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Abstract

MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or

translational repression. Identification of miRNA targets is essential to better understand-

ing the roles of miRNAs. miRNA targets have not been well characterized in mulberry

(Morus alba). To anatomize miRNA guided gene regulation under drought stress, tran-

scriptome-wide high throughput degradome sequencing was used in this study to directly

detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a

contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In

CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel

miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950

target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in

DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with

54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and

their target genes might play important functions in response to drought stress in mul-

berry. Additionally, we found that many of the target genes were transcription factors. By

analyzing the miRNA-target molecular network, we found that the DL independent net-

works consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 tar-

get genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA

targets were further verified by RNA ligase-mediated 5’ rapid amplification of cDNA ends

(RLM-5’ RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis revealed that these target transcripts were impli-

cated in a broad range of biological processes and various metabolic pathways. This is

the first study to comprehensively characterize target genes and their associated miRNAs

in response to drought stress by degradome sequencing in mulberry. This study provides
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a framework for understanding the molecular mechanisms of drought resistance in

mulberry.

Introduction

MicroRNAs (miRNAs) are endogenous non-coding small RNAs containing 21–24 nucleo-

tides. miRNAs regulate gene expression accurately and effectively at the post-transcriptional

level by repressing translation or directly degrading target mRNAs [1,2]. In plant cells, primary

miRNA (pri-miRNA) with a cap and a poly (A) tail is processed into precursors of miRNA

(pre-miRNA) containing the distinctive stem-loop structure [3], and thereafter the pre-

miRNA is cleaved into a miRNA/miRNA� duplex [4]. Then the miRNA/miRNA� duplex is

methylated by Hua Enhancer 1 (HEN1) and transported into the cytoplasm [5]. Mature plant

miRNAs are loaded into the ARGONAUTE 1 (AGO1) complex to suppress translation or to

cleave the target transcripts [6]. Plant miRNAs have been largely implicated in degradation of

their RNA targets by slicing precisely between the 10th and 11th nucleotides (nt) from the 5’

end of miRNAs. Recently, increasing evidence has indicated that miRNAs participate in vari-

ous processes, such as plant growth, physiological and biochemical processes, signal transduc-

tion, cell apoptosis, and biotic and abiotic stress responses [7–11].

To date, hundreds of small RNAs have been isolated by direct cloning and by deep sequenc-

ing in higher plants, such as Arabidopsis thaliana, rice, soybean, chrysanthemum, and so on

[12–14]. As negative regulators of gene expression, plant miRNAs can respond to biotic and

abiotic stress [15–17]. By establishing small RNA libraries of A. thaliana under high salt,

drought, ABA and cold treatment, 30 miRNAs associated with abiotic stress were identified

[18]. More than 40 plant miRNA family genes are now associated with high salt and drought

stress [19,20]. Upon drought treatment, expression of miR159, miR160, miR166, miR169,

miR172, miR395, miR396, miR408, miR472, miR477, miR482, miR1858, miR2118, and

miR5049 were found to be significantly differentiated in bread wheat [21]. Xie et al found that

a series of miRNAs are associated with these top-ranked genes that combat drought and salinity

stress in cotton, including miR164, miR172, miR396, miR1520, miR6158, -n24, -n56, and -n59

[22]. Salinity and drought stress induces elevated expression of miR319 in creeping bentgrass,

resulting in downregulation of at least four putative target genes of miR319 (AsPCF5, AsPCF6,

AsPCF8, and AsTCP14) as well as a homolog of the rice NAC domain gene AsNAC60, and

therefore contributes to plant abiotic stress response [23]. Eldem et al found that the expression

level of 262 (104 up-regulated, 158 down-regulated) of the 453 miRNAs changed significantly

in leaf tissue, whereas 368 (221 up-regulated, 147 down-regulated) of the 465 miRNAs had

expression levels that changed significantly in root tissue upon drought stress. The expression

level of miR159, miR169, miR393, miR397, miR398 and miR395 had different changes between

root and leaf in response to drought [24].

However, few studies have identified miRNAs involved in response to abiotic stress in mul-

berry [3]. Due to the high degree homology of sequence and function of miRNAs between the

different species [25], miRNAs are likely to represent a more primitive physiological regulatory

mechanism [26]. Illuminating the function of these tiny molecule nucleotides requires efficient

approaches to identify their target genes. Originally, plant miRNA targets were studied via

computational prediction, which is based on the perfect sequence complementarity between a

miRNA and the target mRNA or sequence conservation among different species [27]. How-

ever, targets prediction often has a high level of mismatch in miRNA-mRNA pairs and every
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single predicted gene must be verified independently. This one-at-a-time isolation of target

cleavage remnants is laborious, time-consuming and costly [28,29]. To overcome this limita-

tion, a new method called degradome sequencing has been successfully established to identify

small RNA target transcripts at a global scale [30–32]. The method includes deep sequencing,

bioinformatic analysis and 5’-rapid amplification of cDNA ends (5’ RACE). It has been used

for global identification of miRNA-target RNA pairs in numerous plant species, such as A.

thaliana, Oryza sativa, Glycine max and Zea mays [29,30,33,34].

Drought is one of the major natural disasters affecting plants, and dry weather is becoming

more frequent with the intensification of the greenhouse effect. This results in huge losses in

industrial and agricultural production, and serious damage to the ecological environment.

Mulberry (Morus alba) is an important perennial economic tree, and has a broad ecological

distribution in China. It is used in sericulture and has important economic and ecological

value. It is highly adaptable to poor environments and can endure salt, drought, cold, waterlog-

ging, and heavy metal ions [35,36]. Certain miRNAs (such as miR159, miR169 and miR398)

are known to play an important role in response to drought stress in A. thaliana [12,16,30].

However, these miRNAs and their molecular roles have not been verified in mulberry. This

study was conducted to: (1) comprehensively investigate miRNA targets in response to

drought stress in mulberry; (2) analyze the regulatory relationship between miRNAs and their

target genes in mulberry through the analysis of miRNA-target molecular network of DL and

CL; (3) further verify six of the miRNA targets by RNA ligase-mediated 5’ rapid amplification

of cDNA ends (RLM-5’ RACE); and (4) characterize differential expression patterns of 12

drought-responsive miRNAs and target mRNAs in mulberry by stem-loop qRT-PCR. The

findings open a new pathway to greatly understand the molecular basis in response to drought

stress in mulberry.

Materials and methods

Plant materials and drought stress treatment

The mulberry species (Morus alba), ‘Yu711’, was obtained from the National Mulberry Gene

Bank in Zhenjiang, Jiangsu, China. The plants were grown in a greenhouse under a photo

period of 14 h light/10 h dark at 25˚C day/20˚C night. Mulberry cuttings were grafted to root-

stocks. The grafted nurseries were planted in 35 cm diameter pots containing loam soil with a

nursery per pot. The grafted plants were randomly grouped when new shoots had grown to 20

cm in length. One group was used as the control, and the other one was treated with drought

stress for 5 d, 10 d, and 15 d (Fig 1). Each grouping contained three replicates. Young leaves

were collected from the same position of the plants and immediately frozen in liquid nitrogen

and stored at -80˚C for RNA extraction.

Construction of the degradome library and sequencing

All centrifuge tubes and pipette-tips were RNase-free or were treated with DEPC. All buffers

were RNase free or prepared using DEPC-treated ddH2O. Total RNA of each sample was

extracted by Trizol (Life Technology, USA) according to the manufacturer’s instructions. For

the same grouping of treatments, equal amounts of the RNA from each time point were mixed

together. The RNA degradome library was constructed as previously described [5,37]. In brief,

poly (A) RNA was isolated from approximately 200 μg of total RNA using the Oligotex mRNA

mini kit (Qiagen, USA). A 5’-RNA adapter containing a Mme I recognition site in its 3’ termi-

nus was ligated to the poly (A) RNA possessing a free 5’-monophosphate by T4 RNA ligase

(Takara, China). The ligation products were purified using the Oligotex mRNA mini kit and

reverse transcribed using the Oligo (dT)18 primer and Superscript II reverse transcriptase
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(Invitrogen, USA). The first-strand cDNA was amplified for five cycles using Ex Taq DNA

Polymerase (Takara, China) and the PCR products were digested with Mme I. Next, the

digested products were ligated to a 3’-double-stranded DNA adaptor using T4 DNA ligase

(Takara, China), and amplified by PCR for 20 cycles. The final PCR products were gel purified

and subjected to SE51 sequencing using Illumina HiSeq2000 (Illumina Inc., San Diego, USA).

Bioinformatics analysis and identification of miRNA targets

Two mulberry degradome libraries were sequenced using Illumina HiSeq 2000. Low quality

nucleotide reads and clip adapter sequences were removed from the raw data using the Fastx-

Toolkit. High quality 20–21 nucleotide-long reads were subjected to the CleaveLand pipeline

for small RNA targets identification as previously described [38]. Briefly, the raw tags were first

normalized to ‘tags per 100 million’ (TP100M). After preprocessing, the non-coding RNAs were

removed and clean tags were generated, saved, and classified by the alignment to the database

and remove the ncRNAs (no coding RNAs). Clean tags were mapped to mulberry complete ref-

erence genome (http://morus.swu.edu.cn/morusdb/). The sequences of rRNAs, tRNAs, snoR-

NAs and snRNAs were retrieved from the Rfam database (http://www.sanger.ac.uk/Software/

Rfam/). Degraded sequences in the clean reads were identified as polyN when over 70% of the

sequence was a single base. Next, distinct tags that perfectly matched mulberry cDNA or mRNA

sequences by SOAP2.20 based on Genbank of NCBI (http://www.ncbi.nlm.nih.gov/), the

Fig 1. Effects of drought stress on phenotypic alterations in mulberry sapling. (A) After drought treatment for 15 days. (B) Control

mulberry sapling.

doi:10.1371/journal.pone.0172883.g001
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known miRNAs by PAREsnip from miRBase (miRBase21.0: http://www.mirbase.org/), or miR-

NAs identified in other studies [3,39] were used to analyze miRNA-mRNA pairs. Alignments

were then scored according to a previously described scheme developed for plant miRNA/target

pairings [40]. All alignments with scores up to seven and no mismatches at the cleavage site

(between the 10th and 11th nucleotide) were considered as candidate targets. CL and DL data

were analyzed separately. The identified targets were grouped into five categories based on the

relative abundance of the degradome tags mapping at the miRNA target site through the height

of the degradome peak at each occupied transcript position. Category 0:>1 raw tags at the posi-

tion, abundance at the position was equal to the maximum on the transcript, and there was only

one maximum on the transcript; category 1:>1 raw tags at the position, abundance at the posi-

tion was equal to the maximum on the transcript, and there was more than one maximum posi-

tion on the transcript; category 2:>1 raw tags at the position, abundance at the position was less

than maximum but higher than the median for the transcript; category 3:>1 raw tags at the

position, abundance at the position was equal to or less than the median for the transcript; cate-

gory 4: only 1 raw tag at the position.

Construction of miRNA-targets network

Identified targets and related miRNAs based on the analysis of degradome sequencing in DL

and CL the profiles were used for building and visualizing miRNA-mRNA interaction global

network using Cytoscape 3.2.1 software as previously described [41,42,43]. Subsequently, in

order to further understand the regulatory relationships between drought responsed miRNAs

and their target genes, we further filtered the target genes with P� 0.05 in DL. Using these fil-

tered interaction pairs, the specific network of miRNA-mRNA which P� 0.05 and homolo-

gous to drought-related miRNA targets in DL were also constructed. In the network, nodes

represent miRNAs or target genes. The network structure is formed of basic elements (target

genes and miRNAs; named nodes) and the connections representing miRNA-target interac-

tions (named edges). If two genes were annotated to be related, an edge was added between

them in the network.

Detection of the expression profiles of miRNAs and their targets by

qRT-PCR

To determine the regulatory relationship between miRNAs and their targets, the expression

profile of 12 drought responsive miRNAs and their targets were examined by stem-loop

qRT-PCR as previously described [44,45]. Total RNA was isolated from the leaves of the con-

trast and treated plants at 5 d, 10 d, and 15 d under drought stress and with RNAiso plus

(Takara, China) according to the manufacturer’s instructions. The first cDNA strand was syn-

thesized from total RNA using the M-MLV-reverse transcriptase (RTase) (Takara, China) and

miRNA specific stem-loop primers were designed according to the method described by Chen

et al. [44]. Briefly, six nucleotides that paired with the 3’ end of the miRNA were linked to a

stem-looped sequence (GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGAC)to

synthesize the stem-loop reverse transcription primer. The reactions contained 1 μg of total

RNA, and each reaction was performed with 1 μ l20 μM gene-specific stem-loop primers. The

RNA and primers were mixed with DEPC-treated water up to 6 μl, then After, incubated at

70˚C for 10 min and immediately chilled on ice for more than 2 min. Then, 2.5 μl 5 × RT-Buf-

fer, 0.5 μl 10 mM dNTP, 0.5 μl RNase Inhibitor and 0.5 μl M-MLV- RTase were added together

to a total volume of 10 μl. Synthesis was performed at 42˚C for 60 min and inactivation of the

enzyme was performed at 72˚C for 15 min. The product was then diluted 3-fold and 1 μl

cDNA was used as the template to perform the qRT-PCR with each miRNA specific forward
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primer and universal primer. For target genes, 1 μg RNA and 1 μl 50 μM Oligo(dT)18 primer

were mixed with DEPC-treated water to 17 μl, then incubated at 70˚C for 10 min and after,

ice-cooled immediately for more than 2 min. Then, 5 μl 5× RT-Buffer, 1.25 μl 10 mM dNTP,

0.75 μl RNase Inhibitor and 1 μl M-MLV RTase were added. The next steps were identical to

the reverse transcription of miRNA. The product was then diluted 4-fold and 1 μl cDNA was

used as the template to perform the qRT-PCR with each target gene primer. The primers for

miRNAs, targets and β-actin (selected as a reference gene for normalization) were mixed with

the FastStart Universal SYBR Green Master Mix kit (Roche, USA) based on the handbook, and

20 μl of the reaction mix was added to each well. Reactions were performed in LightCycler1

96 Real-Time PCR System (Roche, USA) with thermal cycling parameters at 95˚C for 600 s fol-

lowed by 45 cycles of 95˚C for 10 s, 59˚C for 10 s, and 70˚C for 10 s. During amplification,

melting curves were constructed. The sequences of stem-loop reverse transcriptase primers,

miRNA-specific PCR primers and target-specific PCR primers were listed in S1 and S2 Tables,

respectively. All reactions were assayed in three biological replicates with three technical

replicates. The relative expression differences of miRNAs and their targets were calculated by

2-ΔΔCt method. Standard errors and standard deviations were calculated from replicates and

significance was measured through one-way ANOVA Duncan’s multiple range test at the level

of 0.01< P� 0.05 and P� 0.01.

Validation of targets by RLM-5’ RACE

In order to validate the cleavage sites of miRNA to target genes, a modified RLM-5’ RACE was

performed using the FirstChoice RLM-RACE Kit (Ambion, USA) without calf intestine alka-

line phosphatase (CIAP) and tobacco acid pyrophosphatase (TAP) treatments for six target

genes in the drought stressed degradome library as previously described [46,47]. Total RNA

was extracted from drought stressed mulberry leaves with RNAiso plus (Takara, China) as

described by the manufacturer. Then, approximately 2 μg RNA was ligated with 5’ RACE

adaptors (5’-GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGCUUUGAUGAAA-3’) using

T4 RNA ligase. The ligated mRNAs were then reverse-transcribed using random decamers via

M-MLV RTase following the manufacturer’s instructions. Two rounds of 5’ RACE reactions

were performed and the initial PCR was carried out using the RT reaction product, the 5’

RACE outer primer (5’-GCTGATGGCGATGAATGAACACTG-3’), and the gene-specific

outer primer, Nested PCR was carried out using 1/10 of the initial PCR reaction product, the

5’ RACE inner primer (5’-CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG-3’)and

gene-specific inner primer. The final PCR products were gel purified, cloned into the

pMD18-T Vector (Takara, China), and sequenced. Each target was confirmed by at least four

clones. Gene-specific PCR primers were designed from between 150 and 600 nucleotides from

the 5’ end of the predicted target site and were listed in S3 Table.

Functional annotations of the miRNA targets

To investigate the putative biological functions of target genes and biological processes possi-

bly regulated by miRNAs in mulberry, Gene Ontology (GO) annotations, Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analysis (http://www.kegg.jp/kegg/pathway.html),

and the Non-Redundant (NR) Protein Database [48–51] were employed to annotate and clas-

sify target genes using the DAVID gene annotation tool. For enrichment analysis, a hypergeo-

metric distribution based statistical test (level of significance at 0.05) was used to reject the

chances of randomness in the miRNA’s associations to target genes with their corresponding

ontology term. The GO categorization results were listed as three independent hierarchies for

biological process, cellular component, and molecular function. GO classification of the
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drought responsive miRNAs targets and the metabolic pathways of these genes were obtained

based on KEGG analysis.

Results

Mulberry degradome library construction, sequencing, and sequence

analysis

In order to identify the miRNA targets in mulberry plants at a global level, two degradome

libraries (drought library and contrast library) which captured the cleaved mRNAs were con-

structed for sequencing by Illumina sequencer. Our data have been deposited in the NCBI’s

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) with the accession number

GSE84889. A total of 17,193,823 raw tags for CL and 20,200,629 tags for DL were obtained.

After trimming low quality tags, adapter tags and N tags, there were 17,188,651 (99.97%) clean

tags in CL and 20,192,466 (99.96%) clean tags in DL. Of those, there were 26,818,165 total

common clean tags in CL and DL. There were 3,772,569 and 6,790,383 specific clean tags in

CL and DL, respectively (Table 1). Of the 17,188,651 clean tags, 948,369 were identified as

Table 1. Summary of mulberry degradome sequences by Illumina sequencing.

Category CL DL

Total reads Unique reads Total reads Unique reads

Statistics of degradome sequences by Illumina sequencing

Raw tags 17193823 20200629

Clean tags 17188651(99.97%) 20192466(99.96%)

CL& DL clean tags 26818165 954638 26818165 954638

specific clean tags 3772569 2572100 6790383 3042896

Filter N tags 129 167

Filter low quality tags 5043 7996

Poly A 44883(0.26%) 28835 83345(0.41%) 45317

Mapping to genome 10132806(58.95%) 1002456(28.42%) 9353151(46.32%) 955210(23.89%)

Alignment to Rfam

rRNA 948369(5.52%) 9252(0.26%) 693817(3.44%) 10242(0.26%)

tRNA 348(0.00%) 134(0.00%) 546(0.00%) 151(0.00%)

snRNA 398(0.00%) 185(0.01%) 612(0.00%) 229(0.01%)

snoRNA 1026 (0.01%) 179 (0.01%) 1516 (0.01%) 206 (0.01%)

Alignment to Genbank

rRNA 1369086 (7.97%) 6041 (0.17%) 737041 (3.65%) 5296 (0.13%)

tRNA 11 (0.00%) 3 (0.00%) 7(0.00%) 4 (0.00%)

Classification of clean tags

rRNA 2255306 (13.12%) 14565 (0.41%) 1386260 (6.87%) 14847 (0.37%)

tRNA 349(0.00%) 135(0.00%) 547(0.00%) 152(0.00%)

snRNA 398(0.00%) 185(0.01%) 612(0.00%) 229(0.00%)

snoRNA 1026(0.01%) 179(0.01%) 151(0.00%) 206(0.00%)

Poly N 47969(0.28%) 31385(0.89%) 88680(0.44%) 49086(1.23%)

cDNA sence 2040655(11.87%) 923550(26.19%) 3250912(16.10%) 862437(21.57%)

cDNA antisence 801688(4.66%) 26629(0.76%) 1031032(5.11%) 33040(0.83%)

other 12041260(70.05%) 2530110 (71.74%) 14432907 (71.48%) 3037537 (75.99%)

Two degradome libraries were constructed, CL (contrast library) and DL (drought library). Total RNA were extracted from mulberry leaves grown in contrast

or drought stress condition.

doi:10.1371/journal.pone.0172883.t001
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fragments of rRNAs, 348 were identified as fragments of tRNAs, 398 were identified as frag-

ments of small nuclear RNA (snRNAs), and 1026 were identified as fragments of rRNAs,

tRNAs, small nuclear RNA (snRNAs) and small nucleolar RNAs (snoRNAs) in CL, respec-

tively using a BLASTN search against the Rfam database. Of the 20,192,466 clean tags, 693,817

were identified as fragments of rRNAs, 546 were identified as fragments of tRNAs, 612 were

identified as fragments of small nuclear RNAs (snRNAs), and 1516 were identified as frag-

ments of small nucleolar RNAs (snoRNAs) in DL, respectively (Table 1). The priority rule,

Rfam> Genbank > Poly N, was used to map every unique degradome to the corresponding

annotation, and map unannotated tags to reference genes (cDNA), classification of clean tags

in CL and DL were listed in Table 1. The chromosomes distribution of clean tags was obtained

by mapping clean tags to the complete mulberry reference genome using SOAP2.20, as shown

in Fig 2. Finally, 10,132,806 (58.95%) and 9,353,151 (46.32%) clean tags in CL and DL were

mapped to the genome, respectively. These data indicated that our two degradome libraries

were of high quality and recovered most of the degraded mRNA targets that contained the

sequence profile of miRNA-mediated cleavage and allowed us to conduct further analysis.

Systematic identification of miRNA targets in mulberry

Confirmation of miRNA targets was a prerequisite to better understand the functional roles of

miRNAs and may result in the discovery of new non-conserved miRNAs. In mulberry, con-

served miRNA targets were previously investigated mainly by bioinformatics prediction and

only a few miRNA targets have been experimentally validated [3,39]. High-throughput degra-

dome sequencing was performed in this study to identify more miRNA targets in mulberry,

particularly specific targets of drought-stress-responsive miRNAs. A characteristic feature of

miRNA-guided cleaving was that the cleavage takes place precisely between the 10th and 11th

nt from the 5’ of miRNA in the complementary region of the target transcript. Therefore,

cleaved RNA targets should have distinct peaks of degradome tags at the predicted cleavage

site relative to other regions of the transcript. Systematic identification of miRNA targets was

accomplished by analyzing the 20 and 21 nt tags with the CleaveLand pipeline for miRNA tar-

get identification using the methods described above.

As listed in S4 and S5 Tables, 409 target genes of 30 conserved miRNA families and 990 tar-

get genes of 199 novel miRNAs were identified in CL. In DL, 373 target genes of 30 conserved

miRNA families and 950 target genes of 195 novel miRNAs were identified. Based on the

abundance of tags at the targets’ cleavage sites, the miRNA targets were categorized into five

classes as described above. There were 10, 26, 522, 23 and 818 targets in categories 0, 1, 2, 3

and 4 respectively, in CL, and 26, 9, 708, 73 and 507 targets in categories 0, 1, 2, 3 and 4 respec-

tively, in DL. Remarkably, a conserved miRNA family could target various numbers of genes

ranging from 1 up to 54 and a target could be cleaved by 1–7 different conserved miRNA or

miRNA family. Of those conserved miRNA families in DL, mno-miR156, mno-miR172 and

mno-miR396 had the highest number of targets with 54, 52 and 41 unique transcripts, respec-

tively (S5 Table), indicating that these three miRNA families may be in the center of the gene

regulation networks. In contrast, fewer targets were identified for mno-miR2111, mno-

miR4376, mno-miR4995, mno-miR827, mno-miR390 and mno-miR5523, indicating that

these miRNAs might act in specialized pathways. The target gene XM_010104394.1, a squa-

mosa promoter-binding-like protein, predicted to be involved in metabolic processes in

response to stimulus and catalytic activity, was cleaved by six mno-miR156s and mno-miR535,

indicating that this miRNA may play an important role in the process of growth, physiological

metabolism and the corresponding stress of plants. Many of the target genes of the conserved

miRNAs were classified as the transcription factors (TFs), such as NAC (a target of mno-
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Fig 2. Chromosomes distribution of clean tags in CL and DL. The x axis indicates the chromosomes. The y axis indicates the number of tags that

locate on each chromosome: area above 0 shown on blue is the number of tags on the sense strand of chromosome, whereas area below 0 shown in

red is the number of tags on the antisense strand of chromosome. (A) CL. (B) DL.

doi:10.1371/journal.pone.0172883.g002
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miRn108-5p), ARF (a target of mno-miR160, mno-mi172, mno-miR156 et al.), NFY (a target

of mno-miRn223-5p), MYB (a target of mno-miR159, mno-miR858, mno-miRn148-5p et al.),

HD-ZIP (a target of mon-miR166), GRAS (a target of mno-miR171), and GRF (a target of

mno-miR396), and so on. These TFs are known to regulate diverse aspects of plant growth,

development, and biotic and abiotic stresses. Compared with A. thaliana and rice, many con-

served miRNA targets were found to be conserved in mulberry, indicating that the miRNA-

target relationship was evolutionarily conserved [27,30].

Of the 72 miRNA-mRNA pairs in CL and the 63 miRNA-mRNA pairs in DL with P� 0.05,

there were 29 and 27 target genes for 11 and 12 conserved miRNA families, respectively, and

36 and 27 target genes for 26 and 23 novel miRNAs, respectively (Tables 2 and 3). In CL, 72

miRNA-mRNA pairs were categorized into five classes as 6, 11, 14, 7 and 34 in category 0 to

category 4, respectively. In miRNA-mRNA pairs of DL, 15 targets belonged to category 0,

whereas the category 1–4 targets accounted for 6, 22, 8 and 12, respectively. The abundance of

tags for each of them were presented in the form of target plots (T-plots) that plot the abun-

dance of the tags relative to their position in the transcript [31]. For instance, six representative

T-plots were shown, three from CL and another three from DL (Fig 3). In each of the six mod-

els, a clear peak for the absolute number of tags was found at the identified cleavage site for

mno-miR166f, mno-miR408c, mno-miR396b, mno-miR319c, mno-miR156d and mno-

miR828. Cleavage sites of all of the miRNAs were located in the coding DNA sequence (CDS)

of the target genes identified by degradome sequencing in mulberry.

Identification of miRNA targets in response to drought stress

All reference genes containing degradation sites were listed in S6 Table. In total, 1,154 and

1,098 targets were investigated in CL and DL, respectively. And 651 (36.07%) targets were

found only in DL (Fig 4). Of the target genes with P� 0.05 in DL, the mno-miR156 family

conferred the highest number of targets with 17 (45.95%) of the conserved miRNA families

(Table 3), and only one miR156-mRNA pair belonged to CL (Table 2), indicating that the

miR156 family and their target genes played a key important function in responding to

drought stress in mulberry. mno-miR156 targeted a number of mulberry genes annotated as

SPB, vesicle transport protein GOT1A, ARF, GRAM domain-containing protein, and chlo-

roplast stem-loop binding protein. Other targete genes of miRNAs were annotated as TFs

TCP4, tubulin gamma-1 chain, pentatricopeptide repeat-containing protein, NEDD8-acti-

vating enzyme E1 catalytic subunit, auxilin-related protein 2, arginine/serine-rich-splicing

factor RSP31, polyamine transporter At3g13620, AT-rich interactive domain-containing

protein, mitochondrial import inner membrane translocase subunit, and ATP binding

protein.

GO, KEPP and NR analysis of miRNA target genes in mulberry

The identified targets for miRNAs in the two mulberry degradome libraries were annotated by

searching NR databases. By blasting 1800 identified target genes against the NR database,

35,841 functional module structures with the domain sequences were obtained, as shown in S6

and S7 Tables. The highest percentage of the target genes (50.83%) had a global similarity of

60%-80% (Table 4), most of which were targeted by the conserved miRNAs. In the NR annota-

tion by species distribution, the target genes in M. multicaulis had the highest percentage

(45.94%) showing similar protein function with Prunus persica, followed by 13.35% in Vitis
vinifera, suggesting that M. multicaulis had a similar molecular basis for drought stress with

these two species (Table 5).
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Table 2. Target genes of miRNAs in the mulberry CL library.

miRNA Target C.Site Location Score Category TP100M P-Value

mno-miR156c XM_010104394.1 1171 CDS 1 2 62 0

mno-miR160b XM_010091672.1 1277 CDS 1 4 1 0

mno-miR162 XM_010112984.1 363 CDS 4 3 4 0.016

mno-miR164a XM_010095292.1 652 CDS 3 4 1 0.026

mno-miR164a XM_010099082.1 847 CDS 4.5 4 1 0.026

mno-miR166f XM_010099828.1 560 CDS 2 0 202 0

mno-miR166f XM_010100268.1 590 CDS 2 0 42 0

mno-miR166f XM_010104104.1 587 CDS 2 0 5 0

mno-miR171a XM_010090594.1 1283 CDS 0.5 2 2 0

mno-miR171c XM_010112515.1 1256 CDS 1 2 2 0

mno-miR171d XM_010112515.1 1253 CDS 1 2 2 0

mno-miR171e XM_010112515.1 1253 CDS 2.5 2 2 0.002

mno-miR171h XM_010112515.1 1253 CDS 2.5 2 2 0.004

mno-miR319c XM_010109976.1 1086 CDS 3 0 101 0

mno-miR396b XM_010088522.1 353 CDS 2 4 1 0.012

mno-miR396b XM_010088832.1 342 CDS 4.5 4 1 0.012

mno-miR396b XM_010091229.1 2641 CDS 4.5 4 1 0.012

mno-miR396b XM_010091257.1 1117 CDS 4.5 4 1 0.012

mno-miR396b XM_010092942.1 480 CDS 3.5 4 1 0.012

mno-miR396b XM_010094796.1 248 CDS 4.5 4 1 0.012

mno-miR396b XM_010097895.1 612 CDS 4 4 1 0.012

mno-miR396b XM_010098038.1 90 CDS 4.5 4 1 0.012

mno-miR396b XM_010099023.1 2606 CDS 4 4 1 0.012

mno-miR396b XM_010099938.1 738 CDS 4.5 4 1 0.012

mno-miR396b XM_010103804.1 840 CDS 3.5 4 1 0.012

mno-miR396b XM_010104482.1 4656 CDS 4.5 4 1 0.012

mno-miR396b XM_010104690.1 654 CDS 3.5 4 1 0.012

mno-miR396b XM_010104691.1 777 CDS 3.5 4 1 0.012

mno-miR396b XM_010106362.1 630 CDS 4 4 1 0.012

mno-miR396b XM_010111944.1 992 CDS 4 4 1 0.012

mno-miR408c XM_010105580.1 16 CDS 2 2 132 0.006

mno-miR4376 XM_010106326.1 22 CDS 3 4 1 0.012

mno-miR535 XM_010104394.1 1169 CDS 3 2 4 0.032

mno-miRn119-5p XM_010114494.1 1031 CDS 4.5 1 3 0.03

mno-miRn120-3p XM_010090594.1 1283 CDS 1 2 2 0

mno-miRn144-5p XM_010102397.1 573 CDS 4.5 4 1 0.01

mno-miRn149-1-3p XM_010096635.1 486 CDS 4.5 1 2 0.008

mno-miRn160-5p XM_010094916.1 82 CDS 4.5 3 2 0.044

mno-miRn168-3p XM_010091818.1 2177 CDS 4.5 1 3 0.048

mno-miRn171-1-3p XM_010100675.1 920 CDS 4.5 3 2 0.032

mno-miRn175-5p XM_010097012.1 36 CDS 4 0 3 0.01

mno-miRn178-1-3p XM_010096254.1 531 CDS 4 3 2 0.04

mno-miRn178-1-3p XM_010107694.1 147 CDS 4 3 2 0.04

mno-miRn200-3p XM_010099010.1 2223 CDS 4 2 2 0.046

mno-miRn204-3p XM_010089422.1 1789 CDS 2.5 4 1 0.006

mno-miRn204-3p XM_010093987.1 3046 CDS 2.5 4 1 0.006

mno-miRn204-3p XM_010106433.1 1396 CDS 4.5 4 1 0.006

(Continued )
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To better understand the metabolic pathways of miRNA target genes in mulberry, KEGG

was employed to predict the function of those targets, and 119 pathways were involved (S7 and

S8 Tables). Importantly, most target genes were associated with metabolic pathways (318

genes), followed by biosynthesis of secondary metabolites (136 genes), plant hormone signal

transduction (89 genes), RNA transport (78 genes), and plant-pathogen interaction (76 genes),

as shown in S8 Table. The plant hormone signal transduction pathway includes many TFs and

key enzymes, such as HD-ZIP and shaggy-related protein kinase (SK), which play important

roles under stress response and abiotic stress.

A total of 1,561 miRNA targets identified in DL were classified into three categories accord-

ing to GO analysis: biological process, cellular component and molecular function, which were

classified into 24, 14 and 12 terms respectively, as shown in Fig 5. More than 1000 targets were

found to be involved in the cell, cell part, cellular process, metabolic process and organelle.

The target genes were mostly associated with stimulus (including 568 genes), regulation of bio-

logical process and biological regulation. The results suggested that the corresponding miR-

NAs regulated the expression of these target genes during drought stress in mulberry by

affecting various TFs to induce or shut off specific metabolic networks during response to

adversity.

Table 2. (Continued)

miRNA Target C.Site Location Score Category TP100M P-Value

mno-miRn205-5p XM_010092962.1 254 CDS 3 4 1 0.048

mno-miRn205-5p XM_010097789.1 586 CDS 4.5 4 1 0.048

mno-miRn205-5p XM_010108021.1 551 CDS 3.5 4 1 0.048

mno-miRn207-3p XM_010102455.1 1333 CDS 4.5 3 2 0.022

mno-miRn208-3p XM_010090819.1 1125 CDS 4 0 3 0.018

mno-miRn219-3p XM_010114286.1 358 CDS 4 1 2 0.032

mno-miRn32-1-3p XM_010099111.1 2815 CDS 4.5 1 3 0.03

mno-miRn33-1-5p XM_010099185.1 1347 CDS 4.5 1 2 0.032

mno-miRn33-1-5p XM_010107920.1 1435 CDS 3.5 1 2 0.032

mno-miRn48-5p XM_010102625.1 38 CDS 3.5 2 2 0.04

mno-miRn55-1-5p XM_010102455.1 1333 CDS 4.5 3 2 0.032

mno-miRn67-3p XM_010095642.1 1140 CDS 2 4 1 0.008

mno-miRn67-3p XM_010099023.1 1649 CDS 4 4 1 0.008

mno-miRn67-3p XM_010100444.1 34 CDS 4 4 1 0.008

mno-miRn67-3p XM_010103502.1 405 CDS 4 4 1 0.008

mno-miRn67-3p XM_010106088.1 2600 CDS 4 4 1 0.008

mno-miRn67-3p XM_010108206.1 1549 CDS 4 4 1 0.008

mno-miRn69-3p XM_010101296.1 870 CDS 4.5 1 3 0.024

mno-miRn70-1-5p XM_010101296.1 870 CDS 3.5 1 4 0.002

mno-miRn74a-1-3p XM_010090508.1 315 CDS 3.5 1 4 0.002

mno-miRn74b-3p XM_010090508.1 315 CDS 4.5 1 4 0.028

mno-miRn81-3p XM_010106888.1 853 CDS 3 4 1 0.02

mno-miRn99-3p XM_010107049.1 24 CDS 3.5 2 5 0.046

mno-miRn99-3p XM_010107437.1 74 CDS 4.5 2 10 0.046

mno-miRn99-3p XM_010107438.1 74 CDS 4.5 2 10 0.046

C.site (Cleavage site): Nucleotide number from 5’ end of cDNA; CDS: Coding Sequence; Score: mapping score of mRNA-miRNAs pair; Category: the

“category” of this cleave site; TP100M: Transcripts per 100 million; P-value� 0.05 using Cleaveland pipeline.

doi:10.1371/journal.pone.0172883.t002
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Table 3. Target genes of miRNAs in mulberry DL library.

miRNA Target C.Site Location Score Category TP100M P-Value

mno-miR156c XM_010088675.1 943 CDS 1 2 4 0

mno-miR156d XM_010090407.1 493 CDS 2 2 87 0.006

mno-miR156d XM_010092101.1 158 CDS 4.5 2 3 0.006

mno-miR156d XM_010092348.1 757 CDS 2 2 87 0.006

mno-miR156d XM_010092557.1 198 CDS 4 2 5 0.006

mno-miR156d XM_010099345.1 87 CDS 4.5 2 2 0.006

mno-miR156d XM_010101121.1 278 CDS 4 2 4 0.006

mno-miR156d XM_010104394.1 1171 CDS 1 2 52 0.006

mno-miR156d XM_010114085.1 988 CDS 2 2 10 0.006

mno-miR156f XM_010090407.1 492 CDS 1 2 7 0

mno-miR156f XM_010092348.1 756 CDS 1 2 7 0

mno-miR156f XM_010104394.1 1170 CDS 2 2 10 0.004

mno-miR156g XM_010090407.1 492 CDS 0 2 7 0

mno-miR156g XM_010092101.1 157 CDS 2.5 4 1 0.01

mno-miR156g XM_010105976.1 1681 CDS 4.5 4 1 0.01

mno-miR156g XM_010110753.1 129 CDS 4.5 4 1 0.01

mno-miR156g XM_010111722.1 158 CDS 4 4 1 0.01

mno-miR160b XM_010105965.1 1316 CDS 1 2 4 0

mno-miR166c XM_010099828.1 561 CDS 1 2 2 0

mno-miR166f XM_010099828.1 560 CDS 2 0 126 0

mno-miR166f XM_010100268.1 590 CDS 2 0 25 0.002

mno-miR171a XM_010090594.1 1283 CDS 0.5 2 6 0

mno-miR172c XM_010093529.1 16 CDS 4 0 5 0.02

mno-miR172e XM_010114499.1 593 CDS 4 0 5 0.018

mno-miR319c XM_010093013.1 964 CDS 3 4 1 0.03

mno-miR319c XM_010098565.1 37 CDS 4.5 4 1 0.03

mno-miR319c XM_010109976.1 1086 CDS 3 0 183 0

mno-miR319c XM_010114597.1 300 CDS 3 3 2 0.004

mno-miR396b XM_010111150.1 1142 CDS 4 1 2 0.04

mno-miR399d XM_010100088.1 326 CDS 2.5 3 3 0

mno-miR399e XM_010100088.1 326 CDS 3.5 3 3 0.002

mno-miR399f XM_010100088.1 326 CDS 3 3 3 0.004

mno-miR408c XM_010095399.1 2180 CDS 4 1 6 0.01

mno-miR4376 XM_010106326.1 22 CDS 3 2 5 0.002

mno-miR535 XM_010104394.1 1169 CDS 3 2 3 0.048

mno-miR828 XM_010089439.1 653 CDS 3 4 1 0.026

mno-miRn11-3p XM_010095698.1 1333 CDS 3 2 4 0.016

mno-miRn114-5p XM_010112092.1 102 CDS 4 1 3 0.016

mno-miRn118-5p XM_010101413.1 2530 CDS 3 2 2 0.006

mno-miRn120-3p XM_010090594.1 1283 CDS 1 2 6 0

mno-miRn121-3-5p XM_010105099.1 692 CDS 4.5 0 10 0.042

mno-miRn122-5p XM_010093417.1 591 CDS 4 3 2 0.034

mno-miRn14-1-5p XM_010097134.1 1342 CDS 4.5 0 7 0.028

mno-miRn144-5p XM_010102397.1 573 CDS 4.5 2 2 0.006

mno-miRn150-3p XM_010114658.1 421 CDS 3.5 3 3 0.002

mno-miRn157-5p XM_010110553.1 2398 CDS 4 0 11 0.032

mno-miRn166-3p XM_010102826.1 998 CDS 3.5 0 6 0.002

(Continued )
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Overview of miRNA-target networks

The consecutive miRNA-target networks of each library were constructed by Cytoscape 3.2.1

using the miRNAs and target genes. The network structure consists of the basic elements

(genes and miRNAs; named nodes) and the connections representing miRNA-target interac-

tions (named edges). To reveal the details of the network, the global networks were categorized

into overlapped network and independent networks in CL and DL (Fig 6). Analysis of the

nodes of the network, revealed that the independent networks consisted of 910 miRNA-

mRNA pairs (65.05%) and 838 miRNA-mRNA pairs (63.34%) in CL and DL, respectively.

This finding indicated that the interaction of miRNA-mRNA pairs differed between CL and

DL, suggesting that the expression of numerous miRNAs may play roles in regulating the

expression of target genes in response to drought stress.

To increase our understanding of the regulatory role of drought-related miRNAs and their

target genes, we constructed specific profiles of miRNA mediated interaction network using

the target genes with P� 0.05 in DL (Fig 7). This network contained 43 miRNAs and 53

genes, and revealed that many nodes were connected through miRNA-mRNA interaction data

and formed a complex network. In this network, most of these targets identified by degradome

sequencing were TFs, including ARF, SPB, HD-ZIP, MYB, TCP, SCL, GRAS and SPL. Targets

analyzed by Nr annotation included diverse and important enzymes, such as NEDD8-activat-

ing enzyme E1 catalytic subunit, copperion-binding protein, type 2A protein phosphatase,

transaldolase and CSP41A, suggesting that these genes may play important roles in the stress

response.

Detection of the expression of miRNA and their targets by qRT-PCR

To investigate the regulatory function of miRNAs on their target genes, the expression

profiles of 13 miRNA-mRNA pairs (mno-miR166f for XM_010099828.1, mno-miR166f for

XM_010100268.1, mno-miR166c for XM_010099828.1, mno-miR171a for XM_010090594.1,

Table 3. (Continued)

miRNA Target C.Site Location Score Category TP100M P-Value

mno-miRn17-1-5p XM_010097045.1 984 CDS 3 4 1 0.044

mno-miRn17-1-5p XM_010100274.1 1122 CDS 4.5 4 1 0.044

mno-miRn17-1-5p XM_010105164.1 337 CDS 4.5 4 1 0.044

mno-miRn179-5p XM_010102516.1 328 CDS 4 3 2 0.042

mno-miRn193-5p XM_010113910.1 612 CDS 3.5 0 5 0.004

mno-miRn202-1-3p XM_010092821.1 863 CDS 4.5 1 4 0.034

mno-miRn202-1-3p XM_010093270.1 1167 CDS 3.5 3 2 0.004

mno-miRn2-1-5p XM_010095892.1 1059 CDS 4.5 0 24 0.03

mno-miRn220-5p XM_010113440.1 797 CDS 4 4 1 0.034

mno-miRn238-5p XM_010104930.1 493 CDS 4 0 15 0.046

mno-miRn25-1-3p XM_010113161.1 77 CDS 4 0 5 0.03

mno-miRn260-5p XM_010110513.1 1280 CDS 4.5 1 4 0.024

mno-miRn37-3p XM_010114015.1 477 CDS 4 4 1 0.048

mno-miRn46-5p XM_010093108.1 3876 CDS 4.5 0 19 0.014

mno-miRn62-1-5p XM_010092824.1 18 CDS 4.5 1 4 0.026

mno-miRn79-1-3p XM_010091565.1 275 CDS 4 0 7 0.016

The same as Table 2.

doi:10.1371/journal.pone.0172883.t003
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Fig 3. T-plots of the targets cleaved by miRNA in CL and DL. The T-plots show the distribution of 3’ end of

the degradome tags within the full-lengthof the target mRNA sequence (bottom). The red line represents the

cleaved target tags and is shown in red arrow. The alignment along with the detected cleavage frequencies

(absolute numbers) are shown beside the black arrow and it shows the miRNA with a portion of its target

sequence (top). The two dots indicate matched RNA base pairs; one dot shows a GU mismatch whereas

none dot represent other types of mismatch. The bold letter (nucleotide) on the target transcript indicates the

MicroRNAs and their targets in mulberry
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mno-miR319c for XM_010109976.1, mno-miR535 for XM_010104394.1, mno-miR4376 for

XM_010106326.1, mno-miR156d for XM_010092101.1, mno-miR172a for XM_010106115.1,

mno-miRn120-3p for XM_010090594.1, mno-miRn144-5p for XM_010102397.1, mno-

miRn46-5p for XM_010093108.1, and mno-miRn202-1-3p for XM_010093270.1) were

selected with a P value� 0.05 as criteria from DL for stem-loop qRT-PCR. Among these, eight

target genes were cleaved by eight conserved miRNAs and four target genes were cleaved by

four novel miRNAs. With the exception of one miRNA-mRNA pair (mno-miR172a for

XM_010106115.1) with P value > 0.05, the remaining 12 pairs had P values lower than 0.05.

As shown in Fig 8A, the expression levels of miR166f, miR166c, miR171a, miR319c,

miR156d, miR172a and miRn202-1-3p decreased to the lowest value after 10 d under

drought stress and were higher at both 5 d and 15 d. Within the same time period, their

corresponding targets XM_010099828.1, XM_010100268.1, XM_010090594.1,

XM_010109976.1, XM_010092101.1, XM_010106115.1, and XM_010093270.1 (Fig 8B),

exhibited apparently the opposite expression profile. miRn144-5p and its target

XM_010102397.1 also exhibited the opposite expression profile. miRn144-5p, however,

exhibited down-regulation under drought treatment from 5 d to 15 d, and its target

XM_010102397.1 exhibited up-regulation. The expression correlation of these nine miRNAs

and their targets illustrated that these miRNAs negatively regulated their targets. miR535

and miR4376 exhibited the same expression profile as their targets, XM_010104394.1 and

XM_010106326.1, which declined from 5 d and then increased on 15 d. Two miRNA-

mRNA pairs, miRn120-3p for XM_010090594.1 and miRn46-5p for XM_010093108.1,

cleavage site showed by the blank arrow. (A) XM_010100268.1, a category 0 target for mno-miR166f in CL.

(B) XM_010105580.1, a category 2 target for mno-miR408c in CL. (C) XM_010099938.1, a category 4 target

for mno-miR396b in CL. (D) XM_010109976.1, a category 0 target for mno-miR319c in DL. (E)

XM_010099345.1, a category 2 target for mno-miR156d in DL. (F) XM_010089439.1, a category 4 target for

mno-miR828 in DL.

doi:10.1371/journal.pone.0172883.g003

Fig 4. Venn chart of the target genes detected in the CL and DL libraries. The number and percentage was the quantity and proportion

of target genes in CL specific or DL specific or both CL and DL, respectively.

doi:10.1371/journal.pone.0172883.g004
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showed non-significant regulation, suggesting that one miRNA may regulate multiple target

genes or one gene may be regulated by multiple miRNAs. With increased drought stress

time, the expression levels of miRNAs appeared to change significantly, and the expression

profiles of many miRNAs increased first, then decreased and increased again. Further stud-

ies will be needed to shed light on the regulation network of these miRNAs and their targets

in response to drought. Over expression or repressing expression of these miRNAs under

drought stress may help to elucidate the regulatory mechanism.

Table 4. Global analysis of the homology in the target genes by NR annotation.

similarity gene numbers percentage

20%-40% 37 2.06%

40%-60% 243 13.52%

60%-80% 914 50.83%

80%-95% 541 30.09%

95%-100% 63 3.50%

doi:10.1371/journal.pone.0172883.t004

Table 5. Functional similarity in the targets with other species.

species gene numbers percentage

Prunus persica 826 45.94%

Vitis vinifera 240 13.35%

Fragaria vesca subsp 193 10.73%

Ricinus communis 167 9.29%

Populus trichocarpa 96 5.34%

Cucumis sativus 80 4.45%

Glycine max 74 4.12%

other 122 6.78%

doi:10.1371/journal.pone.0172883.t005

Fig 5. GO analysis of miRNA target genes identified in DL. The digitals on the left y-axis and right y-axis shows the

percentage and enrichment of miRNA targets, respectively. Only the identified target genes for miRNAs by degradome

sequencing were considered.

doi:10.1371/journal.pone.0172883.g005
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Fig 6. The global profiles of miRNA-target networks in CL and DL trials. The global profiles of CL and DL miRNA-target

networks were constructed, respectively, and included the overlapped network and independent networks of CL and DL. The

nodes represent miRNAs or target genes, and the edges represent the connection strength. (A) CL global network. (B) DL global

network. (C) Overlapped network. (D) Independent network of CL. (E) Independent network of DL.

doi:10.1371/journal.pone.0172883.g006
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Determination of six miRNA targets by RLM-5’ RACE

To further confirm the degradome data, RLM-5’ RACE experiments were successfully

employed to validate targets of conserved and novel miRNAs.

Four target genes for conserved miRNAs in category 2, 0, 3, 1, which were XM_010092101.1

for mno-miR156d, XM_010099828.1 for mno-miR166f, XM_010100088.1 for mno-miR399e,

and XM_010095399.1 for mno-miR408c, respectively, were successfully validated by RLM 5’-

RACE experiments (Fig 9A–9D). Additionally, two target genes for novel miRNAs in category

2 and 1, which were XM_010102397.1 for mno-miRn144-5p and XM_010092821.1 for mno-

miRn202-1-3p, respectively, were also amplified and were cleaved at the same position found in

the degradome library (Fig 9E and 9F).

Discussion

High-throughput sequencing of RNA degradome in mulberry

Small RNAs play important and fundamental roles in response to adversity, especially in

drought stress response [19,52]. A huge number of miRNAs and siRNAs have been identified

Fig 7. The specific profiles of miRNA-target networks in DL trials. The specific profiles of DL miRNA-target network were

constructed using the target genes with P� 0.05. The nodes represent miRNAs or target genes, and the edges represent the

connection strength.

doi:10.1371/journal.pone.0172883.g007
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Fig 8. Expression analysis of 13 miRNA-mRNA pairs under drought stress with different processing time. The expression levels of

miRNAs and their mRNA targets were normalized to the level of β-actin. The x axis represents different miRNA (A) or mRNA targets (B), and

the y axis represents the relative expression level of miRNAs (A) or mRNA targets (B). The results are mean ± SD of the triplicates of three

biological replicates. Letter superscripts above bar indicate the significant difference of the changes between different drought stress time

with the level of P > 0.05 (shown as the same or no letter superscripts), 0.01 < P� 0.05 (shown as different small letter superscripts) and

P� 0.01 (shown as different capital letter superscripts). (A) Expression profile of miRNAs. (B) Expression profile of mRNA targets.

doi:10.1371/journal.pone.0172883.g008
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Fig 9. Validation of target genes cleaved by four conserved miRNAs and two novel miRNAs in DL. The

nucleotide on the target transcript from 3’ end indicated the cleavage site detected in the degradome. The red

line represents the cleaved target tags and is shown in red arrow in T-plots. The cleavage site is shown as a

bold letter (nucleotide) and absolute numbers of signature sequences are shown above the nucleotide with

the bold letter. The black arrow shows a site verified by gene-specific RLM 5’-RACE and the cleavage

frequency as determined at the indicated position is shown in parentheses. The two dots indicate matched
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by cloning and deep sequencing in higher plants [33,39,53,54]. It is the pivotal problem to find

target genes for interpretation of miRNA function. Arabidopsis, rice, maize and soybean

miRNA targets have been widely studied by high throughput sequencing [27,30,55,56]. In

mulberry, miRNA targets were previously investigated mainly via bioinformatics prediction

[3,39]. However, this method yields a high level of mismatches in miRNA:target pairing and is

laborious, time-consuming and costly for verification of every single predicted gene. There-

fore, only a few conserved miRNA targets have been experimentally validated in mulberry [3].

To overcome these shortages, degradome analysis was used in this study. In order to study the

regulation of gene expression during drought exposure, we constructed and sequenced two

distinct degradome libraries using mulberry leaves under drought stress conditions. Intrigu-

ingly, the clean reads from two libraries match perfectly with the mulberry chromosomes and

862, 439 annotated genomic loci were identified in this study (these data have been deposited

in the NCBI’s GEO with accession number GSE84889.). Thus, only a small fraction of the

sequences are small RNA targets, implying that the vast majority of them are other types of

RNA turnover products.

Importantly, our degradome data verified 50–80% of previously validated targets and pre-

dicted 15–30% of potential targets [30,31]. Six targets were validated employing RLM 5’-

RACE. These targets were found to be cleaved at the same position with different cleavage fre-

quency. Therefore, degradome sequencing, combining the advantages of high throughput

deep sequencing and an effective computational approach, served as an efficient strategy to

globally identify small RNA targets in plants. Previous studies have indicated that most

miRNA targets are cut in the CDS in plants, which is different from animals [28]. Consistent

with this finding, cleavage sites of all of the miRNAs were located in the CDS of the target

genes identified by degradome sequencing in mulberry. As described by Md Shamimuzzaman

[46], other genes may be potentially regulated by miRNA-guided cleavage in the UTR that

have not been detected in our alignment analyses. Our identification of many targets captured

by the degradome analysis was consistent with previous reports [5,14,27]. However, target

genes of several conserved miRNAs (miR394, miR447, miR482, and miR530) and certain

novel miRNAs (24.05%) were not detected through this degradome sequencing in mulberry.

This phenomenon may result from a low level of some conserved/known non-conserved target

genes of miRNAs. Alternatively, some miRNAs might inhibit target gene expression through

translational repression [57–59]. To obtain more information on miRNA targets, degradome

libraries from different tissues, organs, and developmental stages should be constructed and

integrated with the complete mulberry genome sequence.

Drought-responsive miRNAs and their targets in mulberry

Plant miRNAs play a role in the response to abiotic stress, such as drought, NaCl, and low tem-

perature [11,20,55]. The key to determining the function of a miRNA is identifying its target

genes. By deep degradome sequencing plants under drought stress, a total of 225 miRNAs

targeting 1323 transcripts were detected, including 373 target genes of 30 conserved miRNA

families and 950 target genes of 195 novel miRNAs. Under normal growth conditions, 229

RNA base pairs; one dot shows a GU mismatch whereas none dot represent other types of mismatch. (A)

XM_010092101.1, a category 2 target for mno-miR156d. (B) XM_010099828.1, a category 0 target for mno-

miR166f. (C) XM_010100088.1, a category 3 target for mno-miR399e. (D) XM_010095399.1, a category 1

target for mno-miR408c. (E) XM_010102397.1, a category 2 target for mno-miRn144-5p. (F)

XM_010092821.1, a category 1 target for mno-miRn202-1-3p.

doi:10.1371/journal.pone.0172883.g009
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miRNAs targeting 1399 transcripts were identified, including 409 target genes of 30 conserved

miRNA families and 990 target genes of 199 novel miRNAs.

Among the conserved miRNA families in DL, we found that mno-miR156, mno-miR172

and mno-miR396 had the highest number of targets, which is consistent with previous

research. Most of the mRNA target genes identified by degradome sequenceing were transcrip-

tion factors, including ARF, SPB, HD-ZIP, MYB, TCP, SCL, GRAS, SPL and so on. These TFs

played important roles in the response to abiotic stress in plants [30,34]. We found that

miR408c targeted oxysterol-binding (OSBP)-related proteins (ORPs) and dehydration response

element B (DREB), which are transcription factors involved in drought tolerance. Hajyzadeh

et al. [60] reported that upon drought stress treatment, chickpea plants overexpressing miR408

showed normal growth, while other samples struggled with severe symptoms of stress. Mean-

while, the miR408-overexpressed plants exhibited a shorter plant height compared to vector

control plants. Through Nr annotation, we also found that many target genes were important

enzymes, such as SK, enzyme E1 catalytic subunit, the type 2 a protein phosphatase, transaldo-

lase and CSP41A. These enzymes also play an important function during stress responses in

plants [29]. Our results revealed that miR172a negatively regulates XM_010106115.1, a tran-

script expressed to SK, a plant hormone signal transduction pathway. Interestingly, different

target genes were found in different tissues upon drought stress by Eldem et al. [24]. Of the

miRNAs differentially expressed in response to drought stress, 60 miRNAs were found to be tis-

sue-specific. 23 miRNAs were only expressed in leaf and 26 miRNAs were only expressed in

roots under drought stress. Eldem et al. also found that in leaves, miR156 expression was 3-fold

higher, but they did not detect a significant change in roots compared to control samples.

The miR5281 was only expressed in leaf with 4-fold upregulation; in contrast, miR415 was

downregulated 14-fold in the root but not expressed in the leaf. Target transcripts (137 for leaf

control, 133 for leaf stress, 148 for root control and 153 for root stress) generated significant

GO terms related to DNA binding and catalytic activities. In the present study, a number of

novel miRNAs were found to target genes that: they were annotated as tubulin gamma-1 chain,

pentatricopeptide repeat-containing protein, NEDD8-activating enzyme E1 catalytic subunit,

auxilin-related protein 2, arginine/serine-rich-splicing factor RSP31, polyamine transporter

At3g13620, AT-rich interactive domain-containing protein, mitochondrial import inner mem-

brane translocase subunit, and ATP binding protein.

According to the expression levels of 12 miRNAs and 11 of their targets by qRT-PCR, we

found that miR166f, miR166c, miR171a, miR319c, miR156d, miR172a, miRn202-1-3p and

miRn144-5p negatively regulated their targets. miR535 and miR4376, however, showed the

same trends in expression as their targets. miR156 and miR172 have been shown to regulate

their target genes (SBPs and AP2) predominantly by inhibiting the translation of target genes

in many plants [61,62]. miR171 has also been found to negatively regulate its target genes in A.

thaliana [63]. We found that with increases in the time of drought stress, the expression levels

of miRNAs appeared to change significantly, and the expression of many miRNAs increased

first, then decreased and riseincreased again.

Enrichment of transcription factors in miRNA targets

In plants, miRNAs target the genes involved in development and stress response, particularly

TFs, metabolic transporters, and signal transduction factors. These genes can unravel a new

dimension of the miRNA regulatory network [64]. Our analysis revealed that the majority of

these target genes, classified into 51 different annotation categories (Fig 5), were conserved

among species [46,65,66]. The target genes are obviously enriched in TFs and transcription

regulatory activity, such as NAC, MYB, ARF, SPL, SCL, HD-ZIP, APS, NF-Y subunits,
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MADS-box, GRAS and TCP (S6 and S7 Tables). This phenomenon was similar to that found

in Arabidopsis, rice, soybean, and maize [29,30,34]. A number of the TFs are known to regulate

diverse aspects of plant growth, development and responses to environmental changes. For

example, MYB family members, such as MYB33 and MYB101, which are targeted by miR159

in rice and soybean, appear to play an important role in the response to abscisic acid (ABA)

during seedling stress responses, suggesting that ABA-induced accumulation of miR159 is a

homeostatic mechanism to direct MYB33 and MYB101 transcript degradation to desensitize

hormone signaling during seedling stress responses. [46,67]. In this study, we detected a num-

ber of MYB family TFs regulated by mno-miR159, mno-miR858 and mno-miRn148-5p.

miR159 expression is regulated by at least two different hormones, GA and ABA, and regulates

the abundance of MYB mRNAs in response to drought stress [67]. Another important family

of TFs, the HD-ZIP TF family, determines adaxial/upper cell fate [68]. Our findings indicate

that the expression of miR166f increased significantly and its target gene XM_010100268.1,

a HD-ZIP TF, was down-regulated during drought stress. According to GO analysis,

XM_010100268.1 participates in biological regulation, metabolic process and nucleic acid

binding transcription factor activity. NAC domain transcriptional regulator gene was the tar-

get of miR394 and miR482 [60], implying that NAC domain transcriptional regulators might

also be regulated by other miRNAs. SPL TFs, which are unique to plants, are involved in

embryonic development, plastochron length, leaf development, developmental phase transi-

tions, flower and fruit development, fertility, apical dominance, anthocyanin biosynthesis, gib-

berellin response, light signaling and copper homeostasis. The miR156 family was found to

target SPL in this study, consistent with a study involving cotton [60]. Auxin, an important

phytohormone, acts as a key player in plant development in higher plants [69]. As transducers

of auxin signaling, ARF and TIR play vital roles in plant development under drought stress

conditions, including shoot, root and flower formation [70–73]. We also identified miR160,

miR172 and some novel miRNAs involved in auxin signaling. NF-Y subunits are known to

control a variety of important agronomical traits, including drought tolerance, flowering time,

and seed development [74]. In Arabidopsis, overexpression of a miR169-resistant NF-YA5

transgene significantly improves drought resistance through the ABA-dependent pathway by

promoting stomatal closure under drought stress [75]. In this study, we discovered two novel

miRNAs, miRn71-3p and miRn223-5p, that targeted NF-Y. Four MADS-box genes have pre-

viously been validated as targets for miR444 variants in rice and they are regulated by several

miR444 variants [29]. In mulberry, we found that miR169 targets the MADS-box.

Regulation networks of miRNAs and targets during drought stress in

mulberry

The rapid discovery of miRNAs and experimental evidence for miRNA interactions has ush-

ered in a new era of miRNA research that focuses on networks other than individual miRNA,

interactions. The conservation of resistance to adverse environments in plants can be assessed

by the summation of gene expression and regulation network connectivity, which can also

provide a new avenue for understanding molecular mechanisms and distinguishing functional

processes in resistance progression. Here, the consecutive miRNA target networks of each

library were constructed. The network structure consists of the basic elements (genes and miR-

NAs, named nodes) and the connections representing miRNA-target interactions (named

edges). After construction of the network, we found that the topological profiles are more simi-

lar to a ‘Medusa’model [76], which consists of a regulatory core of hub nodes. This finding

indicates that the kernel nodes of the network are determinants in the gene expression levels

[40,77].
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Generally, miRNA inhibits translation or induces mRNA degradation by binding to the

CDS of target mRNAs in plants. As shown in the results, from the overlapped network and the

independent network of miRNA-targets in CL and DL groups based on the degradome data

(Figs 6 and 7), we identified differential miRNAs and their targets that are involved in drought

stress. In degradom, 838 miRNA-mRNA pairs (63.34%), consisting of 272 miRNAs and 732

genes were found only in DL. The cluster results of the network showed that a miRNA can be

applied to different mRNAs and a mRNA can also be regulated by a number of different miR-

NAs. Conversely, the changes in gene expression induced by a miRNA can also act to regulate

this that miRNA or other miRNAs. This means that the interactions of miRNAs and mRNAs

are not one-to-one, but can form interaction networks with cross regulation. Because of the

cross regulation of target genes by miRNAs, small changes in the expression levels of miRNAs

or mutations in the pairing sequences will produce serious consequences. This is similar to the

cascade amplification effect in the signal transduction process [78]. Butz et al. found that the

effect of miRNA on RCC has ‘divergent’ properties whereby the same miRNA targets multiple

genes. It is also ‘convergent’ in nature, whereby multiple miRNAs have augmented effects on

the same target genes [43]. Hua et al. [79] found that co-transfection of miR-20a and miR-

361 had cumulative effects on inhibition of VEGF expression. Wu et al. [80] found that 28

miRNAs can significantly inhibit the expression of p21Cip1/Waf1. Xu et al. [78] constructed

the miRNA functional networks (miRFNs) of soybean and found that miRFNs of soybean

exhibit a scale-free, small world and modular architecture, with their degrees fit best to power-

law and exponential distribution.

Among the miRNA-mRNA interaction pairs, the most important drought responsive target

genes were TFs as described above. According to data analysis of miRNA target genes predicted

by PicTar, Cui et al. [81] and Boyer et al. [82] also found that miRNAs are more inclined to reg-

ulate genes regulated by TFs. Here, we obtained 43 kernel miRNAs and 53 target genes from the

network, which are highly correlated with the drought resistance in mulberry. Of the miRNA-

mRNA pairs showing significant relationships (P� 0.05), the mno-miR156 family conferred

the highest number of targets of the 17 (45.95%) genes (Table 3), and one miR156-mRNA pair

was found in CL (Table 2). In rice, the miR164-targeted NAC genes are known to be negative

regulators of drought tolerance [83]. Our study revealed that miR156 targeted two target genes

(XM_010104767.1 and XM_010092557.1), which belong to the NAC TFs family. Our study

also demonstrated that miR156 can target SPL TF genes (miR156 for XM_010090407.1 and

XM_010092348.1) and can regulate tolerance to recurring environmental stress as reported by

Wang et al. [66] and Stief et al. [84]. These findings indicate that the miR156 family and their

target genes may also play important roles in the response to drought stress in mulberry.

Conclusions

This is the first comprehensive identification of drought responsive miRNAs and their targets

in mulberry by degradome sequencing. This study provides a framework for further under-

standing the molecular mechanisms of resistance to drought in mulberry. Further experiments

on the identified target genes are necessary to explore potential mechanisms of abiotic stress

regulation in mulberry.
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