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Abstract

In this paper, we develop a framework to model and analyze systems that are subject to

dependent, competing degradation processes and random shocks. The degradation pro-

cesses are described by stochastic differential equations, whereas transitions between the

system discrete states are triggered by random shocks. The modeling is, then, based on

Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state

determined by stochastic differential equations and a discrete state driven by stochastic

transitions and reset maps. A set of differential equations are derived to characterize the

conditional moments of the state variables. System reliability and its lower bounds are esti-

mated from these conditional moments, using the First Order Second Moment (FOSM)

method and Markov inequality, respectively. The developed framework is applied to model

three dependent failure processes from literature and a comparison is made to Monte Carlo

simulations. The results demonstrate that the developed framework is able to yield an accu-

rate estimation of reliability with less computational costs compared to traditional Monte

Carlo-based methods.

Introduction

Failure of industrial components, systems and products may be caused by multiple failure pro-

cesses, e.g. wear, corrosion, erosion, creep, fatigue, etc. [1]. In general, the failure processes are

categorized as degradation processes (or soft failures) and catastrophic failure processes (or

hard failures) [2]. Soft failure is caused by continuous degradation and is often modeled by a

continuous-state random process, e.g., Wiener process [3,4], Gamma process [5–7], inverse

Gaussian process [8–10], continuous-time semi Markov process [11], etc. Hard failure is

caused by traumatic shocks in various patterns and is often modeled by a discrete-state ran-

dom process, e.g., Homogeneous Poisson Process (HPP) [11–13], Nonhomogeneous Poisson

Process (NHPP) [14–16], etc. Often, complex dependencies exist among the failure processes

[17]. For example, [18] presents experimental data to show that erosion and corrosion can

enhance each other and therefore accelerate the failure process. Also, it is observed in [19] that

the dependency between creep and fatigue severely reduces the Time-To-Failure (TTF) of the
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specimens that are exposed to high temperatures and heavy loads. To accurately describe the

failure behavior affected by multiple failure processes, the possible dependencies among the

failure processes need to be properly addressed.

In literature, various methods have been developed to model the dependencies among deg-

radation processes and random shocks. Peng et al. [20] develop a dependency model where

the arrived shocks lead to an abrupt increase of the degradation process. Wang and Pham [21]

investigate systems subject to dependent competing risk, which suffer failures due to degrada-

tions and random shocks: the model is proposed of shocks that can cause immediate failure of

the system, with a time-dependent probability p(t), or can increase the degradation level with

probability 1−p(t). Cha and Finklstein [22] assume that a shock can lead to a hard failure with

probability p(t), or can increase the degradation rate with probability 1−p(t). Jiang et al. [23]

develop a model that considers that the threshold of hard failures can be shifted by random

shocks. Rafiee et al. [24] consider that the degradation rate is increased by a series of shocks.

Jiang et al. [1] categorize shocks into different shock zones based on their magnitudes and con-

sider that shocks in different zones have different effects on the degradation process. Bagdona-

vicius et al. [25], Fan et al. [26] and Ye et al. [27] develop models that consider that the

probability of hard failures is increased as the degradation process progresses. Huynh et al.

[14,15] investigate maintenance strategies for a dependence model, where the intensity of the

NHPP for random shock is a piecewise function of the degradation magnitude. Fan et al. [16]

present a reliability model for sliding spools considering that the intensity of the NHPP

describing the random shock process is a linear function of the degradation level.

For models that consider the dependencies between degradation and random shock pro-

cesses, like these above, it is often too complicated, if not intractable, to evaluate system reli-

ability analytically. Then, simulation methods, such as Monte Carlo methods [28], are used,

often with limitations due to heavy computational burden. In this respect, Stochastic Hybrid

Systems (SHS) [29] offer a new way to model the stochastic behavior of systems that involve

both discrete and continuous states [30–33]. SHS describe the system’s behavior by a set of dif-

ferential equations and therefore, whose solution avoids the computational burdens of simula-

tion methods. Various forms of SHS exist in literature (see Pola et al. [29] for a comparison).

In this paper, we adopt the models recently developed by Hespanha in [34–36], which is simi-

lar to the Piecewise Deterministic Markov Process (PDMP) [37] but differs from it in that the

continuous state variable follow Stochastic Differential Equations (SDEs), rather than Ordi-

nary differential equations (ODEs). To the best of our knowledge, it is the first attempt to use

SHS for modeling dependent failure processes.

It should be mentioned that SHS is similar to Stochastic Hybrid Automata (SHA), which is

also applied in Dynamic Reliability (DR) assessment or Dynamic Probabilistic Risk Assess-

ment (DPRA) [38,39]. Both methods model dynamic hybrid system behaviors that involve sto-

chastic factors. SHA introduces less assumptions than SHS and resorts to Monte Carlo

simulation for the calculations [40,41]; SHS, on the other hand, is able to describe the hybrid

dynamics analytically or semi-analytically, by solving a set of Differential Equations (DEs) on

the expense of introducing more assumptions [36]. The computational cost of SHS is, in gen-

eral, less than that of SHA, but on the expense of more assumptions in particular with respect

to the degradation models, whereby epistemic uncertainty (specifically model uncertainty)

[42–44] is introduced. When applying the SHS in practice, then, care should be taken to ensure

that the assumptions are consistent with the actual situation, in particular in case of systems

characterized by complex and numerous dependencies among physical processes and failure

behaviors. In this paper, we choose SHS because the type of dependent degradation and shock

processes allows for modeling by SHS and, in general, SHS has a better computational perfor-

mance than SHA.

A stochastic hybrid systems based framework for modeling dependent failure processes
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Methods

SHS model

The state space of a SHS model is a combination of discrete and continuous states. Let us

denote the discrete states by q(t), q(t) 2Q, where Q is a finite set containing all the possible dis-

crete modes of the system. The continuous states are denoted by x(t), x(t)2Rl. A SHS model is

defined based on the following assumptions [34–36]:

1. The evolution of the continuous states is governed by a set of SDEs:

dx tð Þ ¼ f q tð Þ; x tð Þð Þdt þ g q tð Þ; x tð Þð Þdwt; ð1Þ

where wt: R+! Rk is a k-dimensional Wiener process; f: Q×Rl! Rl and g: Q×Rl! Rl×k,

respectively.

2. At any time t, if the system is in state (q(t), x(t)), it undergoes a transition with a rate λij(q(t),
x(t)):Q×Rl! R+, i, j 2Q. That is, the probability that the system undergoes a transition

from state i to state j within the interval [t, t + Δt) is:

lij q tð Þ; x tð Þð ÞDt þ o Dtð Þ; ð2Þ

3. Whenever the system undergoes a state transition from state i to state j, it instantaneously

applies the map ϕij(q(t), x(t)) to the current values of q(t) and x(t), so that their values are

reset:

q tð Þ; x tð Þð Þ ¼ �ij q t�ð Þ; x t�ð Þð Þ; ð3Þ

where the notation a(t−) represents the left-hand limit of the function a at time t.

Fig 1 depicts the state transition and evolution of the SHS.

SHS formulism for dependent failure processes

The modeling framework for dependent failure processes involves three elements, i.e., a model

for the degradation process, a model for the shock process and a model for the dependency

between the two processes. The following assumptions are made in order to model a depen-

dent failure process in the framework of SHS:

Assumption (1). The degradation processes are characterized by x(t) = (x1(t), x2(t), . . .,

xl(t))2Rl. The elements in x(t), xi(t), 1�i�l, are performance parameters for the

Fig 1. State-transition diagram for the SHS model.

doi:10.1371/journal.pone.0172680.g001
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degradation processes and are independent from one another. Soft failure occurs when-

ever

9i 2 1; 2; � � � ; lf g; xi tð Þ > Hi; ð4Þ

where Hi is the failure threshold for the performance parameter xi(t).

Assumption (2). The system has n potential health states, i.e., q(t)2Q where q(t) is a discrete-

state variable that quantifies the system’s health state at time t, and Q = {1, 2, . . ., n} is a set

containing all the possible system states. When q(t) = n, a hard failure occurs.

Assumption (3). Transitions between system health states are triggered by the arrival of ran-

dom shocks with the transition rate λij(q(t), x(t)), i, j 2 Q where the probability that the sys-

tem jumps from state i to state j in the interval [t, t + Δt) is given by Eq (2).

Assumption (4). Between the transitions, the degradation of x(t) is characterized by the SDEs

in Eq (1) for q(t) = 1, 2, � � �, n − 1. When q(t) takes different values, the form of f(�) and g(�)

can be changed to reflect the dependency behavior. When q(t) = n, which indicates that the

system fails due to hard failure, we impose that x(t) = 0.

Assumption (5). An arrival random shock resets the current values of q(t) and x(t), using the

reset map defined in Eq (3).

Assumption (6). System failure is caused by both soft and hard failures, whichever occurs first.

Given a dependent failure process, the following steps show how to model it in the frame-

work of SHS:

Step 1: Modeling degradation. In this step, the performance parameters x(t) are identified to

characterize the degradation processes. For the performance parameters, the SDEs in Eq

(1) are developed to describe their degradation, considering both deterministic and sto-

chastic characteristics. The deterministic characteristics are often described based on the

physical knowledge on the degradation processes (e.g., using the Physics-of-Failure

(PoF) models [19]), while the stochastic characteristics are modeled by a Wiener process,

as shown in Eq (1).

Step 2: Modeling random shocks. In SHS, random shocks are considered as transitions among

the system health states. The transition rates, λij(q(t), x(t)), i, j 2 Q, need to be determined

based on historical data or expert judgments.

Step 3: Modeling dependencies. Finally, the dependencies between the degradation processes

and random shocks need to be considered. The dependencies can be modeled in various

ways in SHS. For instance, by resetting the values for x(t), the reset map in Eq (3) can cap-

ture the influence of the random shock on the degradation process. Further, the functions

f, g and even λ itself, as shown in Fig 1, are dependent on the current values of x(t) and q(t),
which provides a versatile way to model the dependencies.

Note that in order to make sure that the developed SHS model is solvable in case that trun-

cations techniques [36] are needed, for example Case 3 in this paper, the fi, gi, λij, ϕij, i, j 2 Q. in

the SHS model have to be polynomial functions of x(t).

Conditional moments estimation

In this section, we derive the conditional expectations for the continuous state variables, i.e.,

E½xp
j tð Þjq tð Þ ¼ i�; p 2 N; i 2 Q; j ¼ 1; 2; � � � ; l, where xj(t) represent the jth element of x(t).

A stochastic hybrid systems based framework for modeling dependent failure processes
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The conditional expectations will be used in the next section for reliability analysis. Let us

define a test function to be

c
mð Þ
i q; xð Þ ¼

xm q ¼ i

0 q 6¼ i

(

; ð5Þ

where m: = (m1, m2, . . ., ml), m2Nl, and xm :¼ xm1
1 xm2

2 � � � x
ml
l , and let the m-order conditional

moment of the continuous state x be

m
mð Þ
i tð Þ ≔E½c mð Þ

i q; xð Þ�

¼ E½xm tð Þjq tð Þ ¼ i� � Pr q tð Þ ¼ if g:
ð6Þ

For a general test function ψ(q(t), x(t)), ψ: Q×Rl!R, which is twice continuously differen-

tiable with respect to x, the evolution of its expected value is governed by Dynkin’s formula

[36]:

dE½c q tð Þ; x tð Þð Þ�

dt
¼ E½ Lcð Þ q tð Þ; x tð Þð Þ�; ð7Þ

where (Lψ)(q, x) is the extended generator of SHS and 8(q, x)2Q×Rl, (Lψ)(q, x) is given by

Lcð Þ q; xð Þ :¼
@c q; xð Þ

@x
f q; xð Þ

þ
1

2
trace

@2c q; xð Þ

@x2
g q; xð Þg q; xð Þ

0

� �

þ
X

i;j2Q

lij q; xð Þ c �ij q; xð Þ
� �

� c q; xð Þ
� �

;

ð8Þ

where @ψ / @x and @2ψ / @x2 denote the gradient and Hessian matrix of ψ(q,x) with respect to

x, respectively; trace(A) is the trace of the matrix A, i.e., the sum of elements on its main

diagonal.

Substituting Eq (5) into Eq (7), we get a group of differential equations with respect to

m
mð Þ
i tð Þ; i 2 Q;m 2 Nl:

dm
mð Þ
i tð Þ ¼ E½L c

mð Þ
i

� �
q tð Þ; x tð Þð Þ� � dt: ð9Þ

The evolution of m
mð Þ
i tð Þ can be depicted by solving Eq (9). The conditional moments can,

then, be obtained by assigning proper values for m: if we let m = (0, 0, . . ., 0) we have

m
0;0;...;0ð Þ

i tð Þ ¼ Pr q tð Þ ¼ if g; i 2 Q: ð10Þ

If we let

m ¼ ½m1;m2; � � � ;ml� :
mj ¼ p; if j ¼ k; k 2 1; 2; � � � ; lf g;

mj ¼ 0; if j 6¼ k;

(

where mj denotes the jth element in m and p is a natural number, we have

m
mð Þ
i tð Þ ¼ E½xp

k tð Þjq tð Þ ¼ i� � Pr q tð Þ ¼ if g; i 2 Q: ð11Þ

The conditional expectations, E½xp
j tð Þjq tð Þ ¼ i�; p 2 N; i 2 Q; j ¼ 1; 2; � � � ; l, can, then, be

calculated by combining Eqs (10) and (11).

A stochastic hybrid systems based framework for modeling dependent failure processes
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Reliability analysis

From Assumption 6, system reliability can be expressed as:

R tð Þ ¼ Pr q tð Þ < n; x1 tð Þ < H1; x2 tð Þ < H2; � � � ; xl tð Þ < Hlð Þ: ð12Þ

From the law of total probability, we have

R tð Þ ¼ Pr q tð Þ < n; x1 tð Þ < H1; x2 tð Þ < H2; � � � ; xl tð Þ < Hlð Þ

¼
Xn� 1

i¼1

Pr q tð Þ ¼ ið Þ � Pr x1 tð Þ < H1; x2 tð Þ < H2; � � � ; xl tð Þ < Hljq tð Þ ¼ ið Þ:
ð13Þ

Since we assume that the degradation processes are independent from one another, Eq (13)

becomes

R tð Þ ¼
Xn� 1

i¼1

Yl

j¼1

Pr xj tð Þ < Hjjq tð Þ ¼ i
� �

 !

� Pr q tð Þ ¼ ið Þ ð14Þ

In Eq (14), Pr(q(t) = i) can be calculated by Eq (10), Pr(xj(t)<Hj|q(t) = i), i = 1, 2, � � �, n − 1,

j = 1, 2, � � �, l can, instead, be approximated using the First Order Second Moment (FOSM)

method [45], since we have the conditional moments for xj(t) Let mxjjq¼i
tð Þ and sxjjq¼i

tð Þ denote

the expected value and standard deviation of the random variable xj(t) conditioned on q = i,
respectively. Then, mxjjq¼i

tð Þ and sxjjq¼i
tð Þ can be calculated by

m̂xjjq¼i
tð Þ ¼ E½xj tð Þjq tð Þ ¼ i� ¼

m
m�;jð Þ

i tð Þ
Pr q tð Þ ¼ ið Þ

¼
m

m�;jð Þ
i tð Þ

m
0;0;...;0ð Þ

i tð Þ
;

ŝxjjq¼i
tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E xj tð Þ
2
jq tð Þ ¼ i

� �
� E xj tð Þjq tð Þ ¼ i

� �� �2
r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
m��;jð Þ

i tð Þ
m

0;0;...;0ð Þ

i tð Þ
�

m
m�;jð Þ

i tð Þ
m

0;0;...;0ð Þ

i tð Þ

0

@

1

A

2
v
u
u
u
t ; i 2 1; 2; . . . ; n � 1f g;

ð15Þ

where m� ,j and m��,j are given by

m�;j ¼ ½m1;m2; � � � ;ml� : mk ¼ 1; if k ¼ j;mk ¼ 0; if k 6¼ j;

m��;j ¼ ½m1;m2; � � � ;ml� : mk ¼ 2; if k ¼ j;mk ¼ 0; if k 6¼ j:
ð16Þ

Based on FOSM [45], Pr(xj(t)<Hj|q(t) = i) can be approximated by

Pr xj tð Þ < Hjjq tð Þ ¼ i
� �

� F
Hj � m̂xjjq¼i

tð Þ
ŝxjjq¼i

tð Þ

 !

: ð17Þ

Substituting Eq (17) into Eq (14), the reliability of the system is approximated by

R tð Þ � Re tð Þ ¼
Xn� 1

i¼1

m
0;0;...;0ð Þ

i tð Þ �
Yl

j¼1

F
Hj � m̂xjjq¼i

tð Þ
ŝxjjq¼i

tð Þ

 ! !

; ð18Þ

where m̂xjjq¼i
tð Þ, ŝxjjq¼i

tð Þ are calculated by Eq (15).

The accuracy of the approximation by FOSM relies on the normality assumption: the ran-

dom variables xj(t)|q(t) = i, i21, 2, . . ., n − 1, j = 1, 2, � � �, l are normally distributed with mean

value mxjjq¼i
tð Þ and standard deviation sxjjq¼i

tð Þ. In practice, the assumption does not always

A stochastic hybrid systems based framework for modeling dependent failure processes
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hold. Therefore, we also present an estimation method for the lower bound of the system reli-

ability, using Markov inequality.

According to Markov inequality [46], if X is a nonnegative random variable and a>0, then

Pr X � að Þ �
E Xð Þ
a

: ð19Þ

Using Eq (19), we obtain

Pr xj tð Þ � Hjjq ¼ i
� �

�
E xj tð Þjq ¼ i
� �

Hj
; j 2 1; 2; . . . ; lf g; i 2 1; 2; . . . ; n � 1f g: ð20Þ

From Eqs (14) and (20), the lower bound of system reliability can, then, be derived:

R tð Þ ¼
Xn� 1

i¼1

Pr q tð Þ ¼ ið Þ �
Yl

j¼1

Pr xj tð Þ < Hjjq tð Þ ¼ i
� �

¼
Xn� 1

i¼1

Pr q tð Þ ¼ ið Þ �
Yl

j¼1

½1 � Pr xj tð Þ � Hjjq tð Þ ¼ i
� �

�

�
Xn� 1

i¼1

Pr q tð Þ ¼ ið Þ �
Yl

j¼1

1 �
E xj tð Þjq tð Þ ¼ i
� �

Hj

2

4

3

5

¼
Xn� 1

i¼1

m
0;0;:::;0ð Þ

i tð Þ �
Yl

j¼1

1 �
m

m�;jð Þ
i tð Þ
Hj

2

4

3

5;

Rl tð Þ ¼
Xn� 1

i¼1

m
0;0;:::;0ð Þ

i tð Þ �
Yl

j¼1

1 �
m

m�;jð Þ
i tð Þ
Hj

2

4

3

5;

ð21Þ

where m� ,j has the same meaning as in Eq (16).

Results and discussion

Case 1

System description. The first case study to demonstrate the developed framework is

adapted from [20]. A MEMS device is subject to two dependent failure processes, i.e., soft fail-

ures caused by wear and debris from shock loads, and hard failures due to spring fracture

caused by shock loads [20]. The soft failure is modeled by a continuous degradation process

and the hard failure is modeled by a random shock process. Dependence exists among the two

processes: the arrival of a shock brings an additional contribution to the degradation process.

Failures occur whenever one of the following two events happens:

• the degradation process reaches its threshold, denoted by H;

• a shock whose magnitude exceeds a critical level, denoted by D, occurs.

Additional assumptions include:

1. The continuous degradation process follows an SDE.

dx tð Þ ¼ mbdt þ sbdwt; x tð Þ 2 R; ð22Þ

A stochastic hybrid systems based framework for modeling dependent failure processes
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where wt 2 R is a standard Wiener process, μβ, σβ are constants and the initial degradation

level at t = 0 is null.

2. The random shock process is a HPP with intensity λ.

3. The magnitudes of shock loads, denoted by Wi, are i.i.d. random variables following a nor-

mal distribution,Wi � N mW ; s
2
W

� �
.

4. The arrival of each shock brings a degradation increment d, which is a random variable fol-

lowing a normal distribution d � Nðmd; s2
dÞ.

SHS formulation. A SHS model is constructed in Fig 2 to describe the behavior of the sys-

tem. The system has two health states, q(t)2{1,2}. When q(t) = 1, the system is subject to the

degradation process according to Eq (22). When q(t) = 2, the system fails due to hard failure

and the degradation level is set to zero, i.e. x(t) = 0.

As shown in Fig 2, the initial health state of the system is state 1. The transition rates and

reset maps of the SHS are defined as follows:

l11 qð Þ :¼
F

D � mW

sW

� �

� l q ¼ 1;

0 q ¼ 2;

8
><

>:

l12 qð Þ :¼
1 � F

D � mW

sW

� �� �

� l q ¼ 1;

0 q ¼ 2:

8
><

>:

ð23Þ

�11 q; xð Þ :¼ 1; x þ dð Þ;

�12 q; xð Þ :¼ 2; 0ð Þ:
ð24Þ

In Eq (24)), the reset map ϕ11(q,x) models the dependency in Assumption Eq (4).

Fig 2. State-transition diagram of the SHS for case 1.

doi:10.1371/journal.pone.0172680.g002
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Reliability analysis. We define the test functions c
mð Þ
i q; xð Þ; i 2 1; 2f g;m 2 R; to be:

c
mð Þ

1
q; xð Þ ¼

xm q ¼ 1

0 q 6¼ 1;

(

c
0ð Þ

2
q; xð Þ ¼

1 q ¼ 2

0 q 6¼ 2:

( ð25Þ

Since x(t) = 0 when q(t) = 2, we only consider the 0-order conditional moment of the degra-

dation at state 2, i.e. c
0ð Þ

2
q; xð Þ. By substituting Eqs (22), (23) and (24) into Eq (8), the extended

generator of the SHS model is:

Lc1ð Þ
mð Þ q; xð Þ ¼ mb

@c
mð Þ

1
q; xð Þ

@x
þ

1

2
s2

b

@2c
mð Þ

1
q; xð Þ

@x2

þ l11 qð Þ c
1ð Þ

1
q; xð Þ þ d � c 0ð Þ

1
q; xð Þ

� � mð Þ

� l11 qð Þ þ l12 qð Þð Þc
mð Þ

1
q; xð Þ;

Lc2ð Þ
0ð Þ q; xð Þ ¼ l12 qð Þ � c 0ð Þ

1
q; xð Þ:

ð26Þ

According to Eqs (7) and (26), the differential equations governing the conditional

moments are:

d
dt

m
mð Þ

1 tð Þ ¼ mbmm
m� 1ð Þ

1 tð Þ þ
1

2
s2

b
m m � 1ð Þm

m� 2ð Þ

1 tð Þ

þ l11

Xm

k¼0

m

k

 !

m
m� kð Þ

1 tð ÞE dk
� �

 !

� l11 þ l12ð Þm
mð Þ

1 tð Þ;

d
dt

m
0ð Þ

2 tð Þ ¼ l12m
0ð Þ

1 tð Þ;

ð27Þ

where E dð Þ ¼ md; E d2ð Þ ¼ m2
d þ s2

d. From Eq (27), we can obtain the following set of differen-

tial equations:

_m
0ð Þ

1

_m
1ð Þ

1

_m
2ð Þ

1

2

6
6
4

3

7
7
5 ¼

� l12 0 0

mb þ l11md � l12 0

s2
b
þ l11 m2

d þ s2
d

� �
2mb þ 2l11md � l12

2

6
6
4

3

7
7
5

m
0ð Þ

1

m
1ð Þ

1

m
2ð Þ

1

2

6
6
4

3

7
7
5: ð28Þ

Since the system must belong to one of the two health modes, it is obvious that

m
0ð Þ

1 tð Þ þ m
0ð Þ

2 tð Þ ¼ 1: ð29Þ
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From Eqs (18) and (21), the estimated system reliability Re(t) and the lower bound Rl(t) are

calculated by

Re tð Þ ¼ m
0ð Þ

1 tð Þ � F
H � m

1ð Þ

1 tð Þ=m
0ð Þ

1 tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ð Þ

1 tð Þ=m
0ð Þ

1 tð Þ þ m
1ð Þ

1 tð Þ=m
0ð Þ

1 tð Þ
� �2

r

0

B
B
@

1

C
C
A; ð30Þ

Rl tð Þ ¼ m
0ð Þ

1 tð Þ � 1 �
m

1ð Þ

1 tð Þ
H

" #

; ð31Þ

where the conditional moments m
0ð Þ

1 tð Þ; m 1ð Þ

1 tð Þ; m 2ð Þ

1 tð Þ are obtained by solving the differential

equations in Eqs (28) and (29).

Numerical calculation. A numerical example is conducted with the parameters in

Table 1, taken from [20]. To solve the differential equations in Eqs (28) and (29), the solver

based on Runge Kutta method in Matlab R2013a is used. In [20], the original model is simu-

lated using Monte Carlo methods to analyze system reliability. A comparison is made between

the results obtained by the developed methods in this paper and those obtained by Monte

Carlo simulation. The sample size of the Monte Carlo simulation is 104. In Fig 3(A)–3(C), the

moments with order 0, 1 and 2 are compared with simulation results. In Fig 3(D), the esti-

mated reliability and its lower bound are compared to the results of Monte Carlo simulation.

The comparisons show that the moments are accurately predicted by the SHS model. The

estimated reliability by FOSM is consistent with the result by Monte Carlo simulation. The

estimated lower bound provides a relatively conservative reliability estimation. The running

time of Monte Carlo simulation is 5788.2 times more than that of the developed SHS-based

approach.

Case 2

System description. The second case study to demonstrate the developed framework is

adapted from [24]. A MEMS device is subject to two dependent failure processes, i.e., soft fail-

ures and hard failures. The soft failure is modeled by a continuous degradation process and

the hard failure is modeled by a random shock process. Dependences between the two failure

processes exist in the following two aspects: (1) the arrival of each shock brings a degradation

increment; (2) the degradation rate increases when the system undergoes a series of shocks.

The second type of dependence has been investigated based on four different shock models in

Table 1. Parameter values for case 1.

Parameters Value

H 0.00125μm3

μβ 8.4823×10−9μm3

σβ 6.0016×10−10μm3

μd 1×10−4μm3

σd 2×10−5μm3

D 1.5GPa

λ 5×10−3

μW 1.2GPa

σW 0.2GPa

doi:10.1371/journal.pone.0172680.t001
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[24]: extreme shock, δ shock, m shock, and run shock models. In this section, we apply our

framework by considering the first dependence and the second dependence triggered by the

extreme shock model. Failure occurs whenever one of the following two events happens:

• the degradation process reaches its threshold, denoted by H;

• a shock whose magnitude exceeds a critical level, denoted by D1, occurs.

Additional assumptions include:

1. Random shocks arrive according to a HPP with intensity λ.

2. The magnitudes of shock loads, denoted by Wi, are i.i.d. random variables following a nor-

mal distributionWi � N mW ; s
2
W

� �
.

3. The arrival of a shock whose magnitude is less than D0 would bring a degradation incre-

ment d, which is a random variable following a normal distribution d � Nðmd; s2
dÞ.

4. The arrival of a shock whose magnitude belongs to [D0, D1) would trigger the change of

degradation rate. Let J denote the total number of arrival shocks when the trigger shock

occurs, and TJ denote the time when the Jth shock arrives. Then, the continuous degrada-

tion process is modeled by the following SDEs,

dx tð Þ ¼
mb1

dt þ sb1
dwt for t < TJ

mb2
dt þ sb2

dwt for t � TJ

(

; x tð Þ 2 R; ð32Þ

Fig 3. Comparison of results for case 1. (A) Comparison on the order 0 moment: Pr q 6¼ 2f g ¼ m
ð0Þ

1 ðtÞ. (B)

Comparison on the order 1 moment: EðxðtÞÞ ¼ m
ð1Þ

1 ðtÞ þ m
ð1Þ

2 ðtÞ. (C) Comparison on the order 2 moment:

Eðx2ðtÞÞ ¼ m
ð2Þ

1 ðtÞ þ m
ð2Þ

2 ðtÞ. (D) Comparison on the estimated reliability and lower bound for reliability.

doi:10.1371/journal.pone.0172680.g003
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where wt2R is a standard Wiener process, mb
1

; mb
2

; sb
1

; sb
2

; mb
2

> mb
1

are constants, and

the initial degradation level at t = 0 is null.

SHS formulation. The SHS concerning this case is described by the state-transition dia-

gram in Fig 4. The system has three health states, q(t)2{1,2,3} When q(t) = 1, the system is sub-

ject to the degradation at a low-level degradation rate. By contrast, when q(t) = 2, the system

degrades at a high-level degradation rate. System’s degradation under the first two health states

evolves according to the following SDEs:

dx tð Þ ¼
mb1

dt þ sb1
dwt if q tð Þ ¼ 1

mb2
dt þ sb2

dwt if q tð Þ ¼ 2

(

; x tð Þ 2 R: ð33Þ

When q(t) = 3, the system fails due to a hard failure and the degradation level is set to zero,

i.e. x(t) = 0.

As shown in Fig 4, the initial health state of the system is state 1. The transition rates and

reset maps of the SHS are defined as follows:

l11 qð Þ :¼
P1 � l q ¼ 1;

0 q 6¼ 1;

(

l12 qð Þ :¼
P2 � l q ¼ 1;

0 q 6¼ 1;

(

l13 qð Þ :¼
P3 � l q ¼ 1;

0 q 6¼ 1;

(

l22 qð Þ :¼
P1þP2ð Þ � l q ¼ 2;

0 q 6¼ 2;

(

l23 qð Þ :¼
P3 � l q ¼ 2;

0 q 6¼ 2:

(

ð34Þ

Fig 4. State-transition diagram for the SHS in case 2.

doi:10.1371/journal.pone.0172680.g004
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�11 q; xð Þ :¼ 1; x þ dð Þ;

�12 q; xð Þ :¼ 2; x þ dð Þ;

�13 q; xð Þ :¼ 3; 0ð Þ;

�22 q; xð Þ :¼ 2; x þ dð Þ;

�23 q; xð Þ :¼ 3; 0ð Þ;

ð35Þ

where P1, P2, P3 are calculated by

P1 ¼ F
D0 � mW

sW

� �

; P2 ¼ F
D1 � mW

sW

� �

� F
D0 � mW

sW

� �

; P3 ¼ 1 � F
D1 � mW

sW

� �

: ð36Þ

In Eq (35), the reset maps ϕ11(q,x),ϕ22(q,x), model the dependency in assumption Eq (3)

and the change of system degradation rate along with the transition from health state q = 1 to

health state q = 2 model the dependency in assumption Eq (4).

Reliability analysis. We define the test functions c
mð Þ
i q; xð Þ; i 2 1; 2; 3f g;m 2 R; to be:

c
mð Þ

1
q; xð Þ ¼

xm q ¼ 1;

0 q 6¼ 1;

(

c
mð Þ

2
q; xð Þ ¼

xm q ¼ 2;

0 q 6¼ 2;

(

c
0ð Þ

3
q; xð Þ ¼

1 q ¼ 3;

0 q 6¼ 3:

(

ð37Þ

Since x(t) = 0 when q(t) = 3, we only consider the 0-order conditional moment of the degra-

dation at state 3, i.e. c
0ð Þ

3
q; xð Þ. By substituting Eqs (33), (34) and (35) into Eq (8), the extended

generator of the SHS is:

Lc1ð Þ
mð Þ q; xð Þ ¼ mb1

@c
mð Þ

1
q; xð Þ

@x
þ

1

2
s2

b1

@2c
mð Þ

1
q; xð Þ

@x2
þ l11 c

1ð Þ

1
q; xð Þ þ d � c 0ð Þ

1
q; xð Þ

� � mð Þ

� l11 þ l12 þ l13ð Þc
mð Þ

1
q; xð Þ;

Lc2ð Þ
mð Þ q; xð Þ ¼ mb2

@c
mð Þ

2
q; xð Þ

@x
þ

1

2
s2

b2

@2c
mð Þ

2
q; xð Þ

@x2
þ l22 c

1ð Þ

2
q; xð Þ þ d � c 0ð Þ

2
q; xð Þ

� � mð Þ

þ l12 c
1ð Þ

1
q; xð Þ þ d � c 0ð Þ

1
q; xð Þ

� � mð Þ
� l22 þ l23ð Þc

mð Þ
2

q; xð Þ;

Lc3ð Þ
0ð Þ q; xð Þ ¼ l13 � c

0ð Þ

1
q; xð Þ þ l23 � c

0ð Þ

2
q; xð Þ:

ð38Þ
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According to Eqs (7) and (38), the differential equations governing the conditional

moments are:

d
dt

m
mð Þ

1 tð Þ ¼ mb1
mm

m� 1ð Þ

1 tð Þ þ
1

2
s2

b1
m m � 1ð Þm

m� 2ð Þ

1 tð Þ

þ l11

Xm

k¼0

m

k

 !

m
m� kð Þ

1 tð ÞE dk
� �

 !

� l11 þ l12 þ l13ð Þm
mð Þ

1 tð Þ;

d
dt

m
mð Þ

2 tð Þ ¼ mb2
mm

m� 1ð Þ

2 tð Þ þ
1

2
s2

b2
m m � 1ð Þm

m� 2ð Þ

2 tð Þ þ l22

Xm

k¼0

m

k

 !

m
m� kð Þ

2 tð ÞE dk
� �

 !

þ l12

Xm

k¼0

m

k

 !

m
m� kð Þ

1 tð ÞE dk
� �

 !

� l22 þ l23ð Þm
mð Þ

2 tð Þ;

d
dt

m
0ð Þ

3 tð Þ ¼ l13m
0ð Þ

1 tð Þ þ l23m
0ð Þ

2 tð Þ;

ð39Þ

where E dð Þ ¼ md; E d2ð Þ ¼ m2
d þ s2

d. From Eq (39), we can obtain the following set of differen-

tial equations:

_m
0ð Þ

1

_m
0ð Þ

2

_m
1ð Þ

1

_m
1ð Þ

2

_m
2ð Þ

1

_m
2ð Þ

2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

� l12 � l13 0 0 0 0 0

l12 � l23 0 0 0 0

mb1
þ l11md 0 � l12 � l13 0 0 0

l12md mb2
þ l22md l12 � l23 0 0

s2
b1
þ l11 m2

d þ s2
d

� �
0 2mb1

þ 2l11md 0 � l12 � l13 0

l12 m2
d þ s2

d

� �
s2

b2
þ l22 m2

d þ s2
d

� �
2l12md 2mb2

þ 2l22md l12 � l23

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

m
0ð Þ

1

m
0ð Þ

2

m
1ð Þ

1

m
1ð Þ

2

m
2ð Þ

1

m
2ð Þ

2

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:ð40Þ

Since the system must belong to one of the three health modes, it is clear that

m
0ð Þ

1 tð Þ þ m
0ð Þ

2 tð Þ þ m
0ð Þ

3 tð Þ ¼ 1: ð41Þ

From Eqs (18) and (21), the estimated system reliability Re(t) and the lower boundary Rl(t)
are calculated by

Re tð Þ ¼
X2

i¼1

m
0ð Þ

i tð Þ � F
H � m

1ð Þ

i tð Þ=m
0ð Þ

i tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ð Þ

i tð Þ=m
0ð Þ

i tð Þ þ m
1ð Þ

i tð Þ=m
0ð Þ

i tð Þ
� �2

r

0

B
B
@

1

C
C
A; ð42Þ

Rl tð Þ ¼
X2

i¼1

m
0ð Þ

i tð Þ � 1 �
m

1ð Þ

i tð Þ
H

" #

: ð43Þ

where the conditional moments m
0ð Þ

1 tð Þ; m 1ð Þ

1 tð Þ; m 2ð Þ

1 tð Þ; m 0ð Þ

2 tð Þ; m 1ð Þ

2 tð Þ; m 2ð Þ

2 tð Þ are obtained by

solving the differential Eqs (40) and (41).

Numerical calculation. A numerical example is conducted using the parameters in

Table 2, taken from [24]. To solve the differential Eqs (40) and (41), the solver based on Runge

Kutta method in Matlab R2013a is used. In [24], the original model is simulated by Monte

Carlo to compute system reliability. A comparison is made between the results obtained by the
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developed methods in this paper and those obtained by Monte Carlo simulation. The sample

size of the Monte Carlo simulation is 104. In Fig 5(A)–5(C), the moments with order 0,1 and 2

are compared with the simulation results. In Fig 5(D), the estimated reliability and its lower

bound are compared to the results of Monte Carlo simulation.

The comparisons show that the moments are accurately predicted by the SHS model. The

estimated reliability by FOSM is consistent with the result by Monte Carlo simulation. The

Table 2. Parameter values for case 2.

Parameters Value

H 0.00125μm3

mb1
8.4823×10−9μm3

mb2
10.9646×10−9μm3

sb1
6.0016×10−10μm3

sb2
6.0846×10−10μm3

μd 1×10−4μm3

σd 2×10−5μm3

D1 1.5GPa

D0 1.2GPa

λ 5×10−3

μW 1.2GPa

σW 0.2GPa

doi:10.1371/journal.pone.0172680.t002

Fig 5. Comparison of results obtained by the SHS model and those by Monte Carlo simulation for

case 2. (A) Comparison on the order 0 moment: Pr q 6¼ 3f g ¼ m
ð0Þ

1 ðtÞ þ m
ð0Þ

2 ðtÞ. (B) Comparison on the order 1

moment: EðxðtÞÞ ¼ m
ð1Þ

1 ðtÞ þ m
ð1Þ

2 ðtÞ þ m
ð1Þ

3 ðtÞ. (C) Comparison on the order 2 moment:

Eðx2ðtÞÞ ¼ m
ð2Þ

1 ðtÞ þ m
ð2Þ

2 ðtÞ þ m
ð2Þ

3 ðtÞ. (D) Comparison on the estimated reliability and lower bound for reliability.

doi:10.1371/journal.pone.0172680.g005
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estimated lower bound provides a relatively conservative reliability estimation. Besides, the

running time of Monte Carlo simulation is 1203.8 times more than that of the developed SHS-

based approach.

Case 3

System descriptions. The third case study to demonstrate the developed framework is

adapted from [25]. The failure behavior of bus tires is modeled by two dependent failure pro-

cesses, i.e. soft failures caused by wear and hard failures of seven modes due to traumatic

shocks. The soft failure is modeled by a continuous degradation process and the hard failure is

modeled by a random shock process. Dependence exists among the two processes, that is, the

probability that a traumatic shock occurs depends on the degradation level. Failures occur

whenever one of the following two events happens:

• the degradation process reaches its threshold, denoted by H;

• a traumatic shock following a Cox process [47] with intensity λ(x) occurs.

Additional assumptions include:

1. The continuous degradation process is modeled by an SDE.

dx tð Þ ¼ mbdt þ sbdwt; x tð Þ 2 R; ð44Þ

where wt2R is a standard Wiener process, μβ,σβ are constants and the initial degradation at

t = 0 is denoted by x0.

2. Random shocks arrive according to a Cox process with intensity function λ(x) = δ +
αxk,k 2R, where δ and α are constants. In this paper, we let k = 1. Then, the intensity func-

tion is determined by

l xð Þ ¼ dþ ax: ð45Þ

SHS formulation. A SHS model is constructed in Fig 6 to describe the behavior of the sys-

tem. The system has two health states, q(t)2{1,2} When q(t) = 1, the system is subject to the

degradation process and degrades according to Eq (44). When q(t) = 2, the system fails due to

a hard failure, and the degradation level is set to zero, i.e. x(t) = 0.

Fig 6. State-transition diagram for the SHS in case 3.

doi:10.1371/journal.pone.0172680.g006
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As shown in Fig 6, the initial state of the system is state 1. The transition rates and reset

maps of the SHS are defined as follows:

l12 q; xð Þ :¼
dþ ax q ¼ 1;

0 q 6¼ 1;

(

ð46Þ

�12 q; xð Þ :¼ 2; 0ð Þ: ð47Þ

Reliability analysis. We define the test functions c
mð Þ
i q; xð Þ; i 2 1; 2f g;m 2 R; to be:

c
mð Þ

1
q; xð Þ ¼

xm q ¼ 1;

0 q 6¼ 1;

(

c
0ð Þ

2
q; xð Þ ¼

1 q ¼ 2;

0 q 6¼ 2:

( ð48Þ

Since x(t) = 0 when q(t) = 2, we only consider the 0-order conditional moment of the degra-

dation at state 2, i.e. c
0ð Þ

2
q; xð Þ. By substituting Eqs (44), (46) and (47) into Eq (8), the extended

generator of the SHS is:

Lc1ð Þ
mð Þ q; xð Þ ¼ mb

@c
mð Þ

1
q; xð Þ

@x
þ

1

2
s2

b

@2c
mð Þ

1
q; xð Þ

@x2
� dþ axð Þ � c

mð Þ
1

q; xð Þ;

Lc2ð Þ
0ð Þ q; xð Þ ¼ dþ axð Þ � c

0ð Þ

1
q; xð Þ:

ð49Þ

According to Eqs (7) and (49), the differential equations governing the conditional

moments are:

d
dt

m
mð Þ

1 tð Þ ¼ mbmm
m� 1ð Þ

1 tð Þ þ
1

2
s2

b
m m � 1ð Þm

m� 2ð Þ

1 tð Þ � dm
mð Þ

1 tð Þ � am
mþ1ð Þ

1 tð Þ;

d
dt

m
0ð Þ

2 tð Þ ¼ dm
0ð Þ

1 tð Þ þ am
1ð Þ

1 tð Þ:
ð50Þ

From Eq (50), we can obtain the following set of differential equations:

_m
0ð Þ

1

_m
1ð Þ

1

_m
2ð Þ

1

2

6
6
4

3

7
7
5 ¼

� d � a 0

mb � d � a

s2
b

2mb � d

2

6
6
4

3

7
7
5

m
0ð Þ

1

m
1ð Þ

1

m
2ð Þ

1

2

6
6
4

3

7
7
5þ

0

0

� a

2

6
4

3

7
5 � m

3ð Þ
1 : ð51Þ

Since the system must belong to one of the two health modes, it is obvious that

m
0ð Þ

1 tð Þ þ m
0ð Þ

2 tð Þ ¼ 1: ð52Þ

Unlike the differential equations obtained in case 1 and case 2, the dynamics of

m
0ð Þ

1 ; m
1ð Þ

1 ; m
2ð Þ

1 in this case is related to a high-order conditional moment m
3ð Þ

1 , so that Eq (51)

cannot be solved directly. To deal with this situation, an approximate truncation method is

developed in [36] to provide an approximate function of the involved high-order conditional

moments using the low-order conditional moments. Adopting the truncation method, we

A stochastic hybrid systems based framework for modeling dependent failure processes

PLOS ONE | DOI:10.1371/journal.pone.0172680 February 23, 2017 17 / 22



have the approximate function of m
3ð Þ

1 in the following form:

m
3ð Þ

1 � φ m
0ð Þ

1 ; m
1ð Þ

1 ; m
2ð Þ

1

� �
¼

m
0ð Þ

1 � m
2ð Þ

1

� �3

m
1ð Þ

1

� �3
: ð53Þ

Thus, Eq (51) is approximated by:

_m
0ð Þ

1

_m
1ð Þ

1

_m
2ð Þ

1

2

6
6
4

3

7
7
5 ¼

� d � a 0

mb � d � a

s2
b

2mb � d

2

6
6
4

3

7
7
5

m
0ð Þ

1

m
1ð Þ

1

m
2ð Þ

1

2

6
6
4

3

7
7
5þ

0

0

� a

2

6
4

3

7
5 �

m
0ð Þ

1 � m
2ð Þ

1

� �3

m
1ð Þ

1

� �3
: ð54Þ

From Eqs (18) and (21), the estimated system reliability Re(t) and the lower bound Rl(t) are

calculated by

Re tð Þ ¼ m
0ð Þ

1 tð Þ � F
H � m

1ð Þ

1 tð Þ=m
0ð Þ

1 tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2ð Þ

1 tð Þ=m
0ð Þ

1 tð Þ þ m
1ð Þ

1 tð Þ=m
0ð Þ

1 tð Þ
� �2

r

0

B
B
@

1

C
C
A; ð55Þ

Rl tð Þ ¼ m
0ð Þ

1 tð Þ � 1 �
m

1ð Þ

1 tð Þ
H

" #

: ð56Þ

where the conditional moments m
0ð Þ

1 tð Þ; m 1ð Þ

1 tð Þ; m 2ð Þ

1 tð Þ are obtained by solving the differential

Eqs (52) and (54).

Numerical calculation. A numerical example is conducted using the parameters in

Table 3, assumed arbitrarily by hypothesis for the purpose of illustration. To solve the differen-

tial equations in Eqs (52) and (54), the solver based on Runge Kutta method in Matlab 2013a is

used. On the other hand, based on the properties of Cox process, the conditional moments can

also be written as Eqs (57) and (58) below:

m
0ð Þ

1 tð Þ ¼ P q ¼ 1f g

¼ Eexp �
Z t

0
l x tð Þð Þdt

� �

¼ Eexp �
Z t

0
dþ ax tð Þð Þdt

� �

;

m
1ð Þ

1 tð Þ ¼ E xjq ¼ 1ð Þ � P q ¼ 1f g

¼ x0 þ mbt
� �

� Eexp �
Z t

0
dþ ax tð Þð Þdt

� �

;

m
2ð Þ

1 tð Þ ¼ E x2jq ¼ 1ð Þ � P q ¼ 1f g

¼ x0 þ mbt
� �2

þ s2
b
t

h i
� Eexp �

Z t

0
dþ ax tð Þð Þdt

� �

:

ð57Þ

R tð Þ ¼ P x < Hjq ¼ 1f g � P q ¼ 1f g

¼ F
H � x0 þ mbt

� �

sb

ffiffi
t
p

 !

� Eexp �
Z t

0
dþ ax tð Þð Þdt

� �

;
ð58Þ
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where x0 denotes the initial degradation magnitude and F(�) represents the standard normal

distribution function. A comparison is made between the results obtained by the developed

methods in this paper and those obtained by solving Eqs (57) and (58) through Monte Carlo

simulation. The sample size of the Monte Carlo simulation is 103. In Fig 7(A)–7(C), the

moments with order 0,1 and 2 are compared with those obtained by Eq (57). In Fig 7(D),

the estimated reliability and its lower bound are compared to the results calculated by

Eq (58). The comparisons show that the moments and system reliability are accurately pre-

dicted by the SHS model.

Conclusions

In this paper, a SHS-based modeling framework is developed for the reliability modeling and

analysis of dependent failure processes, where degradation processes and random shock

Table 3. Parameter values for case 3.

Parameters Value

H 7.5μm3

μβ 1×10−4 μm3

σβ 1×10−5 μm3

δ 2.5 × 10−5

α 1×10−4

x0 1×10−4 μm3

doi:10.1371/journal.pone.0172680.t003

Fig 7. Comparison of results obtained by the SHS model and those by analytic expressions for case

3. (A) Comparison on the order 0 moment: Pr q 6¼ 2f g ¼ m
ð0Þ

1 ðtÞ. (B) Comparison on the order 1 moment:

EðxðtÞÞ ¼ m
ð1Þ

1 ðtÞ þ m
ð1Þ

2 ðtÞ. (C) Comparison on the order 2 moment: Eðx2ðtÞÞ ¼ m
ð2Þ

1 ðtÞ þ m
ð2Þ

2 ðtÞ. (D) Comparison

on the estimated reliability and lower bound for reliability.

doi:10.1371/journal.pone.0172680.g007
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processes compete to cause system failure and dependencies exist among these processes. In

the developed model, the degradation process is modeled by SDEs and the shock process is

characterized by transitions among the system health states. The dependencies among the two

processes are modeled within the structure of the SHS model by the reset map, transition rates

etc. The conditional moments for the state variables in the developed SHS model are calculated

by deriving and solving a set of differential equations based on Dynkin’s formula. Using these

conditional moments, a reliability analysis method is developed to estimate the system reliabil-

ity and its lower bound. Three case studies are conducted to demonstrate the developed meth-

ods. Comparisons to Monte Carlo simulations show that the developed method can achieve

accurate reliability analysis results, while requiring much less computations than Monte Carlo

simulations.

To apply the developed model in practice, the parameter values, such as the parameters in

the SDEs that model the degradation processes, the transition rates that model the random

shock processes, and the parameters in the reset maps that describe the dependency, need to

be set based on historical data or expert judgments. Epistemic uncertainty might present when

setting values for the parameters. Another source of epistemic (model) uncertainty is derived

from the assumptions made for the present model. Treatment and calculation of epistemic

uncertainty is an interesting problem that deserves further investigations.
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