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Abstract

Safe vascular access is a prerequisite for intravenous drug admission. Discrimination

between intra- and extravascular needle position is essential for procedure safety. Spectral

tissue sensing (STS), based on optical spectroscopy, can provide tissue information directly

from the needle tip. The primary objective of the trial was to investigate if STS can reliably

discriminate intra-vascular (venous) from non-vascular punctures. In 20 healthy volunteers,

a needle with an STS stylet was inserted, and measurements were performed for two

intended locations: the first was subcutaneous, while the second location was randomly

selected as either subcutaneous or intravenous. The needle position was assessed using

ultrasound (US) and aspiration. The operators who collected the data from the spectral

device were blinded to the insertion and ultrasonographic visualization procedure and the

physician was blinded to the spectral data. Following offline spectral analysis, a prediction of

intravascular or subcutaneous needle placement was made and compared with the “true”

needle tip position as indicated by US and aspiration. Data for 19 volunteers were included

in the analysis. Six out of 8 intended vascular needle placements were defined as intravas-

cular according to US and aspiration. The remaining two intended vascular needle place-

ments were negative for aspiration. For the other 11 final needle locations, the needle was

clearly subcutaneous according to US examination and no blood was aspirated. The Mann-

Whitney U test yielded a p-value of 0.012 for the between-group comparison. The differ-

ences between extra- and intravascular were in the within-group comparison computed with

the Wilcoxon signed-rank test was a p-value of 0.022. In conclusion, STS is a promising

method for discriminating between intravascular and extravascular needle placement. The

information provided by this method may complement current methods for detecting an

intravascular needle position.
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Introduction

Safe vascular access is a prerequisite for intravenous drug admission. The opposite is true dur-

ing locoregional anesthesia. In this case, local anesthetics should not be injected into a blood

vessel but spread around the target nerve. Inadvertent vascular injections represent rare but

serious complications. Several case reports have been published since the 1940s [1]. The inad-

vertent injection of drugs into blood vessels can contribute to considerable morbidity [2] and,

therefore, precautions should be taken to reduce the risk of intravascular injection of local

anesthetics. These precautions include aspiration before injection, administration of epidural

test doses of local anesthetics, and incremental administration of small amounts of drugs.

Imaging techniques such as ultrasonography (US), radiography or angiography are powerful

tools to choose the correct injection point and may diminish, but do not exclude, the risk of

inadvertent intravascular injections [3–6]. In the case of intended venous injection, subcutane-

ous or inadvertent intra-arterial injections have to be avoided [7, 8].

Spectral tissue sensing (STS) is a new technique with the potential to provide information

on the composition of the tissue in front of the needle tip. The technique is complementary to

current imaging, aspiration and needling techniques and may be a useful tool to document

and avoid inadvertent intravascular injection or to confirm an intravascular needle position.

The optical method that forms the basis of the spectral tissue sensing technology is diffuse

reflectance spectroscopy (DRS). The technique makes use of the phenomenon that if light is

delivered to tissue, it is scattered and absorbed. The extent of scattering and absorption is

determined by the composition of the tissue. For example, visible and near-infrared light

are absorbed by hemoglobin, water, and lipids present in biological tissue. These substances

show distinct absorption features [9–12]. Well-established techniques that make use of this

phenomenon are pulse oximetry and real-time gas analysis [13, 14]. The development of

fiber-optic sensing technology has enabled DRS measurements directly via the tip of a nee-

dle [15–17]. Needle stylets with DRS technology contained within standard needles allow

for real-time spectral tissue sensing (STS) [18]. The STS concept used in this study has been

tested in various other systems: in excised tissues, in vivo in pigs, and in vivo in humans [9,

10, 19, 20]. The theoretical advantage of STS compared to DSA and ultrasound is that STS

provides real-time information on the tissue in front of the needle. Recently, Balthasar et al.

demonstrated in a case series that STS was able to identify intravascular needle placement

in 100% of cases compared to fluoroscopy and aspiration during invasive lumbar pain pro-

cedures [9]. In that case report, intravascular needle placement was inadvertent and STS

detected the intravascular placement in off-line analysis of the data after the procedures.

The goal of the current study was to investigate the potential of the STS method to discrimi-

nate intentional intravascular and non-vascular needle placement, by comparison with US

and aspiration.

Methods

Study design

The study was conducted at the Radboud University Nijmegen Medical Center in the period

of 30th of June and 5th of July 2011. Since there was no follow up, the data collection was com-

pleted and the study ended on the 5th of July. After approval by the institutional review board

(CMO Regio Arnhem-Nijmegen, Dr. F.Th.M. Huysmans, 29th of June 2011) and written

informed consent, 20 healthy adult volunteers participated (S1 File: Trial protocol and S2 File:

Letter ethic comitee). Exclusion criteria were: pregnancy, photodynamic therapy, inability to

give informed consent, category 2 and higher of the ASA physical status classification system.
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The primary objective of the trial was to investigate if STS can reliably discriminate intra-

vascular (venous) from non-vascular punctures.

Data were obtained at one time at two locations per volunteer. The first location in all 20

volunteers was subcutaneous needle placement, while second location was determined ran-

domly. A computerized randomization scheme was used to determine needle placement for

the second measurement either intravascularly (n = 10) or in subcutaneous tissue (n = 10).

The operators who collected the data from the spectral device were blinded to the insertion

and ultrasonographic visualization procedure and the physician was blinded to the spectral

data. The obtained reflectance spectra were analyzed offline by an investigator blinded to the

procedure. No follow up was planned (see also consort flow chart, Fig 1 and consort checklist

as supporting information).

According to the results of the spectral analysis, intravascular versus subcutaneous needle

placement was predicted. The prediction by the STS method was compared with the “true”

needle tip position as indicated by the aspiration of blood and an assessment by the physician

during the procedure using out-of-plane (short-axis) ultrasound (US) guidance. A positive

intravascular location was defined as a positive record made by the physician using US imag-

ing in combination with aspiration of blood. We choose to combine both US imaging and

aspiration, because aspiration alone has a sensitivity of only 25–47% to identify an intravascu-

lar needle position [21]. Ultrasound is highly dependent on the experience and interpretation

of the operator and can lead to false positive as well as negative results [5]. S3 File shows the

consort check list of the study.

Study objective

The objective of this observational study is to investigate if the optical tissue stylet technology

can reliably discriminate intra-vascular (venous) from non-vascular punctures.

Study registration

This was very early phase research, sponsored by industry. Following the rules in the Nether-

lands for performing clinical research, the study was registered with the Dutch “Centrale Com-

missie Mensgebonden Onderzoek CCMO)” before enrolment was started, (see https://www.

toetsingonline.nl/to/ccmo_search.nsf/Searchform?OpenForm, search term “optical tissue sty-

let” Identifier: NL36528.091.11). The study was internationally registered after patient enroll-

ment: Registry Url: http://www.isrctn.com/ISRCTN15608308 Identifier: ISRCTN15608308.

Device description

The STS system consists of two parts: an STS stylet and an optical console (Fig 2). The optical

console contains a broadband (white) light source, two spectrometers and a computer board

used to control the light source and data acquisition. The disposable sterile 20-G needles

including the optical stylet are Conformité Européenne (CE) marked (InVivo, Schwerin, Ger-

many). The stylet contains two 100 μm core fibers that are connected to a tungsten halogen

broadband light source (500–1600 nm) and two spectrometers that receive the reflected light.

A laptop computer is connected to control the light source, spectrometers and data acquisi-

tion. Details of the technical set up have been described elsewhere [9].

Study procedures

After randomization, an experienced anesthesiologist performed all of the intravenous or sub-

cutaneous needle insertions on the dorsal side of the hand or anterior forearm after local

Spectral tissue sensing and vascular needle position
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Fig 1. Consort flowchart of the study.

doi:10.1371/journal.pone.0172662.g001
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disinfection. During the entire procedure, a pressure strap was used on the forearm. Ultra-

sound imaging (SonoSite, MicroMaxs Turbo, linear transducer HFL 38 mm, 13–6 MHz) was

used to guide all insertions, with the needle visualized out-of-plane (short axis). During needle

insertion, spectral data were obtained twice for each volunteer: once subcutaneously and once

at the intended location (subcutaneous or intravenous). Selection of the vein was done by the

physician according to normal routine, preferably on the dorsal side of the hand. The needle

was inserted with depth of at least 2 mm. STS has a sensing volume of approximately 1 mm3.

No light from the STS system was visible through the skin. US images were obtained at the

final needle location. At the end of the procedure, the optical stylet was removed from the nee-

dle and aspiration was performed. To prevent dislocation of the needle tip during removal of

the stylet, the tip was monitored continuously on the US screen during removal. As already

pointed out, aspiration of blood in conjunction with a positive US image was used as a proof

Fig 2. Picture of the console and needle tip. Picture of the console (upper part) and needle tip with optical

stylet (lower part). The drawing demonstrates the needle, which is connected to the console. The console is

just a drawing and not an accurate image of the real one. The picture of the needle tip shows the two fibers

and indicates the measuring volume.

doi:10.1371/journal.pone.0172662.g002
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of an intravascular needle position. Absence of blood aspiration in conjunction with a negative

US image was used to indicate a non-vascular needle position.

Only data that were collected during procedures according to this protocol (US images,

aspiration and pressure strap during entire procedure) were included in the analysis.

Spectral analysis

Preprocessing of the spectral data (wavelength calibration, correction for instrument response

and background signal, such as surrounding light) was performed in real time. After the clini-

cal procedure, further analysis was performed using a custom-made program utilizing the soft-

ware package Matlab (Mathworks, Natick, USA).

For each obtained spectrum, a “similarity” parameter was calculated, which indicates the

similarity of the obtained spectrum, Starget, with a spectrum collected from a venous blood

sample, Sblood. The blood similarity parameter is given by: B = 1/|<Starget>–<Sblood>|,

where “<>” denotes the average of the spectral intensities at four wavelengths: 529, 545, 570,

and 584 nm. A high value of the blood similarity parameter thus corresponds to high spectral

similarity to blood. Because of the prominent spectral absorption from hemoglobin at these

wavelengths, the blood similarity parameter provides high contrast for transition into a blood

vessel. The approach followed here is similar to the analysis performed in an earlier study [9].

Sample size calculation

We planned a study of a continuous response variable (namely the blood similarity parameter)

from independent control and experimental subjects with one control per experimental sub-

ject. The sample size was determined based on the best available data at the time of the prepa-

ration of the study protocol, which were data on total hemoglobin estimates (HbT) from

spectral fitting obtained in a previous study [11].

In that study, 21 “not in blood vessel” spectral measurements resulted in mean and standard

deviation values for HbT of 0.0292 +/- 0.0161 and 10 “in blood vessel” spectral measurements

resulted in mean and standard deviation values for HbT of 0.453 +/- 0.156. These numbers

were entered into a non-parametric Mann-Whitney test (unpaired t-test) using GraphPad

StatMate 2.00 and GraphPad Instat software (www.graphpad.com/statmate/statmate.htm).

From this pilot data, it can be assumed that a detectable difference between the means of

HbT of 0.115 is obtained for a sample size n = 10 at a significance level of p = 0.05 and a power

of 0.8. Therefore, 10 subjects with one control per experimental subject and 10 control subjects

were ample.

Statistical analysis

First, we computed blood similarity parameters for all volunteers and assessed whether a

(range of) cut-off values can be determined to discriminate between values of extra- and intra-

vascular insertion.

Next, we compared blood similarity parameters between the two groups using only the sec-

ond measurements (i.e. those at the intended location) and computed the Mann-Whitney U

test. We compared blood similarity parameters within the group of volunteers randomized to

receive first an extravascular and then an intravascular insertion using the Wilcoxon signed-

rank test, a nonparametric test for repeated measurements. A p-value of�0.05 was considered

to indicate statistical significance. All analyses were performed using R version 3.1.3.

Spectral tissue sensing and vascular needle position
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Results

Data from 19 of the 20 subjects were included in the analyses. One volunteer in the vascular

group (volunteer 14) had to be excluded because data acquisition was not performed according

to the protocol. Thus, 38 datasets were obtained in 19 volunteers, with two datasets per volun-

teer. The 38 sets comprised 19 subcutaneous sets from the first measurement location and 19

sets from the second measurement location, which were divided into 11 subcutaneous sets and

8 intravascular sets. In one case, although randomization asked for intravenous needle place-

ment, but the physician performed an intentional subcutaneous placement.

In Fig 3, typical spectra and the corresponding calculated blood similarity parameters for a

subcutaneous needle tip position and an intravascular needle tip position are shown.

Calculated blood similarity parameters for the spectra from 19 volunteers are given in in

Fig 4, where the natural logarithm of the blood similarity parameter, Ln(B), is plotted. The nat-

ural logarithm is used here to capture the large dynamic range in the blood similarity parame-

ter B. The similarity parameter is an empirical parameter that was developed as a relative

measure to compare spectra [18]. S1 Table shows the measured blood similarity parameters of

al patients. The statistic analyses were performed by an independent person (Sander van

Kuijk, Clinical Epidemiologist, MUMC+).

For 6 out of the 38 datasets, the blood similarity parameters were above the threshold, cor-

responding to a prediction of vascular puncture. All of these datasets corresponded with an

intended vascular puncture, and were confirmed as vascular needle positions by US and the

Fig 3. Optical spectra and the corresponding blood similarity parameters. Spectra acquired from one volunteer for

subcutaneous needle (upper panes) and intravascular needle positioning (lower panes), as confirmed by positive blood aspiration.

Left: full spectra, indicating the intensity of light received by the stylet (linear arbitrary units, a.u.) as a function of the wavelength

(nanometers, nm). Center: an enlarged image of the spectrum that is used to determine the blood similarity parameter B (dashed

lines indicate the wavelengths that are used for the calculation). Right: Ln (natural logarithm) of the blood similarity parameter as

calculated for these two acquisitions.

doi:10.1371/journal.pone.0172662.g003
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aspiration of blood. For 32 out of the 38 datasets, the blood similarity parameters were below

the threshold and predicted a non-vascular needle placement. Of these 32 datasets, 19 were

collected at the first, intended non-vascular measurement position. All of these were con-

firmed as non-vascular needle positions by US. Of the datasets where the blood similarity

parameter predicted a non-vascular needle placement, 13 were collected at the second and

final, measurement location. Of those 13, 11 datasets corresponded to an intended non-vascu-

lar needle position and two with an intended vascular position, confirmed by US but not by

the aspiration of blood (inconclusive). Fig 5 gives an overview of the study setup and of the

results.

The agreement with the predictions based on STS measurements and confirmation by

blood aspiration was 100%. In comparison with US, predictions based on STS agreed with US

for all intended non-vascular placements (100%, negative control) and in six out of eight cases

for intended vascular placements (agreement 75%).

For the between-group comparison the natural logarithm of the mean of the extravascular

and the intravascular groups was 1.36 and 8.42, respectively. The Mann-Whitney U test

yielded a p-value of 0.012. The differences between extra- and intravascular were even more

pronounced in the within-group comparison in those individuals that received first an extra-

vascular insertion, followed by an intravascular insertion. The log mean values were 0.56 and

8.42 for the extra- and intravascular measurements, respectively. The p-value computed with

the Wilcoxon signed-rank test was 0.022.

Discussion

The results of the present study give some insight into the spectrum composition of intravas-

cular versus extravascular needle placing. The ability to detect whether a needle or catheter is

appropriately placed is of paramount importance for the prevention of inadvertent

Fig 4. All blood similarity parameters. Overview of all blood similarity parameters (B) determined for the

different measurement locations in all volunteers. Results are plotted as the average natural logarithm Ln (B)

(crosses), with standard deviations determined for the set of spectra acquired at each measurement location

in each subject. Volunteer 14 was excluded. Because of the considerable differences in blood similarity

parameters (B) between the two groups, more details in the data are visible by plotting Ln(B) instead of B

directly.

doi:10.1371/journal.pone.0172662.g004
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intravascular injection or for the confirmation of the correct, intravascular position. For

instance, systemic toxicity due to inadvertent intravascular injection of local anesthetic occurs

in 1 in 10000 patients after ultrasound guided axillary nerve block[3].

Balthasar et al. showed that vascular penetration events can be detected with spectral tissue

sensing acquired from the tip of the needle [9]. After assessing 18 needle insertions in 10

patients undergoing sympathetic chain or communicating ramus nerve block, two inadvertent

vascular penetration events were detected [9]. In the present study, we provide further evi-

dence that an intravascular needle position can be detected by STS in human volunteers.

The results of this study show that STS can detect intravascular needle placement in 100%

of cases that were positive for the aspiration of blood. There was a correspondence of 75%

between STS and US. In the other 25% of cases, the anesthesiologist assumed an intravenous

needle position, based on the US image. In these cases, during the insertion procedure, the

needle tip positions were judged as intravenous, but after removal of the stylet, there was no

aspiration of blood. The spectra obtained for these three subjects suggested a subcutaneous

needle position. Intravascular needle tip positions cannot be 100% excluded with this study

design. Moreover, aspiration of blood may fail to detect intravascular needle or catheter posi-

tioning. To our knowledge, detailed data for the failure rate of aspiration in this particular

Fig 5. Overview study design and results. Flow diagram of the study design including the results below the dotted line. STS: spectral tissue sensing, BS:

blood similarity parameter.

doi:10.1371/journal.pone.0172662.g005
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setting (venous puncture with aspiration and a pressure strap) is unknown. Conversely,

needle tip visualization using an out-of-plane (short axis) technique is challenging and the

operator may have misjudged the image [22]. It has been reported in the literature that for

out-of-plane US guided procedures, the incidence of inadvertent posterior wall puncture is

higher than for the in-plane approach [3, 23]. Nevertheless, there is no clear recommenda-

tion whether the out- or in-plane technique should be used during ultrasound guided vessel

cannulation [24]. From a practical point of view, out-of-plane visualization of the vessel is

preferred [25]. Hydrodissection is an alternative method that can be employed during US

imaging to improve needle tip visualization and prevent accidental intravascular injection

[26].

There are some limitations of the present study. We did not use additional in-plane imaging

or the injection of saline. Practically, the stylet-containing needles used did not allow for the

injection of fluid, and injection could have been performed only after removal of the stylet. In

future studies, it will be important to employ disposables that allow for the injection and aspi-

ration of fluids during the entire procedure.

Imaging techniques such as US or angiography are routinely used to confirm proper needle

placement, for instance during central venous catheterization [27, 28]. An important caveat

for the use of US guidance is that the needle and/or wire may not always be visualized in the

vein. Confusion between the tip and shaft during US guidance of the needle can lead to inad-

vertent arterial cannulation [29]. The occurrence of accidental arterial cannulation is usually

recognizable from the color and the pulsatile nature of the blood back flow; however, case

reports suggest that this is not always true [30]. Pressure transducer monitoring and fluoro-

scopic guidance of the needle and catheter are considered to be reliable methods to place nee-

dles or catheters at the intended location [31]. DSA, however, uses an iodinated contrast

material, which may be contraindicated and requires exposure of the patient and physician to

radiation. Without the regular use of DSA during pain procedures, serious adverse events have

been reported [4].

The advantages of STS are that it can provide information throughout the procedure, it

does no harm to the patient or physician, it can be used to complement existing imaging

modalities, STS information is less dependent on the skills and interpretation of the operator

compared to DSA and ultrasound, and it does not disturb the workflow when integrated into

the needle. The system used in this study was a preliminary version with a stylet. This stylet

had to be removed before aspiration. It would be interesting in future studies to investigate the

potential of a method to distinguish between venous and arterial blood during vascular proce-

dures and compare with angiography and/or blood gas samples.

In conclusion, the results of this study demonstrate that STS is a promising method for dis-

criminating between intravascular and extravascular needle placement. The information pro-

vided by this method may complement current methods for detecting and identifying an

intravascular needle position and may improve patient safety.
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