compared to control NSCs and NHAs by GSEA analysis. Each column represents log2 fold-change values (compared to

averaged values across NSCs/NHAs) from a distinct cell isolate after averaging triplicate CPM values. Ion channels for which

average GSC CPM values were <1 were not included, and individual CPM values of 0 were replaced with 0.01. C. CPM values

for six of the most differentially enriched genes shown in panel (B). Bars, mean ± SEM. Mann-Whitney test; *p<0.05, **p<0.01,

ns = not significant. D. Real-time qPCR analysis of a selected number of IGCs in several GSC isolates. CT values were
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genes. Based on these observations, our subsequent analyses focused on the potential impor-

tance of this selected cohort of 25 IGCs (see S4 Table for summary of IGCs).

IGC expression in normal neural cells

The therapeutic relevance of IGCs as drug targets in GBM may be limited by their expression

in other normal tissues and neural cell types not included in the primary enrichment strategy

described above. Therefore, we examined their expression in public databases of normal tis-

sues and other neural cell types. Among the top IGCs of interest, the majority (16/25) were

appreciably expressed in brain compared to other tissues (gtexportal.org; data not shown),

6/25 were more highly expressed in one or multiple other tissue types compared to brain, and

3/25 were not tissue-specific. To examine IGC expression in brain-specific cell subpopulations,

we analyzed expression of IGCs in an RNA-seq database of isolated cortical human neural cell

types, including astrocytes (fetal, adult, and reactive), neurons, oligodendrocytes, microglia,

and endothelial cells [25] (S3 Fig). Out of our 25 previously identified IGCs, 1 was not available

in this database, and 3 were expressed at levels below the arbitrary threshold used for selection

of the IGC gene set (mean FPKM�1 in at least one cell type). Of the 21 remaining IGCs, 10

were specifically enriched in neurons (GRIA2, GRIA3, GABRB3, GABRA3, KCNB1, KCNA3,

SCN8A, GRIN2B, HCN1, and GABRG3), 5 in astrocytes (KCNJ16, CLCN6, TRPM3, GRIK3,

and CNGA3), and 1 in microglia (P2RX4), while the remaining 5 (P2RX7, KCNK10, HCN3,

GABRQ, and CHRN2B) were expressed across multiple cell types. As noted above, 3 of the

genes in the IGC set of 25 (KCNC3, SCN11A, and GRIK4) were expressed at very low levels

(mean subclass FPKM <1) in all normal neural cell classes (S3 Fig, “Low abundance”), which

may suggest that these IGCs are specific to cancerous cell types. This analysis identified non-

cancerous tissue- and cell type-specific IGC expression patterns that could be important con-

siderations for selecting IGCs as potential therapeutic targets for GBM. The varied patterns in

IGC expression suggest that each IGC may possess a unique profile of systemic and neural tox-

icity that must be considered when targeting IGCs.

IGC expression is associated with GBM molecular classification

To better understand the potential clinical relevance of IGC expression, we characterized cor-

relations between IGC expression and GBM molecular subtypes (Classical, Mesenchymal,

Neural, or Proneural) [26], as well as driver genetic mutations in the GSCs. Molecular subtype

classifications were previously assigned to GSC isolates (S1 Table) [27]. Unsupervised hierar-

chical clustering was performed based on CPM values of the entire set of 266 ion channels.

Based on ion channel expression alone, GSC isolates of the same molecular subtype generally

clustered together (Fig 2A), suggesting that ion channel expression patterns segregate with

molecular subtypes.

We next investigated the association of IGCs with well-characterized gene mutations in

three critical GBM signaling pathways: RTK/RAS/PI(3)K, p53, and RB [28]. Exome sequenc-

ing was carried out on GSCs to reveal gene mutations in these pathways (S1 Table), and direct

associations between IGC expression and gene mutations were identified (Fig 2B). The major-

ity of associations were between IGCs and mutations in the RTK/RAS/PI(3)K pathway (EGFR,

PI3KCA, NF1, MET), which can regulate proliferation and survival [28]. Fewer associations

were observed in the RB pathway (RB1, CDKN2A/B), responsible for regulating G1/S

normalized to ACTB (β-Actin) CT values; ddCT values relative to NSC-CB660 are shown. Bars, mean ± stdev. N = 3. GSC,

Glioblastoma stem-like cells; NSC, human fetal neural stem cells including c-myc immortalized from cortex (NSC-CX) and

brainstem (NSC-VM); NHA, normal human astrocytes including RasV12 transformed (NHA-RAS).

doi:10.1371/journal.pone.0172884.g001
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progression, and the p53 pathway (TP53, CDKN2A/B), which regulates senescence and apo-

ptosis. These preliminary findings suggest associations between IGC expression and clinically

relevant GBM subtypes as well as potential functional interactions between specific IGCs and

mutation-driven oncogenic signaling pathways that may prove to have prognostic or therapeu-

tic value. However, further prospective studies with larger sample sizes and routine standard-

ized molecular analyses are required for validation.

IGC expression predicts GBM patient survival

To test the prognostic significance of selected IGCs, we determined the correlation between

their expression levels and patient survival using The Cancer Genome Atlas (TCGA) human

GBM microarray database (n = 525; https://tcga-data.nci.nih.gov/tcga/). While the lack of

paired normal samples precluded a determination of IGC enrichment in GBM versus normal

brain tissue, analysis of IGC expression did reveal correlations with patient outcomes. Survival

of patient cohorts was quantitated using Kaplan-Meier analysis and stratified by high (top

10%) or low (bottom 10%) IGC expression for the top 25 IGCs. Using this approach, four

Fig 2. GSC-enriched ion channels are associated with GBM molecular features. A. Hierarchical

clustering of GSCs by molecular subtype based on CPM values of all 266 ion channels. B. Correlation of IGCs

with gene mutation signatures of critical GBM signaling pathways (see S1 Table for details). Bars,

mean ±min/max, IQR. Two-tailed Mann-Whitney test; *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0172884.g002
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IGCs were found to have significant associations with survival. High expression of CNGA3,

TRPM3, and P2RX4 was associated with significantly shorter median survival times, while

high expression of GABRG3 predicted longer survival times (Fig 3). The divergent associations

between IGC expression and survival suggest the possibility that individual IGCs may function

to either promote or inhibit malignancy. Since TCGA expression data derives from bulk GBM

tissue samples, further studies are warranted in GSC models to determine whether associations

between IGC expression and GBM malignancy can be attributed to GSC-specific function.

IGCs are enriched in distinct GBM tumor regions

To determine whether IGCs are regionally expressed in unique histological domains of GBM

tumors with functional and clinical relevance, we examined IGC expression patterns in the Ivy

Glioblastoma Atlas Project (Ivy GAP) database [29]. The Ivy GAP database dissects specific

anatomic tumor regions that include the leading edge (LE) (with few tumor cells), infiltrating

tumor (IT), cellular (central solid) tumor (CT), necrotic zones (PAN/PZ), and vascular regions

(HBV/MVP). Overall, 13 of 25 IGCs were either not expressed or detected at low levels (<1

FPKM across all anatomic regions). When considering relative differences in expression by

location, the greatest number of IGCs (18/25) were enriched in the LE and IT compartments

compared to other regions (Fig 4A;�2 fold-change of mean LE/IT vs. mean all other regions).

This was reflective of a larger trend, whereby half of all ion channels (131/273) were�2-fold

higher at the tumor edge (LE/IT). Since tumor cell densities are negligible in LE and low in IT,

Fig 3. IGCs are associated with poor clinical outcomes. Expression levels of IGCs were identified from

525 TCGA bulk GBM microarray expression samples. Samples for which expression levels were highest and

lowest (top and bottom 10%) were then compared for time to death. Median days to death for each group

reported on graph.

doi:10.1371/journal.pone.0172884.g003
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IGC enrichment in LE/IT likely reflects IGC expression in normal neural cell types (neurons,

microglia, etc.), which were not included in the original RNA-seq screen to identify IGCs.

We reasoned that increased absolute expression levels in different histological regions of

GBM could also identify IGCs with potential clinical and functional relevance. Overall, 9/25

IGCs were consistently expressed at�5 FPKM in at least one anatomic region (Fig 4A). Nearly

all of the samples from the LE/IT and CT regions demonstrated this level of expression for the

nine IGCs, while lower and more variable expression was observed in samples from necrotic

(PZ/PAN) and vascular (HBV/MVP) features. For example, in the HBV/MVP vascular

regions, five of these nine IGCs (GRIA2, KCNJ16, GRIA3, P2RX7, and P2RX4) were expressed

at appreciable levels (�5 FPKM) in a majority of samples. IGC expression in the vascular com-

partment is consistent with the known role of GBM vasculature to provide a supportive niche

for GSCs [30,31]. However, since GSCs are a minority cell population and IGC expression

may overlap with other cell types (see S3 Fig), the specificity of IGC expression for GSC locali-

zation requires additional detailed studies.

We next examined how IGC expression levels in the Ivy GAP database correlated with

molecular subtypes and survival. We chose to study this in the solid CT region only, since this

region forms the bulk of GBM tumors and comprised the largest number of samples for any of

the anatomic subsets. Among all 25 IGCs studied that were expressed at appreciable levels

Fig 4. IGCs are enriched in distinct GBM tumor regions. A. Heat map of expression levels of the top 25 IGCs in various GBM tumor

regions from the Ivy GAP RNA-seq database. B. IGCs associated with particular molecular subtypes in CT samples. Colored headers

indicate predominant subtype associated with that ion channel. Bars, mean ± SEM. Kruskal-Wallis test across molecular subtypes. C.

Survival curve for CNGA3 within CT samples stratified high/low by median FPKM value (3.908). Log-rank (Mantel-Cox) test. Median days to

death for each group reported on graph. Leading Edge (LE), Infiltrating Tumor (IT), Cellular Tumor (CT), Perinecrotic zone (PZ),

Pseudopalisading cells around necrosis (PAN), Hyperplastic blood vessels in cellular tumor (HBV), Microvascular Proliferation (MVP).

doi:10.1371/journal.pone.0172884.g004
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(average FPKM across CT >1), five were significantly associated with particular molecular

subtypes in CT (P2RX4, GRIA3, GABRA3, CHRNB2, and GABRB3; Fig 4B). We also examined

whether IGC expression within the CT region was associated with prolonged or reduced sur-

vival in these patients. Kaplan-Meier plots were generated for IGCs with median CT FPKM

levels >1 (9/25) that compared survival times in patient samples with high (above median

FPKM) or low (below median FPKM) IGC levels. Samples with low levels of CNGA3 were

associated with significantly reduced survival rates (Fig 4C). Significant differences in survival

rates were not observed between molecular subtypes overall (data not shown), indicating that

the survival association with CNGA3 is not an artifact of the disproportionate number of sub-

type-specific samples with high CNGA3 expression.

Pharmacological blockade of ion channels restricts GSC viability

Thus far, we have identified individual GSC-enriched ion channels, which are members of

larger ion channel families with overlapping functions. However, the majority of available

drugs target the broader functionality of these families rather than specific channels. There-

fore, to explore the potential therapeutic relevance of targeting IGCs, we assessed GSC enrich-

ment of classes of functionally related ion channels. We reasoned that this approach would

mitigate the potential limitations imposed by ion channel redundancy. We found that 12 out

of 22 ion channel families were enriched more than 2-fold in GSCs compared to NSC/NHA

controls, and all 12 of these families also contained a high proportion of IGCs (at least 1/5 of

members enriched>2-fold) (Fig 5A, orange points). The most highly enriched families

(>5-fold) were epithelial Na+ channels and GABAA receptors. Fold-change values, however,

are likely to be skewed by contributions from rare, yet highly enriched ion channels. Therefore,

it is also important to consider the proportion of family members enriched, as we have here;

the ionotropic glutamate receptor family had the highest proportion of enriched members

(11/18). We also examined regional patterns of ion channel family expression from the Ivy

GAP dataset (Fig 5B; S4 Fig). A large proportion of IP3 receptors, Ca2+-activated K+ channels,

and inwardly-rectifying K+ channels were highly enriched across all tumor regions. Once

again, several ion channel classes were highly enriched at the tumor leading edge with decreas-

ing levels of expression towards HBV/MVP areas.

To test whether IGC-related families are functionally relevant to the malignant properties

of GSCs, we examined whether ion channel blockers inhibit GSC growth in vitro. Pharmaco-

logical blockade has advantages over genetic knockdown/loss-of-function studies, since the

action of similarly functioning ion channels can be blocked while avoiding compensation by

alternative channels [32]. An MTT viability assay was performed for large-scale, rapid viability

assessment. Several drugs were tested based on the enrichment of their channel targets in the

GSC RNA-seq dataset (S4 Table; see Materials and methods for drug details). GSC lines -0827

and -0131 were selected for in vitro pharmacological evaluation of viability due to their rapid

growth rates in vitro, tumorigenic capacity in vivo [33], and extensive molecular characteriza-

tion [27]. Compounds were added at increasing concentrations to cell isolates, and viability

was measured 72 hours later. Increasing doses of TTX, TEA, 4-AP, CPP, CNQX, ω-Conotoxin

MVIIC, and CdCl2 dramatically reduced cell viability across all lines, while K+ enhanced via-

bility in a dose-dependent manner (Fig 5C). GSC lines -0827 and -0131 were more sensitive to

these effects than NSC-CB660 for all compounds tested. Neither gabazine nor picrotoxin

(GABAA receptor blockers) affected GSC or NSC viability. These results demonstrate the func-

tional relevance of K+ channels, voltage-gated Na+ channels, voltage-gated Ca2+ channels,

voltage-gated Cl- channels, and ionotropic glutamate receptors to GSC viability as predicted

by GSC enrichment of IGC families or individual members.
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Fig 5. Ion channel blockade reduces GSC viability. A. Summary of functionally-related ion channel families enriched in GSCs (orange)

compared to controls. Y-axis, mean log2 fold change (GSC vs. NSC/NHA) values for each ion channel family; x-axis, proportion of ion

channel family members > 2-fold change (GSC vs. NSC/NHA); bubble size corresponds to average GSC CPM value. Genes were excluded

if average NSC/NHA values were zero. Families were considered if they contained more than one member. B. Proportion of ion channel

family members expressed at >1 FPKM within distinct GBM regional compartments as revealed by Ivy GAP analysis (only families with at

least three members are shown). C. Antagonists for top IGC families and selected specific ion channel blockers were applied to GSC-0827,

GSC-0131, and NSC-CB660 in media at indicated concentrations. MTT viability assay was performed at 72 hours. Fluorescence arbitrary

units (AU) were averaged across triplicates and normalized to control media conditions (dashed line at 1.0). Bars, mean ± SEM. N = 3–4.

Repeated measures two-way ANOVA with Dunnett’s multiple comparison test compared to NSC-CB660. n.s., not significant.

doi:10.1371/journal.pone.0172884.g005
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SCN8A, KCNB1, or GRIA3 knockdown reduces GSC viability

To establish the potential functional importance of specific IGCs, as opposed to broader classes

of ion channels as tested above, we quantified the effects of siRNA-mediated gene expression

knockdown of three IGCs, SCN8A, KCNB1, and GRIA3. These IGCs were selected because

they were among the most highly implicated in GSC enrichment and blocking their activity

with broadly-acting drugs reduced GSC viability. Three unique siRNAs for each IGC were

transiently transfected into GSC lines that had high expression of the corresponding IGC

(SCN8A, GSC-0827; KCNB1, GSC-G19; GRIA3, GSC-0827). Robust knockdown was achieved

for all nine siRNA candidates (Fig 6A). The most effective siRNA candidate for each IGC,

along with a scrambled siRNA control (siScr), was tested for its effects on viability, and all siR-

NAs demonstrated a dose response for GSC growth inhibition 72 hours after transfection

(Fig 6B). At the highest dose (20 pmol per well), growth of each GSC line was inhibited

Fig 6. siRNA-mediated knockdown of selected IGCs impairs GSC viability. A. Real-time qPCR analysis

of IGC expression levels 24 hours after transfection of scrambled negative control siRNA (siScr) and

individual siRNA candidates (1, 2, 3) for each IGC. CT values were normalized to ACTB (β-Actin) CT values;

ddCT from siScr. Bars, mean ± stdev. N = 3. One-way ANOVA with Dunnet’s post-test compared to siScr,

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. B. CellTiter-Glo viability assay 72 hours following siRNA-

mediated knockdown of IGCs. GSC viability decreased in response to increasing amounts of siRNA (2, 5, and

20 pmol). Fluorescence arbitrary units (AU) were normalized to siScr levels. Bars, mean ± SEM. N = 3–4.

Two-way ANOVA with repeated measures; SCN8A: cell type p = 0.0001, dose p<0.0001, interaction

p<0.0001; KCNB1: cell type p = 0.0042, dose p<0.0001, interaction p<0.0001; GRIA3: cell type p = 0.0011,

dose p<0.0001, interaction p<0.0001.

doi:10.1371/journal.pone.0172884.g006
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55–62% compared to siScr controls. By comparison, the NSC line CB660, which had low base-

line levels of SCN8A, KCNB1, and GRIA3 by RT-qPCR (data not shown), was inhibited only

0–16% at the highest siRNA dose. These results suggest that in addition to the broad pharma-

cological targeting of ion channel classes in GSCs, inhibition of specific IGCs may also have

therapeutic relevance.

Discussion

The inevitable treatment failures of GBM, the most malignant and common adult human

brain tumor, are largely established by the phenotypes of its resident cancer stem cells or

GSCs. By virtue of their unique propensities for self-renewal, multipotent differentiation, inva-

siveness, and treatment resistance, GSCs drive GBM formation and progression [4]. Therefore,

a better understanding of the mechanisms that regulate GSC intrinsic physiology is expected

to yield clinical benefits and is lacking in our current understanding. Ion channels are increas-

ingly recognized as regulators of the malignant phenotypes of cancer cells [9], but have not yet

been leveraged as therapeutic targets in GSCs. This is due in large part to an incomplete under-

standing of their GSC-specific expression patterns compared with non-cancerous neural cells.

Here, we identified GSC-enriched ion channels that correlated with molecular and clinical fea-

tures of GBM. Furthermore, pharmacologic blockade or genetic knockdown of IGCs differen-

tially inhibited GSC growth compared to that of normal NSCs. Together, these data strongly

support potential functional and therapeutic roles for IGCs in GBM.

This study identified a set of 25 ion channels that were highly expressed by GSCs compared

to normal neural cells and were representative of many different ion channel subfamilies. This

was consistent with a recent RNA-seq study that reported a collection of 18 ion channel genes

identified as a molecular signature of glioma [34]. These genes were dysregulated in high grade

glioma, associated with poorer survival, and representative of many different types of ion

channel classes; however, there was little overlap of individual ion channels between their

study and ours, likely because our study focused on ion channels unique to glioma stem cells

rather than bulk tumor cells. When our study results are compiled (S5 Fig), several IGC candi-

dates emerge as consistently implicated in contributing to GSC malignancy, among which are

SCN8A, KCNB1, and GRIA3. One of the most reliably involved IGCs in our study is SCN8A
(Nav1.6), a voltage-gated Na+ channel. Voltage-gated Na+ channel isoforms are aberrantly

expressed in cancer cells contributing to metastatic behaviors [35,36], and Na+ channel muta-

tions have been estimated in at least 90% of GBM samples [19], suggesting that they play a role

in GBM malignancy. Several classes of K+ channels were also implicated in this study, includ-

ing inwardly-rectifying, voltage-gated, and two-pore-domain K+ channels. These classes have

been well-studied in cancer [37] and tied to GBM malignancy [38]. One candidate of particu-

lar interest is the voltage-gated K+ channel KCNB1 (Kv2.1), which was expressed at high levels

in GSCs and contributed to reduced GSC viability when knocked-down. mRNA knockdown

of all three of these IGCs, SCN8A, KCNB1, and GRIA3, reduced GSC viability in our study,

suggesting their importance to GSC malignancy and therapeutic potential.

One of the goals of this work was to identify ion channels that are uniquely expressed by

GSCs and avoid those expressed by other cell types; the rationale of this strategy was that

increased selectivity of expression in GSCs might translate to less toxic off-target effects in the

therapeutic clinical setting. Along with NSCs/NHAs, we also observed differences in GSC gene

expression compared to bulk GBM samples and other normal neural cell types. However, we

found that many IGCs were expressed in several other neural cell populations. Across ion

channel families, the majority of ionotropic glutamate and glycine receptors were enriched in

both GSCs and bulk GBM samples, while 5-HT3 receptors, TRP channels, CatSper/two-pore
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channels, and ryanodine receptors were consistently low in both populations. GSC-specific

families included GABAA receptors, epithelial Na+, voltage-gated Ca2+, and two-pore domain

K+ channels. At the individual level, several IGCs that were highly enriched in GSCs had very

low or absent expression in bulk GBM tumor samples (e.g. GRIK4, SCN8A, KCNC3, ASIC3,

and HCN3), suggesting that these candidates may be the most therapeutically tractable for spe-

cifically targeting GSCs within the tumor. Alternatively, the low expression may indicate that

GSCs grown in vitro may not reflect true expression levels in vivo or that IGC expression may

be obscured by the low frequency of GSCs in bulk tumor. Several of these candidates, KCNC3,

SCN11A, and GRIK4, also failed to show appreciable expression in any normal neural cell pop-

ulations (S3 Fig), which may be advantageous for precise clinical targeting of GSCs.

IGCs were also associated with distinct clinical features in this study, including GBM sub-

type and critical oncogenic genomic mutations. Across all 266 ion channels, there was a trend

for GSCs to stratify by molecular subtype. This suggests that ion channels generally correlate

with clinical features, although batch effects in GSC source origination could account for some

of these effects. In line with this, IGC expression was also associated with altered clinical out-

comes. This is consistent with other reports; for instance, Na+ channel mutations in GBM

tumors have been correlated to poorer survival outcomes [19]. When considering the extremes

of expression in the TCGA database, higher IGC expression of three genes (CNGA3, TRPM3,

and P2RX4) correlated with decreased survival while higher expression of one (GABRG3) cor-

related with increased survival. By contrast, when considering expression restricted to the

solid tumor (CT) region in the Ivy GAP database, high CNGA3 was associated with increased,

rather than decreased, survival as noted in TCGA. This discrepancy may reflect the complexity

of ion channel functions in tumor and tumor-associated stromal cells, as well as differences in

sample composition between databases and bias introduced by restricting the Ivy GAP analysis

to the CT region.

A challenging problem of solid tumor biology is understanding the regional and cell type-

specific variations in expression and function. We observed interesting patterns in IGC expres-

sion in GBM anatomical regions within the Ivy GAP database. Although we expected to find

IGCs in the putative stem cell niche associated with the vasculature, many IGCs were highly

expressed at the leading edge of the tumor instead (including many additional ion channels

not shown). This likely reflects contamination from surrounding normal neural cells express-

ing these ICs but could be due to the presence of stem cells residing at the tumor edge and/or

ion channels that are preferentially upregulated at the tumor edge for communication with the

normal brain surround. Much more work will be needed to understand the regional and cell-

type heterogeneity of IGCs within the tumor.

One of the major findings from this work was that both pharmacological blockade and

RNA knockdown of IGCs inhibited GSC growth, which may implicate new pathways for ther-

apeutic targeting of GBM. There is a clear and dire need for novel molecular targets in this

arena. Ion channel and transporter targeting drugs are currently used to treat a variety of clini-

cal conditions and represented over 13% of FDA-approved drugs in 2006—the second largest

class of existing drugs [39]. A variety of ion channel blockers have been used to target various

cancers in pre-clinical animal models [13,14]. Compellingly, anti-epileptic drugs that target

voltage-gated Na+ channels inhibit metastatic behaviors in several cancer cell types [36], sug-

gesting that these channels may be practical therapeutic targets in GBM. Clinically, targeting

ion channels within brain tumors has many challenges associated with it. First, there is consid-

erable functional redundancy among ion channel classes, which may mean that broad channel

antagonists are needed to meaningfully impact malignant phenotypes. However, the lack of

specificity of these drugs may result in profound off-target effects and deleterious side effects.

Ion channels also play many crucial functions in normal surrounding neural cells, and so
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methods for precise targeting of ion channel-harboring brain tumor cells is needed. We have

made attempts in this study to distinguish ion channels enriched specifically in GSCs com-

pared to normal neural cell types, yet many identified IGCs are expressed in normal neural cell

types. Despite these caveats, our results indicate that GBM research may be poised for novel

ion channel drug discovery, and our findings offer a tractable starting point.

There were several limitations of this study. First, we compared ion channels expressed in

GSCs to NSC and NHA lines in vitro to understand GSC-specific ion channel expression.

While this is a good foundation for understanding GSC-specific enrichment, many control

neural cell types were not included in this analysis. Lowly abundant genes were also ignored in

our analyses, however it is not known how absolute CPM expression levels translate to biologi-

cal processes, and it is conceivable that low CPM levels are still meaningful. We also examined

expression patterns in isolated GSC lines maintained over several passages, however, GSCs

normally interact with other cell types in the tumor microenvironment, which are likely to

influence ion channel expression and function. Ion channel dysregulation was also monitored

at the mRNA level, however, other cellular processes could modulate ion channel function and

contribute to GSC malignancy. Two well-studied examples of dysregulated, post-translational

cellular processes in glioma include the mislocalization of ion channels [40] and changes to

ion channel sensitivity [41]. Epigenetic dysregulation is likely to play a role in glioma malig-

nancy as well, since aberrant DNA methylation has been linked to multiple cancers [42,43].

Additionally, ion channel expression can oscillate with phases of the cell cycle, and bulk

sequencing would miss these dynamic expression changes. Finally, the collection of GSC iso-

lates studied here may not capture the full spectrum of GBM and GSC heterogeneity, which

could impact IGC profiles and their associations with specific GBM subtypes. Therefore, build-

ing off of our current paradigm, we propose that future studies should aim to increase GSC

and normal neural sample complexity. Although challenging, this could be accomplished in

time through consolidation of existing RNA-seq databases or acquisition and analysis of addi-

tional samples.

IGCs may regulate GSC malignancy through several potential mechanisms. Several studies

have shown that ion channels can regulate cell cycle dynamics [10], migration [11], apoptosis

[12], and vascularization [44] contributing to cancer progression. The expression levels of

some ion channels are regulated in tune with the cell cycle [45], and voltage-gated K+ channels,

in particular, are known to exhibit cell-cycle-dependent fluctuations in expression or activity

in non-cancerous [46] and cancerous [45] cells, which contribute to cell cycle checkpoint regu-

lation. This supports our finding that increasing concentrations of extracellular K+ increase

GSC and NSC viability, presumably through enhanced proliferation. Furthermore, ion chan-

nel blockers can inhibit cell cycle progression, arrest aberrantly cycling cancer cells, and inhibit

tumor formation [9,45]. Ion channels can also regulate the resting membrane potential (Vm)

of cells, a process that is deregulated in cancer cells [47,48]. Vm is regulated with the cell cycle

in non-cancerous and cancerous cells, and experimental reversal of Vm at these stages can

arrest or stimulate the cell cycle [49,50]. Thus, the aberrant ion channel dysregulation in GBM

and GSCs observed in this study could modulate Vm contributing to tumor progression and

malignancy, and these electrophysiological changes should be examined in future studies.

There is a substantial lack of understanding of how GBM functions within the context of

the normal brain environment. We propose that the neural environment and electrophysio-

logical mechanisms play a vital role in GBM oncogenesis and maintenance. Ion channels play

a crucial role in these mechanisms in multiple cancers, and increasing evidence suggests that

they contribute to malignancy in GBM as well, specifically within the most malignant tumor

subpopulation, the GSCs. Future studies will need to parse out the role that these ion channels

play in electrophysiological interactions with the surrounding neural environment. We have
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identified ion channel candidates that are enriched in GSCs and are linked to GBM prognosis.

Many questions still need to be addressed to understand the contribution of ion channels to

GSC biology. Although connexins and transporters did not play a significant role in these find-

ings, other molecular players, such as metabotropic receptors, should be examined in this con-

text. Additionally, it will be critical to understand how these channels contribute to

malignancy and the downstream pathways involved, particularly Vm-related and non-current

passing mechanisms. Furthermore, ion channels are known to interact with migratory, angio-

genic, and apoptotic factors, which should be explored further in this setting. While choosing

candidate ion channels to target based solely on expression data is informative, it will be vital

to carry out functional screening assays in the future to find meaningful functional outcomes.

Nevertheless, the broad enrichment of ion channel types supports the notion that electrical

activity within the tumor microenvironment may regulate GBM malignancy, and much more

research is needed to understand the potential reciprocal interactions between GSCs and the

neural surround. Despite the study limitations described, our findings offer a starting point for

exploring hypotheses of novel ion channel-based drug targeting of GSCs in vitro and in pre-

clinical models.

Materials and methods

GSC culture

Human GSCs were previously isolated from resected stage IV glioma tumors (S1 Table)

[33,51–56]. Non-tumor neural cell lines included: human fetal cortical neural stem cells

(NSC-CB660), v-myc immortalized brainstem NSCs (NSC-VM; ReNcell, EMD Millipore),

c-myc immortalized cortical NSCs (NSC-CX; ReNcell, EMD Millipore), normal human

astrocytes (NHA; StemCell Technologies), and Ras-V12 infected NHAs (NHA-RAS) [57]

(S1 Table). For RT-qPCR, MTT viability, and siRNA knockdown assays, cells were newly

thawed from frozen stocks and maintained in culture over multiple passages using previously

published protocols [3,55]. Cells were grown as adherent cultures on flasks coated with Natural

Mouse Laminin (10 ng/ml; Thermo Fisher Scientific, #23017–015) in Human NeuroCult

NS-A Proliferation Kit (StemCell Technologies, #05751), Heparin sodium salt (2 mg/ml,

Sigma-Aldrich, #H3149), Antibiotic-Antimycotic (Thermo Fisher Scientific, #15240–062;

10,000 units/ml of penicillin, 10,000 μg/ml of streptomycin, and 25 μg/ml of Fungizone Anti-

mycotic), supplemented with human recombinant EGF (10 ng/μl; Peprotech, #AF-100-15)

and bFGF (10 ng/μl, Stemgent, #03–0002). GSCs were maintained at low passage number and

passaged at 80–90% confluence (approximately every 3–4 days) with StemPro Accutase Cell

Dissociation Reagent (Thermo Fisher Scientific, #A11105-01); cells were seeded at 4–5×105

cells per 25 cm2 flask. To assess overall similarity between samples, cell isolates were authenti-

cated by exome or RNA sequencing analysis, which included non-supervised clustering, prin-

ciple component analysis, and differential expression analysis using DESeq2 [58].

RNA sequencing and molecular subtyping

RNA sequencing was carried out as previously described [27]. Briefly, sequencing was per-

formed using an Illumina HiSeq 2000 in Rapid Run mode and employed a paired-end, 50 base

read length (PE50) sequencing strategy. RNA-seq reads were aligned to the UCSC hg19 assem-

bly using Tophat2 [59] and counted for gene associations against the UCSC genes database

with HTSeq [60]. All data was combined and normalized using a trimmed mean of M-values

(TMM) method from the R package, edgeR [61]. Sequencing data can be accessed at Sequence

Read Archive SRP092795 and NCBI Gene Expression Omnibus under GSE89623. Molecular

classifications were determined according to a previous report [27]. For downstream analyses,
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replicates (2–3 per cell isolate) were averaged to assign a single CPM value to each sample.

GSEA analysis [62,63] was performed using a Signal2Noise metric for ranking genes. GSC iso-

lates were classified by molecular subtype according to gene expression signatures produced

by The Cancer Genome Atlas [26,64]. Our isolates were clustered using 770 of these genes

using a Manhattan distance complete-linkage method, and centroids were computed as the

median expression of each gene across the core TCGA samples [26]. Each GSC sample repli-

cate was compared against the centroids using Single Sample Predictor (SSP) method [65]. In

addition, samples were assigned to GBM subtypes by maximizing the Spearman rank based

correlation between expression of new samples and GBM subtype centroids. Each replicate

was assigned separately and then the consensus was used to assign a final classification. For

hierarchical clustering, the clustergram function in the bioinformatics toolbox of MATLAB

(v. R2015b, MathWorks) was run using the euclidean distance metric and unweighted average

distance linkage method.

Exome sequencing

Exome sequencing and preprocessing were performed at the Genome Core Facility of Mount

Sinai School of Medicine. Whole genome amplified was used for exome sequencing. Whole-

exome capture libraries were constructed using ligation of Illumina adaptors. Each captured

library was then loaded onto the HiSeq 2500 sequencing platform. Exome sequence prepro-

cessing and analysis were performed using standard pipelines recommended by the Genome

Analysis Toolkit (GATK) [66]. Three GSC cell lines were aligned independently. For each

sample, the reads were aligned to NCBI build 37 (hg19) human reference sequence using

BWA (http://bio-bwa.sourceforge.net) [67], and duplicated were marked using Picard (http://

broadinstitute.github.io/picard/). Local realignment around indels and base recalibration pro-

cess were performed ending in an analysis-ready BAM file for each cell line. Mutation detec-

tion and annotation were performed at the Genome Core Facility of Mount Sinai School of

Medicine as follows. For each sample, GATK was used to detect all variants that differed from

a reference genome. Variants identified were annotated using the snpEff software [68]. The

variants were filtered in four steps according to a previous study [69]. First, the variants with

low allelic fraction were excluded. The allelic fraction was calculated for each detected variant

per cell line as a fraction of reads that supported an alternative allele (e.g. different from the ref-

erence) among reads overlapping the position. Only reads with allelic fractions above 0.25

were used in the downstream analysis. Additionally, the variants that were detected as com-

mon germline variants were excluded. Variants for which the global allele frequency (GAF) in

dbSNP138 or allele frequency in the NHLBI Exome Sequencing Project (http://evs.gs.

washington.edu/EVS, data release ESP2500) was higher than 0.1% were excluded from further

analysis. Furthermore, variants detected in a panel of 278 whole exomes sequenced at the

Broad Institute as part of the 1000 Genomes Project were excluded from further analysis.

Finally, the variants with low quality (e.g. insufficient read depth and insufficient genotype

quality) were filtered with the variant quality score tools. We selected high-confident muta-

tions by their annotation obtained from snpEff. We filtered silent mutations and extracted

high and moderate impact of mutations, including non-synonymous, nonsense, frame shift,

and codon insertion/deletion mutations. Exome sequencing data can be accessed at NCBI

Sequence Read Archive SRP09879 under BioProject PRJNA369688.

TCGA and Ivy GAP GBM databases

TCGA level 3 GBM data for U133A microarrays (539 samples), along with the corresponding

clinical data, was downloaded from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/).
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The data was imported into an R environment. Samples for which there was no clinical data

relating to time of death were excluded resulting in 525 total samples. Expression levels for the

gene of interest were then pulled, and samples were sorted low to high by expression level; the

top and bottom expressing samples were identified using the quantile function (0.10 and 0.90,

respectively). Kaplan-Meier curves were generated using the survfit function in the survival

library of R comparing the low and high cohorts. For Ivy GAP analyses, FPKM values and sam-

ple information were downloaded from the Ivy GAP website (glioblastoma.alleninstitute.org).

FPKM values were averaged across replicates within regions to generate single values for each

sample within a particular region.

RNA isolation and real-time qPCR

RNA was extracted from cell cultures every two weeks during the exponential growth phase;

RNA was isolated from 0.5–1.0×106 cells. Total RNA was prepared using RNeasy Mini Kit

with DNase I (Qiagen). RNA concentration and quality (A260/A280) was measured using a

NanoDrop 1000 Spectrophotometer (Thermo Scientific). cDNA was synthesized from 2 μg of

RNA using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad). Quantitative

real-time PCR was performed with iTaq Universal SYBR Green Supermix (Bio-Rad) on an

Applied Biosystems 7300 Real Time PCR System. Reactions were performed in triplicate and

values normalized to ACTB (β-Actin). RT-qPCR primer sequences were designed to span

exon-exon boundaries and are listed in S3 Table.

Drugs

Drugs used for this study included: tetrodotoxin (TTX, voltage-gated Na+ channel blocker,

Tocris, #1078), tetraethylammonium hydroxide (TEA, non-inactivating K+ channel blocker,

Sigma-Aldrich, #T6393), 4-Aminopyridine (4-AP, transient/A-type K+ channel blocker,

Sigma-Aldrich, #275875), 3-((±)2-carboxypiperazin-4yl)propyl-1-phosphate (CPP, NMDA

receptor antagonist, Tocris, #0173), 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, AMPA/

kainate receptor antagonist, Alomone Labs, #C-140, diluted in DMSO), ω-Conotoxin MVIIC

(N-, P/Q-type Ca2+ channel blocker, Alomone Labs, #C-150), cadmium chloride (CdCl2, non-

selective voltage-gated Ca2+ channel blocker, Sigma-Aldrich, #C3141), Gabazine (GABAA

receptor blocker, Tocris, #1262), Picrotoxin (PTX, GABAA receptor blocker, Sigma-Aldrich,

#P1675, diluted in DMSO). KCl was added at indicated concentrations to growth media,

which had undisclosed levels of K+.

MTT viability assay

Cells were harvested and seeded on laminin-coated 96-well plates at a density of 104 cells per

well. The following day, cells were attached and compounds were added to the media at indi-

cated concentrations. Untreated conditions received DMSO or water, as appropriate. Seventy-

two hours after compounds were added, the Vybrant MTT Cell Proliferation Assay Kit

(Thermo Fisher Scientific, #V13154) was performed according to manufacturer’s instructions.

10 μl per well of 12 mM stock MTT compound (dissolved in sterile PBS) was added to wells

and incubated for 4 hours at 37˚C. Viable cells reduced MTT into purple formazan crystals,

which was solubilized in a solution of SDS-0.1 M HCl added to wells for 4 hours at 37˚C.

Absorbance at 570 nm was read at 37˚C using a SpectraMax 190 Gemini Microplate Reader.

Each condition was run in triplicate. Fluorescence arbitrary units (AU) were subtracted from

background levels, averaged across triplicate wells, and normalized to untreated wells.
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siRNA-mediated knockdown

Human DsiRNA kits (Integrated DNA Technologies) consisting of three predesigned DsiRNAs

against selected IGCs (GRIA3, KCNB1, and SCN8A) were selected along with a Scrambled Neg-

ative Control DsiRNA. Cells were plated on laminin-coated tissue culture plates for CellTiter-

Glo Luminescent Cell Viability (Promega; 96-well) or RT-qPCR (6-well) assays 24 hours before

transfection. Cells were 30–40% confluent at the time of transfection. For RT-qPCR experi-

ments, 100 pmol RNA was transfected per well, and 2, 5, or 20 pmol RNA was transfected per

well for the CellTiter-Glo assay. Antibiotics and antimycotics were removed from media, and

transfection was carried out with Lipofectamine RNAiMAX Transfection Reagent (Thermo

Fisher Scientific) and Opti-MEM Reduced Serum Medium (Thermo Fisher Scientific) accord-

ing to the manufacturer’s instructions. Negative controls for all experiments included non-

transfection wells (not shown) and wells transfected with scrambled DsiRNA. RNA isolation

and RT-qPCR was carried out 24 hours after transfection, and the CellTiter-Glo assay was per-

formed 72 hours after transfection according to methods outlined by the manufacturer.

Statistics

Statistics were performed using GraphPad Prism 6, R version 3.2.3, or MATLAB (R2015b,

MathWorks). Comparisons between two groups were tested for significance with the Mann-

Whitney test. For multiple comparisons, the Kruskal-Wallis test was used to compare across

molecular subtypes. Kaplan-Meier plots were created using the R package “survival” with the

survfit function, and the log-rank (Mantel-Cox) test was used to test for significance of the Ivy

GAP data. Two-way ANOVA with repeated measures was used for data with multiple drug

concentrations (MTT and CellTiter-Glo assays); runs with missing values were excluded from

statistical testing but included on plots.

Supporting information

S1 Table. Table of cell isolates used in this study. Only gene mutations in RTK/RAS/PI(3)K,

p53, and RB pathways in which the mutation was present in at least three samples were

included.

(EPS)

S2 Table. RNA sequencing CPM values for all genes and ion channel gene set. Ion channel

gene list derived from guidetopharmacology.org [22].

(XLSX)

S3 Table. Real-time qPCR primer sequences.

(EPS)

S4 Table. GSC-enriched ion channel details. Top 25 IGCs identified by differential enrich-

ment analysis grouped by functional relatedness.

(EPS)

S1 Fig. Schematic summarizing study’s design.

(EPS)

S2 Fig. Gap junction protein expression values. Heat map (unranked) of log2 fold change val-

ues of all connexins and pannexins in GSCs compared to control NSCs/NHAs. Each column

represents log2 fold change values (compared to averaged values across NSCs/NHAs) from a

distinct cell isolate after averaging triplicate CPM values.

(EPS)
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S3 Fig. Expression pattern of IGCs in non-tumor neural cell types. Expression levels of top

25 IGC candidates were examined in several human non-tumor neural cell types from RNA

sequencing data described by Zhang et al. [25] and downloaded from http://www.brainrnaseq.

org. IGCs were specifically enriched in neurons, astrocytes, microglia, or across multiple clas-

ses. Three IGCs are listed that had low abundance (mean expression in at least one cell type

was not�1 FPKM). Bars, mean FPKM values ± SEM. GBM-A, GBM/peri-tumor astrocytes;

SH-A, sclerotic hippocampi astrocytes; F-A, fetal astrocytes; M-A, mature astrocytes; N, neu-

rons; O, oligodendrocytes; M, microglia; E, endothelial cells; WC, whole cortex.

(EPS)

S4 Fig. Expression heat map of ion channel families by tumor region. FPKM values of ion

channels partitioned by ion channel family and GBM tumor region (Ivy GAP RNA-seq data-

base).

(EPS)

S5 Fig. Summary of results relating to IGCs reported in this study. Top 25 IGCs and associ-

ated analyses. R/R/P, RTK/RAS/PI(3)K pathway; TP53, TP53 pathway; RB, RB pathway.

(EPS)

Acknowledgments

We thank Katie Cuthill for help performing experiments and analyzing data.

Author Contributions

Conceptualization: JP JMR RCR.

Data curation: SA EL JZ PJP.

Formal analysis: JP KGR CCF.

Investigation: JP KGR.

Resources: SA EL JZ PJP.

Supervision: NDP.

Visualization: JP.

Writing – original draft: JP RCR.

Writing – review & editing: JP KGR CCF JMR RCR.

References
1. Wen PY, Kesari S. Malignant Gliomas in Adults. N Engl J Med 2008; 359:492–507. doi: 10.1056/

NEJMra0708126 PMID: 18669428

2. Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma

and medulloblastoma. Nat. Rev. Cancer 2010; 10:319–31. doi: 10.1038/nrc2818 PMID: 20414201

3. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem

cell in human brain tumors. Cancer Res. 2003; 63:5821–8. PMID: 14522905

4. Singh SK, Hawkins C, Clarke ID, Squire J a, Bayani J, Hide T, et al. Identification of human brain tumour

initiating cells. Nature 2004; 432:396–401. doi: 10.1038/nature03128 PMID: 15549107

5. Das S, Srikanth M, Kessler JA. Cancer stem cells and glioma. Nat. Clin. Pract. Neurol. 2008; 4:427–35.

doi: 10.1038/ncpneuro0862 PMID: 18628751

Ion channel expression in glioblastoma stem cells

PLOS ONE | DOI:10.1371/journal.pone.0172884 March 6, 2017 19 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172884.s007
http://www.brainrnaseq.org
http://www.brainrnaseq.org
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172884.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172884.s009
http://dx.doi.org/10.1056/NEJMra0708126
http://dx.doi.org/10.1056/NEJMra0708126
http://www.ncbi.nlm.nih.gov/pubmed/18669428
http://dx.doi.org/10.1038/nrc2818
http://www.ncbi.nlm.nih.gov/pubmed/20414201
http://www.ncbi.nlm.nih.gov/pubmed/14522905
http://dx.doi.org/10.1038/nature03128
http://www.ncbi.nlm.nih.gov/pubmed/15549107
http://dx.doi.org/10.1038/ncpneuro0862
http://www.ncbi.nlm.nih.gov/pubmed/18628751


6. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates

glioblastoma growth after chemotherapy. Nature 2012; 488:522–6. doi: 10.1038/nature11287 PMID:

22854781

7. Hille B. Chapter 1 Introduction. In: Ion Channels of Excitable Membranes. Sunderland, Massachusetts:

Sinauer Associates, Inc.; 2001. page 1–22.

8. Gadsby DC. Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol

2009; 10:344–52. doi: 10.1038/nrm2668 PMID: 19339978

9. Litan A, Langhans SA. Cancer as a channelopathy: ion channels and pumps in tumor development and

progression. Front. Cell. Neurosci. 2015; 9:1–11.

10. Becchetti A. Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer.

Am. J. Physiol. Cell Physiol. 2011; 301:C255–65. doi: 10.1152/ajpcell.00047.2011 PMID: 21430288

11. Cuddapah VA, Sontheimer H. Ion channels and transporters in cancer. 2. Ion channels and the control

of cancer cell migration. Am J Physiol Cell Physiol 2011; 301:C541–9. doi: 10.1152/ajpcell.00102.2011

PMID: 21543740

12. Lehen’kyi V, Shapovalov G, Skryma R, Prevarskaya N. Ion channnels and transporters in cancer. 5. Ion

channels in control of cancer and cell apoptosis. Am. J. Physiol. Cell Physiol. 2011; 301:C1281–1289.

doi: 10.1152/ajpcell.00249.2011 PMID: 21940667

13. Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S, Becchetti A. Targeting ion channels in cancer: a

novel frontier in antineoplastic therapy. Curr. Med. Chem. 2009; 16:66–93. PMID: 19149563

14. Leanza L, Managò A, Zoratti M, Gulbins E, Szabo I. Pharmacological targeting of ion channels for can-

cer therapy: In vivo evidences. Biochim. Biophys. Acta 2015; 1863:1385–97. doi: 10.1016/j.bbamcr.

2015.11.032 PMID: 26658642

15. Sontheimer H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. 2008;

233:779–91.

16. Wang C, Funk CC, Eddy JA, Price ND. Transcriptional Analysis of Aggressiveness and Heterogeneity

across Grades of Astrocytomas. PLoS One 2013; 8:e76694. doi: 10.1371/journal.pone.0076694 PMID:

24146911

17. Simon OJ, Müntefering T, Grauer OM, Meuth SG. The role of ion channels in malignant brain tumors. J.

Neurooncol. 2015; 125:225–35. doi: 10.1007/s11060-015-1896-9 PMID: 26334315

18. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An Integrated Genomic Analysis

of Human Glioblastoma Multiforme. Science (80-.). 2008; 321:1807–12.

19. Joshi AD, Parsons DW, Velculescu VE, Riggins GJ. Sodium ion channel mutations in glioblastoma

patients correlate with shorter survival. Mol. Cancer 2011; 10:1–9.

20. Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat.

Rev. Neurosci. 2014; 15:455–65. doi: 10.1038/nrn3765 PMID: 24946761

21. Weaver AK, Liu X, Sontheimer H. Role for Calcium-Activated Potassium Channels (BK) in Growth Con-

trol of Human Malignant Glioma Cells. J. Neurosci. Res. 2004; 234:224–34.

22. Alexander SPH, Catterall WA, Kelly E, Marrion N, Peters JA, Benson HE, et al. The Concise Guide to

Pharmacology 2015/16: Overview. Br. J. Pharmacol. 2015; 172:5729–5743. doi: 10.1111/bph.13347

PMID: 26650438

23. Cong D, Zhu W, Kuo JS, Hu S, Sun D. Ion transporters in brain tumors. Curr Med Chem 2015; 22:

37–54.

24. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Horstmann H, et al. Brain tumor cells inter-

connect to a functional and resistant network. Nature 2015; 528:93–8. doi: 10.1038/nature16071 PMID:

26536111

25. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and Characteri-

zation of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences

with Mouse. Neuron 2016; 89:1–17.

26. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated Genomic Analy-

sis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA,

IDH1, EGFR, and NF1. Cancer Cell 2010; 17:98–110. doi: 10.1016/j.ccr.2009.12.020 PMID: 20129251

27. Toledo CM, Ding Y, Hoellerbauer P, Davis RJ, Basom R, Girard EJ, et al. Genome-wide CRISPR-Cas9

Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.

Cell Rep. 2015; 13:2425–39. doi: 10.1016/j.celrep.2015.11.021 PMID: 26673326

28. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ et al. Com-

prehensive genomic characterization defines human glioblastoma genes and core pathways. Nature

2008; 455:1061–8. doi: 10.1038/nature07385 PMID: 18772890

29. Ivy GAP Ivy Glioblastoma Atlas Project. 2015.

Ion channel expression in glioblastoma stem cells

PLOS ONE | DOI:10.1371/journal.pone.0172884 March 6, 2017 20 / 22

http://dx.doi.org/10.1038/nature11287
http://www.ncbi.nlm.nih.gov/pubmed/22854781
http://dx.doi.org/10.1038/nrm2668
http://www.ncbi.nlm.nih.gov/pubmed/19339978
http://dx.doi.org/10.1152/ajpcell.00047.2011
http://www.ncbi.nlm.nih.gov/pubmed/21430288
http://dx.doi.org/10.1152/ajpcell.00102.2011
http://www.ncbi.nlm.nih.gov/pubmed/21543740
http://dx.doi.org/10.1152/ajpcell.00249.2011
http://www.ncbi.nlm.nih.gov/pubmed/21940667
http://www.ncbi.nlm.nih.gov/pubmed/19149563
http://dx.doi.org/10.1016/j.bbamcr.2015.11.032
http://dx.doi.org/10.1016/j.bbamcr.2015.11.032
http://www.ncbi.nlm.nih.gov/pubmed/26658642
http://dx.doi.org/10.1371/journal.pone.0076694
http://www.ncbi.nlm.nih.gov/pubmed/24146911
http://dx.doi.org/10.1007/s11060-015-1896-9
http://www.ncbi.nlm.nih.gov/pubmed/26334315
http://dx.doi.org/10.1038/nrn3765
http://www.ncbi.nlm.nih.gov/pubmed/24946761
http://dx.doi.org/10.1111/bph.13347
http://www.ncbi.nlm.nih.gov/pubmed/26650438
http://dx.doi.org/10.1038/nature16071
http://www.ncbi.nlm.nih.gov/pubmed/26536111
http://dx.doi.org/10.1016/j.ccr.2009.12.020
http://www.ncbi.nlm.nih.gov/pubmed/20129251
http://dx.doi.org/10.1016/j.celrep.2015.11.021
http://www.ncbi.nlm.nih.gov/pubmed/26673326
http://dx.doi.org/10.1038/nature07385
http://www.ncbi.nlm.nih.gov/pubmed/18772890


30. Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat.

Rev. Cancer 2007; 7:733–6. doi: 10.1038/nrc2246 PMID: 17882276

31. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain

tumor stem cells. Cancer Cell 2007; 11:69–82. doi: 10.1016/j.ccr.2006.11.020 PMID: 17222791

32. Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, mem-

brane voltage and the cell cycle. Cell Cycle 2009; 8:3519–28.

33. Son MJ, Woolard K, Nam D-H, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor-initiating

cells in human glioblastoma. Cell Stem Cell 2009; 4:440–52. doi: 10.1016/j.stem.2009.03.003 PMID:

19427293

34. Wang R, Gurguis CI, Gu W, Ko EA, Lim I, Bang H, et al. Ion channel gene expression predicts survival

in glioma patients. Sci. Rep. 2015; 5:1–10.
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