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Abstract

In this paper, we develop a framework to model and analyze systems that are subject to
dependent, competing degradation processes and random shocks. The degradation pro-
cesses are described by stochastic differential equations, whereas transitions between the
system discrete states are triggered by random shocks. The modeling is, then, based on
Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state
determined by stochastic differential equations and a discrete state driven by stochastic
transitions and reset maps. A set of differential equations are derived to characterize the
conditional moments of the state variables. System reliability and its lower bounds are esti-
mated from these conditional moments, using the First Order Second Moment (FOSM)
method and Markov inequality, respectively. The developed framework is applied to model
three dependent failure processes from literature and a comparison is made to Monte Carlo
simulations. The results demonstrate that the developed framework is able to yield an accu-
rate estimation of reliability with less computational costs compared to traditional Monte
Carlo-based methods.

Introduction

Failure of industrial components, systems and products may be caused by multiple failure pro-
cesses, e.g. wear, corrosion, erosion, creep, fatigue, etc. [1]. In general, the failure processes are
categorized as degradation processes (or soft failures) and catastrophic failure processes (or
hard failures) [2]. Soft failure is caused by continuous degradation and is often modeled by a
continuous-state random process, e.g., Wiener process [3,4], Gamma process [5-7], inverse
Gaussian process [8-10], continuous-time semi Markov process [11], etc. Hard failure is
caused by traumatic shocks in various patterns and is often modeled by a discrete-state ran-
dom process, e.g., Homogeneous Poisson Process (HPP) [11-13], Nonhomogeneous Poisson
Process (NHPP) [14-16], etc. Often, complex dependencies exist among the failure processes
[17]. For example, [18] presents experimental data to show that erosion and corrosion can
enhance each other and therefore accelerate the failure process. Also, it is observed in [19] that
the dependency between creep and fatigue severely reduces the Time-To-Failure (TTF) of the
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specimens that are exposed to high temperatures and heavy loads. To accurately describe the
failure behavior affected by multiple failure processes, the possible dependencies among the
failure processes need to be properly addressed.

In literature, various methods have been developed to model the dependencies among deg-
radation processes and random shocks. Peng et al. [20] develop a dependency model where
the arrived shocks lead to an abrupt increase of the degradation process. Wang and Pham [21]
investigate systems subject to dependent competing risk, which suffer failures due to degrada-
tions and random shocks: the model is proposed of shocks that can cause immediate failure of
the system, with a time-dependent probability p(t), or can increase the degradation level with
probability 1-p(#). Cha and Finklstein [22] assume that a shock can lead to a hard failure with
probability p(1), or can increase the degradation rate with probability 1-p(#). Jiang et al. [23]
develop a model that considers that the threshold of hard failures can be shifted by random
shocks. Rafiee et al. [24] consider that the degradation rate is increased by a series of shocks.
Jiang et al. [1] categorize shocks into different shock zones based on their magnitudes and con-
sider that shocks in different zones have different effects on the degradation process. Bagdona-
vicius et al. [25], Fan et al. [26] and Ye et al. [27] develop models that consider that the
probability of hard failures is increased as the degradation process progresses. Huynh et al.
[14,15] investigate maintenance strategies for a dependence model, where the intensity of the
NHPP for random shock is a piecewise function of the degradation magnitude. Fan et al. [16]
present a reliability model for sliding spools considering that the intensity of the NHPP
describing the random shock process is a linear function of the degradation level.

For models that consider the dependencies between degradation and random shock pro-
cesses, like these above, it is often too complicated, if not intractable, to evaluate system reli-
ability analytically. Then, simulation methods, such as Monte Carlo methods [28], are used,
often with limitations due to heavy computational burden. In this respect, Stochastic Hybrid
Systems (SHS) [29] offer a new way to model the stochastic behavior of systems that involve
both discrete and continuous states [30-33]. SHS describe the system’s behavior by a set of dif-
ferential equations and therefore, whose solution avoids the computational burdens of simula-
tion methods. Various forms of SHS exist in literature (see Pola et al. [29] for a comparison).
In this paper, we adopt the models recently developed by Hespanha in [34-36], which is simi-
lar to the Piecewise Deterministic Markov Process (PDMP) [37] but differs from it in that the
continuous state variable follow Stochastic Differential Equations (SDEs), rather than Ordi-
nary differential equations (ODEs). To the best of our knowledge, it is the first attempt to use
SHS for modeling dependent failure processes.

It should be mentioned that SHS is similar to Stochastic Hybrid Automata (SHA), which is
also applied in Dynamic Reliability (DR) assessment or Dynamic Probabilistic Risk Assess-
ment (DPRA) [38,39]. Both methods model dynamic hybrid system behaviors that involve sto-
chastic factors. SHA introduces less assumptions than SHS and resorts to Monte Carlo
simulation for the calculations [40,41]; SHS, on the other hand, is able to describe the hybrid
dynamics analytically or semi-analytically, by solving a set of Differential Equations (DEs) on
the expense of introducing more assumptions [36]. The computational cost of SHS is, in gen-
eral, less than that of SHA, but on the expense of more assumptions in particular with respect
to the degradation models, whereby epistemic uncertainty (specifically model uncertainty)
[42-44] is introduced. When applying the SHS in practice, then, care should be taken to ensure
that the assumptions are consistent with the actual situation, in particular in case of systems
characterized by complex and numerous dependencies among physical processes and failure
behaviors. In this paper, we choose SHS because the type of dependent degradation and shock
processes allows for modeling by SHS and, in general, SHS has a better computational perfor-
mance than SHA.
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Methods
SHS model

The state space of a SHS model is a combination of discrete and continuous states. Let us
denote the discrete states by g(1), () €Q, where Q is a finite set containing all the possible dis-
crete modes of the system. The continuous states are denoted by x(#), x()ER’. A SHS model is
defined based on the following assumptions [34-36]:

1. The evolution of the continuous states is governed by a set of SDEs:
dx(t) = f(q(t), x(t))dt + g(q(t), x(¢))dw,, (1)

where w: R — R* is a k-dimensional Wiener process; f: QxR' — R'and g: QxR — R™¥,
respectively.

2. Atany time t, if the system is in state (q(¢), x(¢)), it undergoes a transition with a rate 1,(q(%),
x(0):QxR' — R*, i, 7 €Q. That is, the probability that the system undergoes a transition
from state i to state j within the interval [¢, ¢ + Af) is:

/lij(q(t),x(t))At + o(At), (2)

3. Whenever the system undergoes a state transition from state 7 to state j, it instantaneously
applies the map ¢;;(q(#), x(¢)) to the current values of g(t) and x(¢), so that their values are
reset:

(q(2),x(t)) = ¢;(q(t"), x(t")), (3)
where the notation a(t”) represents the left-hand limit of the function a at time ¢.

Fig 1 depicts the state transition and evolution of the SHS.

SHS formulism for dependent failure processes

The modeling framework for dependent failure processes involves three elements, i.e., a model
for the degradation process, a model for the shock process and a model for the dependency
between the two processes. The following assumptions are made in order to model a depen-
dent failure process in the framework of SHS:

Assumption (1). The degradation processes are characterized by x(t) = (x;(1), xx(), . . .,
x,(t))€R’. The elements in x(t), x;(£), 1 <i<l, are performance parameters for the

Ay (g.x.t)dt 2oy (g, x,1)dt o (qox,1)dt
x4 x> 4,

— "

— A(gxnd x4,

Fig 1. State-transition diagram for the SHS model.
doi:10.1371/journal.pone.0172680.9001
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degradation processes and are independent from one another. Soft failure occurs when-
ever

die {1727"'al}axi(t) >Hia (4)
where H; is the failure threshold for the performance parameter x;(¢).

Assumption (2). The system has n potential health states, i.e., g(f)€Q where g(¢) is a discrete-
state variable that quantifies the system’s health state at time £, and Q ={1, 2, .. ., n} is a set
containing all the possible system states. When g(t) = n, a hard failure occurs.

Assumption (3). Transitions between system health states are triggered by the arrival of ran-
dom shocks with the transition rate 1;;(q(¢), x(¢)), i, j € Q where the probability that the sys-
tem jumps from state i to state j in the interval [, t + Af) is given by Eq (2).

Assumption (4). Between the transitions, the degradation of x(¢) is characterized by the SDEs
in Eq (1) for q(t) = 1, 2, - - -, n — 1. When ¢(¢) takes different values, the form of f{-) and g(-)
can be changed to reflect the dependency behavior. When g(t) = n, which indicates that the
system fails due to hard failure, we impose that x(t) = 0.

Assumption (5). An arrival random shock resets the current values of q(f) and x(#), using the
reset map defined in Eq (3).

Assumption (6). System failure is caused by both soft and hard failures, whichever occurs first.

Given a dependent failure process, the following steps show how to model it in the frame-
work of SHS:

Step 1: Modeling degradation. In this step, the performance parameters x(t) are identified to
characterize the degradation processes. For the performance parameters, the SDEs in Eq
(1) are developed to describe their degradation, considering both deterministic and sto-
chastic characteristics. The deterministic characteristics are often described based on the
physical knowledge on the degradation processes (e.g., using the Physics-of-Failure
(PoF) models [19]), while the stochastic characteristics are modeled by a Wiener process,
as shown in Eq (1).

Step 2: Modeling random shocks. In SHS, random shocks are considered as transitions among
the system health states. The transition rates, 4,(q(t), x(t)), i, j € Q, need to be determined
based on historical data or expert judgments.

Step 3: Modeling dependencies. Finally, the dependencies between the degradation processes
and random shocks need to be considered. The dependencies can be modeled in various
ways in SHS. For instance, by resetting the values for x(t), the reset map in Eq (3) can cap-
ture the influence of the random shock on the degradation process. Further, the functions
f, gand even A itself, as shown in Fig 1, are dependent on the current values of x(¢) and g(¢),
which provides a versatile way to model the dependencies.

Note that in order to make sure that the developed SHS model is solvable in case that trun-
cations techniques [36] are needed, for example Case 3 in this paper, the f;, gi, 4;, ¢ i, j € Q. in
the SHS model have to be polynomial functions of x().

Conditional moments estimation

In this section, we derive the conditional expectations for the continuous state variables, i.e.,
E[x(t)|q(t) =i, peN,i€ Q,j=1,2,---,1, where x,(f) represent the jth element of x(t).
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The conditional expectations will be used in the next section for reliability analysis. Let us
define a test function to be

) X" gq=i
W,‘ (%X) = K (5)
0 qg#i
where m: = (my, ms, . .., m), meN’, and x™ := X xy? - - - x)", and let the m-order conditional
moment of the continuous state x be
w"(6) =E" (q,%)]
(6)

— E[x(0)lq(t) = ] - Pr{q(t) = i}.

For a general test function y(q(t), x()), y: QxR' SR, which is twice continuously differen-
tiable with respect to x, the evolution of its expected value is governed by Dynkin’s formula
[36]:

L Bl (q(e), x(1)), )

where (Ly)(g, x) is the extended generator of SHS and (g, x)€QxR/, (Ly)(g, x) is given by

) g,%) = 28D g )

+%tmce (%g(q,x)g(q, x)') (8)

+> 7500 (v (00,9 — v(a.9),

ijeQ

where Oy / Ox and 9°y / x> denote the gradient and Hessian matrix of y(g,x) with respect to
x, respectively; trace(A) is the trace of the matrix A, i.e., the sum of elements on its main
diagonal.

Substituting Eq (5) into Eq (7), we get a group of differential equations with respect to
w™(t),i e Qme N

du" (1) = E[L(¥}")(q(t), x(1))] - dt. ©)
The evolution of " (t) can be depicted by solving Eq (9). The conditional moments can,
then, be obtained by assigning proper values for m: if we let m = (0, 0, .. ., 0) we have
W08 = Pr{q(e) = i} € Q. (10)
If we let

m; = p, ifj=kke{l,2,--- I},

m_[m“m”'”’m’]:{mj:o, ifj # k,

where m; denotes the jth element in m and p is a natural number, we have
" (1) = Elx{(1)lq(t) = i] - Pr{q(r) = i},i € Q. (11)

The conditional expectations, E[x] (t)|q(t) = i], p e N,i € Q,j =1,2,---,, can, then, be
calculated by combining Eqs (10) and (11).
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Reliability analysis
From Assumption 6, system reliability can be expressed as:

R(t) = Pr(q(t) < nyx,(¢) < Hy,x,(¢) < Hy,- -, x,(t) < H)). (12)

From the law of total probability, we have
R(t) =Pr(q(t) < n,x,(t) < Hy,x,(t) < Hy,- -+, x(t) < H))

= S prlg(t) = i) Prix(t) < Hyxlt) < Hyoox(0) < Hla) =i). )

i=1

Since we assume that the degradation processes are independent from one another, Eq (13)
becomes

Z(HPr( ) < Hq(t) = ))-Pr<q<t>=i> (14)

i=1

In Eq (14), Pr(g(t) = i) can be calculated by Eq (10), Pr(x,(t) < Hj|q(t) = i), i=1,2,---,n—1,
j=1,2,--+,lcan, instead, be approximated using the First Order Second Moment (FOSM)
method [45] since we have the conditional moments for x;(f) Let , |, (t)and o = .(t) denote

the expected value and standard deviation of the random variable x;(¢) conditioned on g = i,
respectively. Then, s, .(t) and oy ,—i(t) can be calculated by

;“i(m*lj)(t) _ :ui(m*.j)(t)
Pr(g(t) =) %)

) = [E (507100 =) — (B(s(0at0) = )’ (15)

2

= - ief{l,2,...,n—1},
: ) { }

Rgoei(t) = Elx(0)lq(t) = i] =

where m*” and m™*” are given by

me = [m,my,-,m)m, =1, ifk=jm =0,if k #j,

. (16)
m™ =[m,my, - ,m):m, =2 if k=j;m =0, if k #j.
Based on FOSM [45], Pr(x;(t) < Hj|q(t) = i) can be approximated by
H :ux\q r( )
Pr(x(t Hlg(t) =i| =~ ———|. 17
t(x(0) < Ha(t) = i) ( 0 (17)

Substituting Eq (17) into Eq (14), the reliability of the system is approximated by

R(f) ~ R () = nz (00.-.0) (H(D< :“xzt):( )>>’ (18)

i=1

where i, (1), 0 j‘q:i(t) are calculated by Eq (15).
The accuracy of the approximation by FOSM relies on the normality assumption: the ran-
dom variables x(1)|q(t) = i,i€1,2,...,n—1,j=1,2,- -, lare normally distributed with mean

value pt, .(t) and standard dev1at10n T lg .(#). In practice, the assumption does not always
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hold. Therefore, we also present an estimation method for the lower bound of the system reli-
ability, using Markov inequality.
According to Markov inequality [46], if X is a nonnegative random variable and a>0, then
E(X)
Pt

Pr(X >a) <

(19)
Using Eq (19), we obtain

E(x(0)lg = i)

Pr(xj(t)ZHj|q:i)§ L je{l2. L dhie{l2,. -1} (20)
]

From Eqs (14) and (20), the lower bound of system reliability can, then, be derived:

R() = iPr(q(t) =i)- HPr(xj(t) < Hlq(t) = i)

!

- ipr(q(t) =i)- Hu — pr(x,.(t) > Hq(t) = i)]
. 1 E(x,(t)|q(t) =i
Z ZPr(q(t) =i)-[[|1 —w on

=1 J

net ) ]
_ 0,0,..,0 K (t)
=S 1| -2

i=1 =1 J

n—1
0,0y Hi
DRSS STLEION | |-ty
i=1 j

=1 J

-

1
—
3
%
<

~—

—
~

~—

1

-

where m*” has the same meaning as in Eq (16).

Results and discussion
Case 1

System description. The first case study to demonstrate the developed framework is
adapted from [20]. A MEMS device is subject to two dependent failure processes, i.e., soft fail-
ures caused by wear and debris from shock loads, and hard failures due to spring fracture
caused by shock loads [20]. The soft failure is modeled by a continuous degradation process
and the hard failure is modeled by a random shock process. Dependence exists among the two
processes: the arrival of a shock brings an additional contribution to the degradation process.
Failures occur whenever one of the following two events happens:

« the degradation process reaches its threshold, denoted by H;

« a shock whose magnitude exceeds a critical level, denoted by D, occurs.
Additional assumptions include:

1. The continuous degradation process follows an SDE.

dx(t) = pydt + a,dw,, x(t) € R, (22)
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where w; € R is a standard Wiener process, g, 05 are constants and the initial degradation
level at t = 0 is null.

2. The random shock process is a HPP with intensity 4.

3. The magnitudes of shock loads, denoted by W, are i.i.d. random variables following a nor-
mal distribution, W; ~ N (puy, 0%,).

4. The arrival of each shock brings a degradation increment d, which is a random variable fol-
lowing a normal distribution d ~ N (1, 07).

SHS formulation. A SHS model is constructed in Fig 2 to describe the behavior of the sys-
tem. The system has two health states, g(f)€{1,2}. When g(#) = 1, the system is subject to the
degradation process according to Eq (22). When g(¢) = 2, the system fails due to hard failure
and the degradation level is set to zero, i.e. x(t) = 0.

As shown in Fig 2, the initial health state of the system is state 1. The transition rates and
reset maps of the SHS are defined as follows:

q,(D_'“W> =1,
Z01(q) = Tw

0 v (23)
J(q) = <1®<D;7WMW>) Aogq=1,

0 q=2.

é1,(q,x) := (1,x + d), ”

¢12(q7x) = (27 O)'

In Eq (24)), the reset map ¢;,(g,x) models the dependency in Assumption Eq (4).

Jl

x—>x+d

x—0

Fig 2. State-transition diagram of the SHS for case 1.

doi:10.1371/journal.pone.0172680.9002

PLOS ONE | DOI:10.1371/journal.pone.0172680 February 23,2017 8/22



@° PLOS | ONE

A stochastic hybrid systems based framework for modeling dependent failure processes

Reliability analysis. We define the test functions /" (¢, x),i € {1,2},m € R, to be:

. _ x" gq=1
¥ (q,x) . .
q7#1, (25)

1 g=2
gl))(qvx):{
0 g#2.

Since x(t) = 0 when ¢(t) = 2, we only consider the 0-order conditional moment of the degra-

dation at state 2, i.e. /" (g, x). By substituting Eqs (22), (23) and (24) into Eq (8), the extended
generator of the SHS model is:

o™ (q,x) N %fo Y™ (g,x)

(Llpl)(m)(%x) = lu/f ax ax2
A (@) (9 (g, %) +d -9 (g,x)) " (26)
= (4n(q) + 244y Q))'/lgm)(% x),

(L) (g.%) = An(q) ¥ (g,%).

According to Eqgs (7) and (26), the differential equations governing the conditional

moments are:

d m (m—1) 1
aﬂl (t)= Hpgmiply () +§

+ Ay (Z;U <r:>ﬂgnqk)(t)E(dk>> - ()“11 + /1,12)/,(5'”)(1')7 (27)

d
S (0) = 2ot (1),

Fim(m — (1)

where E(d) = u,, E(d*) = pj + o5. From Eq (27), we can obtain the following set of differen-

tial equations:

i i o o[
/1(11) = ty + Ay iy —Ay 0 ,u(ll) . (28)
ll(12) 0;27 + (N?ﬁ + ‘73) 2.“/; + 2401~ /l(12>

Since the system must belong to one of the two health modes, it is obvious that

W (0) + (1) = 1.

9/22
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Table 1. Parameter values for case 1.

Parameters Value

H 0.00125um®

Up 8.4823x10"°um®
Og 6.0016x10""%um®
Ug 1x1074um?®

Oq4 2x107Sum®

D 1.5GPa

A 5x1072

Uw 1.2GPa

ow 0.2GPa

doi:10.1371/journal.pone.0172680.t001

From Eqs (18) and (21), the estimated system reliability R,(f) and the lower bound R/(t) are
calculated by

H— " (8)/u” (1)

RO + (0 o)

; (30)

1)

Rt) =l (1) [1 - “T“’] , G

where the conditional moments u\” (), u" (¢), 1\ (t) are obtained by solving the differential
equations in Eqs (28) and (29).

Numerical calculation. A numerical example is conducted with the parameters in
Table 1, taken from [20]. To solve the differential equations in Eqs (28) and (29), the solver
based on Runge Kutta method in Matlab R2013a is used. In [20], the original model is simu-
lated using Monte Carlo methods to analyze system reliability. A comparison is made between
the results obtained by the developed methods in this paper and those obtained by Monte
Carlo simulation. The sample size of the Monte Carlo simulation is 10* In Fig 3(A)-3(C), the
moments with order 0, 1 and 2 are compared with simulation results. In Fig 3(D), the esti-
mated reliability and its lower bound are compared to the results of Monte Carlo simulation.

The comparisons show that the moments are accurately predicted by the SHS model. The
estimated reliability by FOSM is consistent with the result by Monte Carlo simulation. The
estimated lower bound provides a relatively conservative reliability estimation. The running
time of Monte Carlo simulation is 5788.2 times more than that of the developed SHS-based
approach.

Case 2

System description. The second case study to demonstrate the developed framework is
adapted from [24]. A MEMS device is subject to two dependent failure processes, i.e., soft fail-
ures and hard failures. The soft failure is modeled by a continuous degradation process and
the hard failure is modeled by a random shock process. Dependences between the two failure
processes exist in the following two aspects: (1) the arrival of each shock brings a degradation
increment; (2) the degradation rate increases when the system undergoes a series of shocks.
The second type of dependence has been investigated based on four different shock models in
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Fig 3. Comparison of results for case 1. (A) Comparison on the order 0 moment: Pr{q # 2} = 1" (t). (B)
Comparison on the order 1 moment: E(x(t)) = 1" (t) + u{"(t). (C) Comparison on the order 2 moment:
E(e(t) = uP(t) + 1 (t). (D) Comparison on the estimated reliability and lower bound for reliability.

doi:10.1371/journal.pone.0172680.9003

[24]: extreme shock, 6 shock, m shock, and run shock models. In this section, we apply our
framework by considering the first dependence and the second dependence triggered by the
extreme shock model. Failure occurs whenever one of the following two events happens:

o the degradation process reaches its threshold, denoted by H;

« a shock whose magnitude exceeds a critical level, denoted by D;, occurs.
Additional assumptions include:

1. Random shocks arrive according to a HPP with intensity A.

2. The magnitudes of shock loads, denoted by W}, are i.i.d. random variables following a nor-
mal distribution W; ~ N (., 63,).

3. The arrival of a shock whose magnitude is less than Dy would bring a degradation incre-
ment d, which is a random variable following a normal distribution d ~ N (i, 07).

4. The arrival of a shock whose magnitude belongs to [Dy, D;) would trigger the change of
degradation rate. Let J denote the total number of arrival shocks when the trigger shock
occurs, and Tj denote the time when the Jth shock arrives. Then, the continuous degrada-
tion process is modeled by the following SDEs,

Wy dt + o5 dw,  for t< T

dx(t) = ,X
Wy, dt + o5 dw,  for t>T,

) € R, (32)
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A, dt A, dt

x> x+d x—x+d

Fig 4. State-transition diagram for the SHS in case 2.
doi:10.1371/journal.pone.0172680.9004

where w,€R is a standard Wiener process, u BsHB OB OB s Hp > Hp areconstants, and
1 2 1 2 2 1

the initial degradation level at ¢ = 0 is null.

SHS formulation. The SHS concerning this case is described by the state-transition dia-
gram in Fig 4. The system has three health states, g(t)€{1,2,3} When g(t) = 1, the system is sub-
ject to the degradation at a low-level degradation rate. By contrast, when g() = 2, the system
degrades at a high-level degradation rate. System’s degradation under the first two health states
evolves according to the following SDEs:

Uy dt + o, dw i t)=1
dx(t :{ n nwe 4l x(t) €R. (33)

fy,dt + oy dw, if q(t) =2 ’

When ¢g(t) = 3, the system fails due to a hard failure and the degradation level is set to zero,
ie . x(t)=0.

As shown in Fig 4, the initial health state of the system is state 1. The transition rates and
reset maps of the SHS are defined as follows:

PLOS ONE | DOI:10.1371/journal.pone.0172680 February 23,2017 12/22
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Pn(q,x) = (1,x+d),

P15(q, %) = (2,x+ d),

$13(9,%) == (3,0), (35)
$(q,%) = (2,x + d),

$25(q, %) = (3,0),

where Py, P,, P; are calculated by
D, — D, — D, — D, —
== —tw) p (2 —fw) (o Hw) p 1 _o(Ew) (3
: o

Oy Oy

In Eq (35), the reset maps ¢;1(g,X),¢22(¢,x), model the dependency in assumption Eq (3)
and the change of system degradation rate along with the transition from health state g = 1 to
health state g = 2 model the dependency in assumption Eq (4).

Reliability analysis. We define the test functions /" (¢, x),i € {1,2,3},m € R, to be:

0 q#1,
x"q=2,
v (g,x) = { (37)
0 q#2,
1 gq=3,
vy (q,x) = {
0 g#3.

Since x(t) = 0 when g() = 3, we only consider the 0-order conditional moment of the degra-
dation at state 3, i.e. l//f,o)(q, x). By substituting Eqs (33), (34) and (35) into Eq (8), the extended
generator of the SHS is:

- W' (g,x) 1 , '™ (q,x (m)
(W) " g, =y, WEX L TVEGX) 5 y00g,0) 1y (g,)

2
= (A + 4+ ;“13)‘p§m)(Q>x)a
1

. oyt , 9y ’ -
()" (q,5) =, P8y 2 TVEEX) G 400,20+ (g,) "

(m) m
+ Ais (‘MU(% x)+d- ‘pio)(%x)) = (Agy + Ayy) é )(va)v
(Ll//.‘i)(o)(q?x) = Ay '//(1())(% X) + Aoy - lp;(])(q?x)'

38)

PLOS ONE | DOI:10.1371/journal.pone.0172680 February 23,2017 13/22



@° PLOS | ONE

A stochastic hybrid systems based framework for modeling dependent failure processes

According to Eqs (7) and (38), the differential equations governing the conditional
moments are:

d o - 1 "
" (0) = () + S0 m(m — 1) (1)

m
- (Zko < p )“WWOE(d")) (A 2 (0),
L 0) = iy ) + 2t mom — 020+ 2, (37 [ )i o) ) (29)
ate Hp, My 2% Ha 22 0 L Ha

+ Ay <Z:l0 (m ) /1(1m7k) (t)E(dk)> - (;“22 + )“23):“(2m) (t)a
- k
d o

Eﬂfi (t) = ;‘13/1(10)(0 + /123.“20)(1‘),

where E(d) = u,, E(d*) = pj + ¢5. From Eq (39), we can obtain the following set of differen-
tial equations:

Sy 0 0 0 0 0 1 1u0T
YN — 0 0 0 0 ||©
fy, + Ayl 0 Dy — Dy 0 0 0 || o)
) .(40
Aol Mg, + Al vap Ay 0 0 !
o5+ (15 +03) 0 2, + 20,1y 0 —hp—hy 0 ot
Ao (ﬂj + GZ) ‘7}_)32 + Ay (/‘3 + 03) 24151 2:“/i2 + 2050My s — Ay _,u(;) J
Since the system must belong to one of the three health modes, it is clear that
W (1) + " (1) + 5" (1) = 1. (41)

From Eqs (18) and (21), the estimated system reliability R,(t) and the lower boundary R/(t)
are calculated by

R(f) = 22:/150)(1‘) @ \/ H— " (6) /1 (t) 7 (42)

W20/ + (1 0/ 1))

R(t) = ﬁju% : [1 - “i}”] . (43)

where the conditional moments 1" (¢), ui" (), 1\ (£), 1l (£), 1" (¢), 1 (¢) are obtained by
solving the differential Eqs (40) and (41).

Numerical calculation. A numerical example is conducted using the parameters in
Table 2, taken from [24]. To solve the differential Eqs (40) and (41), the solver based on Runge
Kutta method in Matlab R2013a is used. In [24], the original model is simulated by Monte
Carlo to compute system reliability. A comparison is made between the results obtained by the
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Table 2. Parameter values for case 2.

Parameters Value

H 0.00125un®

1y, 8.4823x107%um®
Hy, 10.9646x107%um®
N 6.0016x10™"°um®
n 6.0846x107"°um®
U 1x10™*um®

Oy 2x1075um®

D, 1.5GPa

Do 1.2GPa

A 5x1073

Uw 1.2GPa

ow 0.2GPa

doi:10.1371/journal.pone.0172680.t002

developed methods in this paper and those obtained by Monte Carlo simulation. The sample
size of the Monte Carlo simulation is 10*. In Fig 5(A)-5(C), the moments with order 0,1 and 2
are compared with the simulation results. In Fig 5(D), the estimated reliability and its lower
bound are compared to the results of Monte Carlo simulation.
The comparisons show that the moments are accurately predicted by the SHS model. The
estimated reliability by FOSM is consistent with the result by Monte Carlo simulation. The

P(no hard failure)
o
S
o
/4

Monte Carlo Simulation | |
| = — — Analytic Solution 1

- I
= | = = = Analytic Solution
0 02 04 06 08 1 12 14 16

18

Morte Carlo ému\.llnn‘

>

10°

wlation |

04}
02t / Monte Carlo Simx
— — = Analytic Solution

Fig 5. Comparison of results obtained by the SHS model and those by Monte Carlo simulation for

case 2. (A) Comparison on the order 0 moment: Pr{q # 3} = 1" (t) + u{"(t). (B) Comparison on the order 1
moment: E(x(t)) = 1" (t) + 1" (t) + 1" (). (C) Comparison on the order 2 moment:
E((t)) = uP(t) + uf (t) + 17 (t). (D) Comparison on the estimated reliability and lower bound for reliability.

doi:10.1371/journal.pone.0172680.9005
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estimated lower bound provides a relatively conservative reliability estimation. Besides, the
running time of Monte Carlo simulation is 1203.8 times more than that of the developed SHS-
based approach.

Case 3

System descriptions. The third case study to demonstrate the developed framework is
adapted from [25]. The failure behavior of bus tires is modeled by two dependent failure pro-
cesses, i.e. soft failures caused by wear and hard failures of seven modes due to traumatic
shocks. The soft failure is modeled by a continuous degradation process and the hard failure is
modeled by a random shock process. Dependence exists among the two processes, that is, the
probability that a traumatic shock occurs depends on the degradation level. Failures occur
whenever one of the following two events happens:

« the degradation process reaches its threshold, denoted by H;
« a traumatic shock following a Cox process [47] with intensity A(x) occurs.
Additional assumptions include:

1. The continuous degradation process is modeled by an SDE.

dx(t) = pydt + oydw, x(t) € R, (44)

where w,€R is a standard Wiener process, ys,05 are constants and the initial degradation at
t =0 is denoted by x,.

2. Random shocks arrive according to a Cox process with intensity function A(x) = +
ax"k €R, where § and a are constants. In this paper, we let k = 1. Then, the intensity func-
tion is determined by

A(x) =0+ ax. (45)

SHS formulation. A SHS model is constructed in Fig 6 to describe the behavior of the sys-
tem. The system has two health states, q(#)€{1,2} When g(t) = 1, the system is subject to the
degradation process and degrades according to Eq (44). When g(t) = 2, the system fails due to
a hard failure, and the degradation level is set to zero, i.e. x(t) = 0.

Fig 6. State-transition diagram for the SHS in case 3.
doi:10.1371/journal.pone.0172680.9g006
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As shown in Fig 6, the initial state of the system is state 1. The transition rates and reset
maps of the SHS are defined as follows:

halg) =g 0 A (46)
Jin(q, %) =
12\4 0 g+,

b12(q,x) == (2,0). (47)

Reliability analysis. We define the test functions /" (g, x), i € {1,2},m € R, to be:

x" q=1,
v (g,%) = {0 L
q )
) g=2, (48)
vy (g,%) = {
0 q # 2.

Since x(t) = 0 when g() = 2, we only consider the 0-order conditional moment of the degra-
dation at state 2, i.e. /" (g, x). By substituting Eqs (44), (46) and (47) into Eq (8), the extended
generator of the SHS is:

- (g, x) 1,00\ (qx -
(Ltpl)( )(q,x) :uﬂ%ﬂ—ioﬁf%— (0 + ax) "Pg )(q,x),

(49)
(L) " (g %) = (8 4 ox) - Y (g, ).
According to Eqs (7) and (49), the differential equations governing the conditional
moments are:
d - 1. m— m m
— " () = pymp™ Y () + = am(m — D™ P () = o™ (1) — o™V (8),
dt 2 (50)
d
i (0) = o (1) + o (8).
From Eq (50), we can obtain the following set of differential equations:
W] [0 - 0][u] o
R e I T A B 7R I B (51)
) I T P
Since the system must belong to one of the two health modes, it is obvious that
1 () + () = 1. (52)

Unlike the differential equations obtained in case 1 and case 2, the dynamics of
w1, 1t in this case is related to a high-order conditional moment 1), so that Eq (51)
cannot be solved directly. To deal with this situation, an approximate truncation method is
developed in [36] to provide an approximate function of the involved high-order conditional

moments using the low-order conditional moments. Adopting the truncation method, we

PLOS ONE | DOI:10.1371/journal.pone.0172680 February 23,2017 17/22



@° PLOS | ONE

A stochastic hybrid systems based framework for modeling dependent failure processes

have the approximate function of 1 in the following form:

w” - (u(f))3
w? ~ 90(#(10), ', uﬁz)) =—. (53)

3
()

Thus, Eq (51) is approximated by:

i) =0 - 0 | o <H§2>)3
= 0 e+ TN (54)
) Lot oo ol L] Ll ()

From Eqs (18) and (21), the estimated system reliability R,(t) and the lower bound R/(t) are
calculated by

H— 1" (0)/1” (1)

R (1) = " (1) - @ AL (55)
RO + (100 0)
R () = (1) [1 - %} . (56

where the conditional moments u” (¢), u\" (), 1\ () are obtained by solving the differential
Eqs (52) and (54).

Numerical calculation. A numerical example is conducted using the parameters in
Table 3, assumed arbitrarily by hypothesis for the purpose of illustration. To solve the differen-
tial equations in Eqs (52) and (54), the solver based on Runge Kutta method in Matlab 2013a is
used. On the other hand, based on the properties of Cox process, the conditional moments can
also be written as Eqs (57) and (58) below:

w”(1) = Plg =1}

— Bexp (- /0 [ /l(x(f))dr)
— Eexp (- /0 6+ ax(r))dr) :

W (t) = E(xlg=1) - P{g =1} (57)
= (%, + myt) ~Eexp<—/0 (6 + ocx(r))dr),
w?(1) =E(lg=1) P{g=1}

= [+ s0)" + a3t - Besp = [ 5+ aa(ec ).

R(t) = P{x <H|q =1} - P{q = 1}

=0 <w> . Eexp <— /0 o+ ocx(r))dr), (58)
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Table 3. Parameter values for case 3.

Parameters Value

H 7.5um®

Up 1x107* um®

Og 1x107° ym®
2.5x107°
1x107*

Xo 1x107* pm®

doi:10.1371/journal.pone.0172680.t003

where x, denotes the initial degradation magnitude and ®(-) represents the standard normal
distribution function. A comparison is made between the results obtained by the developed
methods in this paper and those obtained by solving Eqs (57) and (58) through Monte Carlo
simulation. The sample size of the Monte Carlo simulation is 10°. In Fig 7(A)-7(C), the
moments with order 0,1 and 2 are compared with those obtained by Eq (57). In Fig 7(D),
the estimated reliability and its lower bound are compared to the results calculated by

Eq (58). The comparisons show that the moments and system reliability are accurately pre-
dicted by the SHS model.

Conclusions

In this paper, a SHS-based modeling framework is developed for the reliability modeling and
analysis of dependent failure processes, where degradation processes and random shock
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Fig 7. Comparison of results obtained by the SHS model and those by analytic expressions for case
3. (A) Comparison on the order 0 moment: Pr{q # 2} = 1" (t). (B) Comparison on the order 1 moment:
E(x(t)) = u"(t) + 1" (t). (C) Comparison on the order 2 moment: E(x*(t)) = u\” (t) + 1 (t). (D) Comparison
on the estimated reliability and lower bound for reliability.

doi:10.1371/journal.pone.0172680.g007
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processes compete to cause system failure and dependencies exist among these processes. In
the developed model, the degradation process is modeled by SDEs and the shock process is
characterized by transitions among the system health states. The dependencies among the two
processes are modeled within the structure of the SHS model by the reset map, transition rates
etc. The conditional moments for the state variables in the developed SHS model are calculated
by deriving and solving a set of differential equations based on Dynkin’s formula. Using these
conditional moments, a reliability analysis method is developed to estimate the system reliabil-
ity and its lower bound. Three case studies are conducted to demonstrate the developed meth-
ods. Comparisons to Monte Carlo simulations show that the developed method can achieve
accurate reliability analysis results, while requiring much less computations than Monte Carlo
simulations.

To apply the developed model in practice, the parameter values, such as the parameters in
the SDEs that model the degradation processes, the transition rates that model the random
shock processes, and the parameters in the reset maps that describe the dependency, need to
be set based on historical data or expert judgments. Epistemic uncertainty might present when
setting values for the parameters. Another source of epistemic (model) uncertainty is derived
from the assumptions made for the present model. Treatment and calculation of epistemic
uncertainty is an interesting problem that deserves further investigations.
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